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The SL3-module T (43) for p = 3.

An appendix to the paper:
Decomposition of tensor products of modular irreducible representations for SL3

by S.R.Doty and S.Martin.

Let k be an algebraically closed field of characteristic p = 3. Following Doty
and Martin, we consider rational SL3-modules with composition factors L(λ),
where λ is one of the weights (1, 0), (0, 5), (5, 1), (4, 3), (6, 2). Dealing with a
dominant weight (a, b), or the simple module L(a, b), we usually will write just
ab. The corresponding Weyl module, dual Weyl module, or tilting module, will
be denoted by ∆(ab), ∇(ab) and T (ab), respectively.

The paper [DM] by Doty and Martin describes in detail the structure of the
modules ∆(λ),∇(λ) for λ = 10, 05, 51, 43, 62 and also T (10), T (05), T (51)
and it provides the factors of a ∆-filtration for T (43). This module T (43) is still
quite small (it has length 10), but its structure is not completely obvious at first
sight. The main aim of this appendix is to explain the shape of this module.

Let us call a finite set I of dominant weights (or of simple modules) an
ideal provided for any λ ∈ I all composition factors of T (λ) belong to I. The
category of modules with all composition factors in an ideal I is a highest weight
category with weight set I, thus can be identified with the module category of
a basic quasi-hereditary algebra which we denote by A(I). In order to analyse
the module T (43), we need to look at the ideal I = {10, 05, 51, 43}, thus at the
algebra A(10, 05, 51, 43).

In order to determine the precise relations for A(10, 05, 51, 43), we will have
to look also at the module T (62), see section 4. Note that {10, 05, 51, 43, 62}
is again an ideal, thus we deal with the algebra A(10, 05, 51, 43, 62).

The use of quivers and relations for presenting a basic finite dimensional
algebras was initiated by Gabriel around 1970, the text books [ARS] and [ASS]
can be used as a reference. The class of quasi-hereditary algebras was introduced
by Scott and Cline-Parshall-Scott; for basic properties one may refer to [DR] and
[R2]. The author is grateful to S. Doty and R. Farnsteiner for fruitful discussions
and helpful suggestions concerning the material presented in the appendix.

1. The main result.

Deviating from [DM], we will consider right modules. Thus, given a finite-
dimensional algebra A, an indecomposable projective A-module is of the form
eA with e a primitive idempotent. The algebras to be considered will be factor
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algebras of path algebras of quivers and the advantage of looking at right mod-
ules will be that in this way we can write the paths in the quiver as going from
left to right.

Proposition. The algebra A(10, 05, 51, 43) is isomorphic to the path algebra

of the quiver

Q = Q(10, 05, 51, 43) 10
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modulo the ideal generated by the following relations

α′α = 0, α′β = 0, β′α = 0, β′(1 − γγ′)β = 0,
γ′γ = 0, γ′(αα′ − ββ′) = 0, (αα′ − ββ′)γ = 0, γ′αα′γ = 0.

We are going to give some comments before embarking on the proof.

(1) Since the quiver Q(10, 05, 51, 43) is bipartite, say with a (+)-vertex 10
and three (−)-vertices 05, 51, 43, possible relations between vertices of the
same parity involve paths of even lengths, those between vertices with different
parity involve paths of odd lengths. Our convention for labelling arrows between
a (+)-vertex a and a (−)-vertex b is the following: we use a greek letter for the
arrow a → b and add a dash for the arrow b → a.

(2) The assertion of the proposition can be visualized by drawing the shape
of the indecomposable projective A-modules. The indecomposable projective
A-module with top λ will be denoted by P (λ) = eλA, where eλ is the primitive
idempotent corresponding to λ, and we will denote the radical of A by J .
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These are the coefficient quivers of the indecomposable projective A-modules
with respect to suitable bases. In addition, the proposition asserts that all the
non-zero coefficents can be chosen to be equal to 1. Note that this means that
A has a basis B which consists of a complete set of primitive and orthogo-
nal idempotents as well as of elements from the radical J , and such that B is
multiplicative (this means: if u, v ∈ B, then either uv = 0 or else uv ∈ B).
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For the convenience of the reader, let us recall the notion of a coefficient
quiver (see for example [R3]): By definition, a representation M of a quiver
Q over a field k is of the form M = (Mx; Mα)x,α; here, for every vertex x of
Q, there is given a finite-dimensional k-space Mx, say of dimension dx, and for
every arrow α : x → y, there is given a linear transformation Mα : Mx → My.
A basis B of M is by definition a subset of the disjoint union of the various k-
spaces Mx such that for any vertex x the set Bx = B∩Mx is a basis of Mx. Now
assume that there is given a basis B of M . For any arrow α : x → y, write Mα as
a (dx × dy)-matrix Mα,B whose rows are indexed by Bx and whose columns are
indexed by By. We denote by Mα,B(b, b′) the corresponding matrix coefficients,
where b ∈ Bx, b′ ∈ By, these matrix coefficients Mα,B(b, b′) are defined by
Mα(b) =

∑
b′∈B

b′ Mα,B(b, b′). By definition, the coefficient quiver Γ(M,B) of
M with respect to B has the set B as set of vertices, and there is an arrow
(α, b, b′) provided Mα,B(b, b′) 6= 0 (and we call Mα,B(b, b′) the corresponding
coefficient). If b belongs to Bx, we usually label the vertex bx by x. If necessary,
we label the arrow (α, b, b′) by α; but since we only deal with quivers without
multiple arrows, the labelling of arrows could be omitted. In all cases considered
in the appendix, we can arrange the vertices in such a way that all the arrows
point downwards, and then replace arrows by edges. This convention will be
used throughout.

Note that there is a long-standing tradition in matrix theory to focus at-
tention to such coefficient quivers (see e.g. [BR]), whereas the representation
theory of groups and algebras is quite reluctant to use them.

Looking at the pictures one should be aware that the four upper base ele-
ments form a complete set of primitive and orthogonal idempotents, thus these
are the generators of the indecomposable projective A-modules. Those directly
below generate the radical of A, and they are just the arrows of the quiver (or
better: the residue classes of the arrows in the factor algebra of the path alge-
bra modulo the relations). Of course, on the left we see P (10), then P (05) and
P (51), and finally, on the right, P (43).

(3) The strange relation β′(1 − γγ′)β = 0 leads to the curved edge in P (51)
as well as in P (10). Note that the submodule lattice of P (51) would not at
all be changed when deleting this extra line — but its effect would be seen in
P (10). Namely, without this extra line, the socle of P (10) would be of length
3 (namely, top rad2P (10) is the direct sum of three copies of 10, and the two
copies displayed in the left part are both mapped under γ to 43, thus there
is a diagonal which is mapped under γ to zero; without the curved line, this
diagonal would belong to the socle), whereas the socle of P (10) is of length 2.

(4) Looking at the first four relations presented above, one could have the
feeling of a certain asymmetry concerning the role of P (05) and P (51), or also
of the role of 05 and 51 as composition factors of the radical of P (51). But
such a feeling is misleading as will be seen in the proof. The pretended lack of
symmetry concerns also our display of T (43). Sections 7 and 8 will be devoted
to a detailed analysis of the module T (43) in order to focus the attention to its
hidden symmetries.

3



(5) Note that all the tilting A-modules are local (and also colocal):

T (10) = P (10)/(αA + βA + γA)
T (05) = P (10)/(βA + γA),
T (51) = P (10)/(αA + γA),
T (43) = P (10)/γA.

As we have mentioned, sections 7 and 8 will discus in more detail the module
T (43).

(6) A further comment: One may be surprised to see that one can find
relations which are not complicated at all: many are monomials, the remaining
ones are differences of monomials, always using paths of length at most 4.

2. Preliminaries on algebras and the presentation of algebras using

quivers and relations.

Let t be a natural number. Recall that the zero module has Loewy length
0 and that a module M is said to have Loewy length at most t with t ≥ 1,
provided it has a submodule M ′ of Loewy length at most t−1 such that M/M ′

is semisimple. Given a module M , we denote by soctM the maximal submodule
of Loewy length at most t, and by toptM the maximal factor module of Loewy
length t. Of course, we write soc = soc1 and top = top1, but also toptM =
M/radtM.

Let A be a finite-dimensional basic algebra with radical J and quiver Q.
Let us assume that Q has no multiple arrows (which is the case for all the
quivers considered here). For any arrow ζ : i → j in Q, we choose an element
η(ζ) ∈ eiJej \ eiJ

2ej; the set of elements η(ζ) will be called a generator choice

for A. In this way, we obtain a surjective algebra homomorphisms

η : kQ → A

If ρ is the kernel of η, then ρ =
⊕

ij eiρej , and we call a generating set for ρ
consisting of elements in

⋃
ij eiρej a set of relations for A. We are looking for a

generator choice for the algebra A(10, 05, 51, 43) which allows to see clearly the
structure of T (43). Usually, we will write ζ instead of η(ζ) and hope this will
not produce confusion. If ζ ∈ eiJej \ eiJ

2ej belongs to a generator choice, we
obviously may replace it by any element of the form cζ + d with 0 6= c ∈ k and
d ∈ eiJ

2ej and obtain a new generator choice.

3. The algebra B = A(10, 05, 51).

Consider a quasi-hereditary algebra B with quiver being the full subquiver
of Q(10, 05, 51, 43) with vertices 10, 05, 51 and with ordering 10 < 05, 10 < 51.
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It is well-known (and easy to see) that B is uniquely determined by these data.
The indecomposable projectives have the following shape

05

10
.........

51

10
.........

...................
.

...................
.10

05

10

51

10
......... .........

What we display are the again coefficient quivers of the indecomposable projec-
tive B-modules considered as representations of kQ with respect to a suitable
basis.

We see that the algebra B is of Loewy length 3 and that it can be described
by the relations:

α′α = α′β = β′α = β′β = 0.

Of course, ∆(10) = ∇(10) = 10; and the modules ∆(05), ∆(51), ∇(05) and
∇(51) are serial of length 2, always with 10 as one of the composition factors.
This means that the structure of the modules ∆(λ), ∇(λ), for λ = 10, 05 51 can
be read off from the quiver (but, of course, conversely, the quiver was obtained
from the knowledge of the corresponding ∆- and ∇-modules).

Note that T (05) is the only indecomposable module with a ∆-filtration with
factors ∆(10) and ∆(05), since Ext1(∆(10), ∆(05)) = k. Similarly, T (51) is the
only indecomposable module with a ∆-filtration with factors ∆(10) and ∆(51).

Let us remark that the structure of the module category mod B is well-
known: using covering theory, one observes that mod B is obtained from the
category of representations of the affine quiver of type Ã22 with a unique sink
and a unique source by identifying the simple projective module with the simple
injective module. In mod B, there is a family of homogeneous tubes indexed by
k \ {0}, the modules on the boundary are of length 4 with top and socle equal
to 10 and with rad/soc = 05⊕ 51. We will call these modules the homogeneous

B-modules of length 4. (The representation theory of affine quivers can be found
for example in [R1] and [SS]; from covering theory, we need only the process of
removing a node, see [M].)

4. The modules rad ∆(43) and ∇(43)/soc are isomorphic.

We will use the following information concerning the modules ∆(43) and
∇(43), see [DM]. Both rad ∆(43) and ∇(43)/soc are homogeneous B-modules
of length 4, thus the modules ∆(43) and ∇(43) have the following shape

∆(43)
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Here, we have drawn again coefficient quivers with respect to suitable bases.
But note that we do not (yet) claim that all the non-zero coefficients can be
chosen to be equal to 1.

In order to show the assertion in the title, we have to expand our consider-
ations taking into account also the weight 62. The existence of an isomorphism
in question will be obtained by looking at the tilting module T (62).

In dealing with a tilting module T (µ), there is a unique submodule iso-
morphic to ∆(µ), and a unique factor module isomorphic to ∇(µ). Let R(µ) =
rad ∆(µ) and let Q(µ) be the kernel of the canonical map π : T (µ) → ∇(µ)/soc.
Note that ∆(µ) ⊆ Q(µ) (namely, if π(∆(µ)) would not be zero, then it would
be a submodule of ∇(µ)/soc with top equal to µ; however ∇(µ)/soc has no
composition factor of the form µ). It follows that R(µ) ⊂ Q(µ) and we call
C(µ) = Q(µ)/R(µ) the core of the tilting module T (µ). Also, we see that
µ = ∆(µ)/R(µ) is a simple submodule of C(µ). In fact, µ is a direct summand

of C(µ). Namely, there is U ⊂ T (µ) with T (µ)/U = ∇(µ). Then U ⊂ Q(µ) and
Q(µ)/U = µ. Since R(µ) ⊂ Q(µ) and R(µ) has no composition factor of the
form µ, it follows that R(µ) ⊆ U. Altogether, we see that U +∆(µ) = Q(µ) and
U ∩ ∆(µ) = R(µ). Thus Q(µ)/R(µ) = U/R(µ) ⊕ ∆(µ)/R(µ) = U/R(µ) ⊕ µ.

The module ∆(62) is serial with going down factors 62, 43, 10, 51, and
the module ∇(62) is serial with going down factors 51, 10, 43, 62, see [DM],
5.1.15. Also we will use that T (62) has ∆-factors ∆(51), ∆(43), ∆(62), each
with multiplicity one (and thus ∇-factors ∇(62), ∇(43), ∇(51)). To get the
∆-factors of T (62), one has to use [DM], (2.4.2) along with the known structure
of the Deltas (this requires a small calculation, which is left to the reader.)

The quiver of Q(10, 05, 51, 43, 62) of A(10, 05, 51, 43, 62) is
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62
....................

....................
........................................
.................................................................... ............δ

δ′
Q(10, 05, 51, 43, 62)

with ordering 10 < 05 < 43 < 62, and 10 < 51 < 43.

Lemma 1. The core of T (62) is of the form rad ∆(43) ⊕ 62 as well as of

the form ∇(43)/soc⊕ 62.

Corollary. The modules rad ∆(43) and ∇(43)/soc are isomorphic.

Note that it is quite unusual that the modules rad ∆(λ) and ∇(λ)/soc are
isomorphic, for a weight λ.

Proof of Lemma 1. Let T1 ⊂ T2 ⊂ T (62) be a filtration with factors

T1 = ∆(62), T2/T1 = ∆(43), T (62)/T2 = ∆(51).
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Now R(62) = rad ∆(62) ⊂ T1 ⊂ T2, thus we may look at the factor module
T2/R(62) and the exact sequence

0 → 62 → T2/R(62) → ∆(43) → 0

(with 62 = T1/R(62)). We consider the submodule N = rad ∆(43) of ∆(43),
with factor module ∆(43)/N = 43. We have Ext1(N, 62) = 0, since Ext1(S, 62) =
0 for all the composition factors S of N. This implies that there is an exact se-
quence

0 → N ⊕ 62 → T2/R(62) → 43 → 0.

Thus, there is a submodule U ⊂ T2 with R(62) ⊂ U such that U/R(62) is
isomorphic to N ⊕ 62 and T2/U is isomorphic to 43. Since T (62)/T2 = ∆(51)
is of length 2, we see that T (62)/U is of length 3.

Now consider the canonical map π : T (62) → ∇(62)/soc. This map vanishes
on R(62), thus induces a map π′ : T (62)/R(62) → ∇(62)/soc. Let us look at
the submodule U/R(62) of T (62)/R(62). Since the socle of ∇(62)/soc is equal
to 43, and U/R(62) = N ⊕ 62 has no composition factor of the form 43, we see
that U/R(62) is contained in the kernel of π′, and therefore U is contained in
the kernel of π.

By definition, the kernel of the canonical map π : T (62) → ∇(62)/soc is
Q(62), thus we have shown that U ⊆ Q(62). But T (62)/U is of length 3 as is
T (62)/Q(62), thus U = Q(62). But this means that Q(62)/R(62) = U/R(62) =
N ⊕ 62 = rad ∆(62) ⊕ 62.

The dual arguments show that Q(62)/R(62) = ∇(62)/soc⊕ 62

As we have mentioned, the module N = rad ∆(43) is a B-module, where B =
A(10, 05, 51). This algebra B has been discussed in section 3. The coefficient
quiver of N is

10

05 51

10
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...........
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...........

..................
...........

..................
...........

Now, choosing a suitable basis of N , we can assume that at least 3 of the non-
zero coefficients are equal to 1 and we look at the remaining coefficient, say that
for the arrow α. It will be a non-zero scalar c in k. Recall that we have started
with a particular generator choice for the algebra B which we can change. If we
replace the element α ∈ J by 1

c
α, then the coefficients needed for N will all be

equal to 1.

Remark. Extending the analysis of the ∆- and the ∇-filtrations of T (43),
one can show that T (62) is the indecomposable projective A(10, 05, 51, 43, 62)-
module with top 51 (as well as the indecomposable injective A(10, 05, 51, 43, 62)-
module with socle 51). As Doty has pointed out, the last assertion follows also
from Theorem 5.1 of the DeVisscher-Donkin paper [DD] (that result is based
on their Conjecture 5.2 holding, but it is proved in Section 7 of the same paper
that the conjecture holds for GL(3); hence it holds also for SL(3)).
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Let us add without proof that in this way one may show that the module
T (62) has a coefficient quiver of the form
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.............................................................................................



the shaded part being the core of T (62).

5. The module T (43).

Lemma 2. We have top T (43) = 10 = soc T (43).

Proof: We use that T (43) has ∆-factors ∆(10), ∆(05), ∆(51), ∆(43) in
order to show that top T (43) = 10. Since top T (43) is isomorphic to a submodule
of the direct sum of the tops of the ∆-factors, it follows that top T (43) is
multiplicity free. Since T (43) maps onto ∇(43), the only composition factor 43
cannot belong to the top.

Actually, it is N = T (43)/rad ∆(43) which maps onto ∇(43), and ∇(43)
maps onto ∇(05) which is serial with top 10 and socle 05; this shows that the
only composition factor of the form 05 of N does not belong to top N . Now 05
is not in top N and not in top rad ∆(43), thus not in top T (43). Similarly, 51
is not in top T (43). It follows that top T (43) = 10.

Note that the ∇-factors of T (43) are ∇(10), ∇(05), ∇(51), ∇(43). Namely,
T (43) maps onto ∇(43), say with kernel N ′. The number of composition factors
of N ′ of the form 05, 51, 10 is 1, 1, 3, respectively. Since N ′ has a ∇-filtration,
its ∇-factors have to be ∇(05),∇(51) and ∇(10), each with multiplicity one. In
the same way, as we have seen that T (43) has simple top 10, we now see that it
also has simple socle 10.

Let us add also the following remark:

Remark The module T (43) is a faithful A-module.

Proof: First of all, we show that the modules T (05) and T (51) are both
isomorphic to factor modules (and to submodules) of T (43). The ∆-filtration of
T (43) shows that T (43) has a factor module with factors ∆(10) and ∆(05). Since
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this factor module is indecomposable, it follows that it is T (05). Similarly, T (51)
is a factor module of T (43). (And dually, T (05) and T (51) are also submodules
of T (43)). Of course, also T (10) is a factor module and a submodule of T (43).
It follows that T (43) is faithful, since the direct sum of all tilting modules is
always a faithful module (it is a “tilting” module in the sense used in [R2]).

6. Algebras with quiver Q(10, 05, 51, 43).

Let us assume that we deal with a quasi-hereditary algebra A with quiver
Q(10, 05, 51, 43), with ordering 10 < 05 < 43 and 10 < 51 < 43 and such that
rad ∆(43) and ∇(43)/soc both are homogeneous B-modules of length 4.

Since we know the composition factors of all the A-modules ∇(λ), we can use
the reciprocity law in order to see that the indecomposable projective modules
have the following ∆-factors (going downwards)

P (43) ∆(43)
P (05) ∆(05) | ∆(43)
P (51) ∆(51) | ∆(43)
P (10) ∆(10) | ∆(05) ⊕ ∆(51) | ∆(43) ⊕ ∆(43).

We see: Since the Loewy length of these factors of P (10) are 1, 2, 4, the Loewy
length of P (10) can be at most 7. Of course, the Loewy length of P (43) = ∆(43)
is 4 and that of P (05) and P (51) is at most 6. It follows that J7 = 0.

Our aim is to contruct a presentation of A by the quiver Q and suitable
relations. As we have mentioned, for any arrow α : i → j in Q we choose an
element in eiJej \ eiJ

2ej which we denote again by α, in order to obtain a
surjective algebra homomorphisms

η : kQ → A.

Since J7 = 0, we see that all paths of length 7 in the quiver are zero when

considered as elements of A.

Lemma 3. Any generator choice for A satisfies the conditions

α′α, α′β, β′α, β′β ∈ J4,

γ′γ = 0, γ′(αα′ − c0ββ′) = 0, (αα′ − c1ββ′)γ = 0, γ′αα′γ = 0.

for some non-zero scalars c0, c1 ∈ k.

Proof. The algebra B considered in section 3 is the factor algebra of A mod-
ulo the ideal generated by e43. Since we know that the paths α′α, α′β, β′α, β′β
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are zero in B, they belong to J4 (any path between vertices of the form 05 and
51 which goes through 43 has length at least 4):

α′α, α′β, β′α, β′β ∈ J4.

Since e43Je43 = 0, we have
γ′γ = 0.

Also, the shape of P (43) shows that e43J
3e10 is one-dimensional, and that the

paths γ′αα′ and γ′ββ′ both are non-zero, thus they are scalar multiples of each
other. Thus, we can assume that

γ′(αα′ − c0ββ′) = 0,

with some non-zero scalar c0. Dually, we have

(αα′ − c1ββ′)γ = 0

with some non-zero scalar c1. (Later, we will use the fact that the modules
rad ∆(43) and ∇(43)/soc are isomorphic, then we can assume that c0 = c1;
also, we will replace one of the arrows α, α′, β, β′ by a non-zero scalar multiples,
in order to change the coefficient c0 to 1).

Since P (43) = ∆(43) is of Loewy length 4, we see that γ′J3 = 0, in particular
we have

γ′αα′γ = 0

(and also that γ′αα′α and γ′αα′β are zero.)

We have seen in the proof that γ′J3 = 0, since ∆(43) is of Loewy length 4.
Dually, since ∇(43) is of Loewy length 4, we have J3γ = 0.

Lemma 4. A factor algebra of the path algebra of the quiver Q(10, 05, 51, 43)
satisfying the relations exhibited in Lemma 3 is generated as a k-space by the

elements

Q0 10, 05, 51, 43,
Q1 α, β, γ, α′, β′, γ′,
Q2 αα′, ββ′, γγ′, α′γ, β′γ, γ′α, γ′β,
Q3 αα′γ, γγ′α, γγ′β, α′γγ′, β′γγ′, γ′αα′,
Q4 αα′γγ′, γγ′αα′, α′γγ′α, α′γγ′β, β′γγ′α, β′γγ′β,
Q5 αα′γγ′α, αα′γγ′β, α′γγ′αα′, β′γγ′ββ′,
Q6 αα′γγ′αα′,

thus is of dimension at most 34.

Proof: One shows inductively that the elements listed as Qi generate the
factor space J i/J i+1. This is obvious for i = 0, 1, 2, since here we have listed all
the paths of length i. For i = 3, the missing paths of length 3 are

αα′α, αα′β, ββ′α, ββ′β, γγ′γ,
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as well as
ββ′γ, γ′ββ′.

By assumption, the first five belong to J4, whereas the last two are equal to a
non-zero multiple of αα′γ and γ′αα′, respectively.

Next, consider i ≥ 4. We have to take the paths in Qi−1 and multiply them
from the right by the arrows and see what happens. For i = 4, the missing
paths are γγ′ββ′ (it is a multiple of γγ′αα′), the paths α′γγ′γ and β′γγ′γ (both
involve γ′γ) as well as the right multiples of γ′αα′ (all belong to J5).

In the same way, we deal with the cases i = 5, 6, 7. In particular, for i = 7,
we see that J7 = J8, and therefore J7 = 0. This shows that we have obtained
a generating set of the algebra as a k-space.

7. The algebra A = A(10, 05, 51, 43).

Now, let A = A(10, 05, 51, 43).

Lemma 5. For any generator choice of elements of A, the paths listed in

Lemma 4 form a basis of A.

Proof: Lemma 3 asserts that we can apply Lemma 4. On the other hand,
we know that dimA = 34, since we know the dimension of the indecomposable
projective A-modules.

Lemma 6. The socle of P (10) has length 2.

Proof. Since ∆(43)⊕∆(43) is a submodule of P (10), the length of the socle
of P (10) is at least 2.

According to Lemma 2, the top of T (43) is equal to 10, thus we see that
T (43) is a factor module of P (10), say T (43) = P (10)/W for some submodule W
of P (10). The subcategory of modules with a ∆-filtration is closed under kernels
of surjective maps [R2], thus W has a ∆-filtration. But W has a composition
factor of the form 43, and is of length 5, thus W is isomorphic to ∆(43) and
therefore has simple socle. Quoting again Lemma 2, we know that also T (43)
has simple socle, thus the length of the socle of P (10) is at most 2.

Proof of the proposition. Assume that there is given a generator choice
for A. Then α′α belongs to J4, thus to e05J

4e05. The basis of A exhibited in
Lemma 4 shows that e05J

4e05 is generated by α′γγ′α, thus we see that α′α has
to be a multiple of α′γγ′α. In the same way, we consider also the elements
α′β, β′α, β′β and obtain scalars caa, cab, cba, cbb (some could be zero) such that

α′α = caa α′γγ′α,
α′β = cab α′γγ′β,
β′α = cba β′γγ′α,
β′β = cbb β′γγ′β.
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We show that we can achieve that three of these coefficients are zero: Let

α′
0 = α′(1 − caaγγ′),

β′
0 = β′(1 − cbaγγ′),

β0 = (1 − (cab − caa)γγ′)β,

Then
α′

0α = α′(1 − caaγγ′)α = 0,
β′

0α = β′(1 − cbaγγ′)α = 0,

and
α′

0β0 = α′(1 − caaγγ′)(1 − (cab − caa)γγ′)β
= α′(1 − caaγγ′ − (cab − caa)γγ′)β
= α′(1 − cabγγ′)β = 0.

In the last calculation, we have deleted the summand in rad6, since actually
γ′γ = 0.

This shows that replacing α′, β, β′ by α′
0, β0, β′

0, respectively, we can
assume that all the parameters caa, cab, cba are equal to zero.

Thus, we can assume that we deal with the relations:

α′α = 0, α′β = 0, β′α = 0, β′(1 − cbbγγ′)β = 0,
γ′γ = 0, γ′(αα′ − c0ββ′) = 0, (αα′ − c1ββ′)γ = 0, γ′αα′γ = 0.

Let us show that cbb 6= 0. Assume, for the contrary that cbb = 0. Then the
element αα′−ββ′ belongs to the socle of P (10). But of course, also the elements
αα′γγ′αα′ and γγ′αα′ belong to the socle of P (10), thus the socle of P (10) is
of length at least 3. But this contradicts Lemma 6.

We have mentioned already, that the isomorphy of rad ∆(43) and ∇(43)/soc
implies that c0 = c1. Thus we deal with a set of relations

α′α = 0, α′β = 0, β′α = 0, β′(1 − c′γγ′)β = 0,
γ′γ = 0, γ′(αα′ − cββ′) = 0, (αα′ − cββ′)γ = 0, γ′αα′γ = 0.

with two non-zero scalars c, c′. It remains a last change of the generator choice:
Replace say γ by 1

c′
γ and α by 1

c
α. Then we obtain the wanted presentation.

This completes the proof of the Proposition.

8. The module T (43).

As we have mentioned, T (43) is a factor module of P (10), namely T (43) =
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P (10)/γA, thus it has the following coefficient quiver:

10

10

103

101 102

05

05

51

51

43

......................................................................... ............

.....................................................................................

......................................................................... ............

.....................................................................................

...................................................................

......................................................................... ............

.....................................................................................

......................................................................... ............

.....................................................................................

...................................................................

...................................................................

................................................................................................................................................................................................................................................................
α

α

α′

α′

β

β

β

β′

β′

γ γ

γ′

with all non-zero coefficients being equal to 1.

The picture shows nicely the ∆-filtration of T (43), but, of course, one also
wants to see a ∇-filtration. This is the reason why we have labelled the three
copies of 10 in the middle (since we exhibit a coefficient quiver, these elements
101, 102, 103 are elements of a basis). Consider the subspace

V = 〈101, 102, 103〉

of T (43) and the elements x = 101 + 102 − 103 and y = 101 − 103 of V . One
easily sees the following:

The element x lies in the kernel both of β and γ, and it is mapped under α
to the composition factor 05 lying in soc2T (43). Thus, it provides an embedding
of ∇(05) into T (43)/soc.

The element y lies in the kernel both of α and γ, and it is mapped under β to
the composition factor 51 lying in soc2T (43). Thus, it provides an embedding
of ∇(51) into T (43)/soc.

The sum of the submodules xA and yA is a submodule of T (43) of length 5
with a ∇-filtration with factors going down:

∇(05) ⊕∇(51) | ∇(10).

Finally, the factor module T (43)/(xA + yA) is obviously of the form ∇(43),
since its socle is 43 and its length is 5.

Remark. In terms of the basis of A presented above, we also can write:

x = αα′ + αα′γγ′ − ββ′

y = αα′ − ββ′.
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9. A further look at the module T (43).

In order to understand the module T (43) better, let us concentrate on the es-
sential part which looks quite strange, namely the three subfactors 101, 102, 103

shaded below:

10

10

101

102

103

05

05

51

51

43

......................................................................... ............

.....................................................................................

......................................................................... ............

.....................................................................................

...................................................................

......................................................................... ............

.....................................................................................

......................................................................... ............

.....................................................................................

...................................................................

...................................................................

................................................................................................................................................................................................................................................................
α

α

α′

α′

β

β

β

β′

β′

γ γ

γ′





The three elements 101, 102 103 are displayed in two layers, namely in the
radical layers they belong to. If we consider the position of composition factors
of the form 10 in the socle layers, we get a dual configuration, since the subspace
inside V generated by the difference 101−103 lies in the kernel of γ and therefore
belongs to soc3T (43).

Let us look at the the space

V = 101 ⊕ 102 ⊕ 103,

in more detail, taking into account all the information stored there, namely the
endomorphism γ = γγ′ as well as the images of the maps to V and the kernels
of the maps starting at V . One may be tempted to look at the subspaces

Im(α′), Im(β′), Ker(α), Ker(β),

however, one has to observe that the maps mentioned here are not intrinsically
given, but can be replaced by suitable others (as we have done when we were
reducing the number of parameters). For example, instead of looking at α′, we
have to take into account the whole family of maps α′ + cα′γ with c ∈ k. Thus,
the intrinsic subspaces to be considered are

U1 = Im(α′) + Im(α′γ) = Im(α′) + Im(γ),
U2 = Im(β′) + Im(γ),
U3 = Ker(α) ∩ Kerγ,
U4 = Ker(β) ∩ Kerγ,

as well as Ker(γ) and Im(γ). However, since we see that

Ker(γ) = U3 + U4,
Im(γ) = U1 ∩ U2,
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it is sufficient to consider V with its subspaces U1, . . . , U4.

This means that we deal with a vector space with four subspaces, thus with
a representation of

◦ ◦ ◦ ◦

◦

...................................................................................................... ............

.........................................................................

.........................................................................

..................................................................................................................

the 4-subspace quiver

2 2 1 1

3

...................................................................................................... ............

.........................................................................

.........................................................................

..................................................................................................................

with dimension vector

A direct calculation shows that we get the following representation:

kk0 0kk U3 U4

kkk

...................................................................................................... ............

.........................................................................

.........................................................................

..................................................................................................................
with

U3 = 〈(1, 0,−1)〉

U4 = 〈(1, 1,−1)〉

This is an indecomposable representation of the 4-subspace quiver, it belongs
to a tube of rank 2 (and is uniquely determined by its dimension vector). Note
that its endomorphism ring is a local ring of dimension 2, with radical being
the maps V/(U3 + U4) → U1 ∩ U2; and γ is just such a map. The lattice of
subspaces of V generated by the subspaces U1, U2, U3, U4 looks as follows:

•

•

•

•

• •

• •

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

......................................................................................................................................................................................
..................
..................
..................
...................
..................

..................
..................

.................

..................
..................

..................
..................

...................

..................
..................
..................
................................................................................................................................................................................... 0

V

U1 U2

U3 U4

Let us repeat that γ = γγ′ maps V/(U3+U4) onto U1∩U2, thus we may indicate
the operation of γ and γ′ as follows:

•

•

•

•

• •

• •

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

......................................................................................................................................................................................
..................
..................
..................
...................
..................

..................
..................

.................

..................
..................

..................
..................

...................

..................
..................
..................
...................................................................................................................................................................................

0

V

U1 U2

U3 U4 •

•

.............

.............

.............

.............

.....

................................................................................................

...................................................
.....................

................
........

.................... ............

..............................

γ

γ′

43

We should stress that the last two pictures show subspace lattices (thus com-
position factors are drawn as intervals between two bullets), in contrast to the
pictures of coefficient quivers, where the composition factors are depicted by
their labels (such as 10, 05, 51, . . .) and the lines indicate extensions of simple
modules.

Note that the core of T (43) is semisimple, namely of the form 10⊕ 43, here
10 is just the subfactor (U3 + U4)/(U1 ∩ U2).
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We hope that the considerations above show well the hidden symmetries of
T (43).

Finally, let us remark that the module T (43) has a diagram D in the sense
of Alperin (but no strong diagram), namely the following:

◦

◦

◦ ◦

◦

◦

◦

◦

◦

◦

................................................. ............

.............................................................
................................................. ............

.............................................................

..................................................

................................................. ............

.............................................................
................................................. ............

.............................................................

..................................................
..................................................

(obtained from the coefficient quiver by deleting the by-path β).

10. A related algebra.

We have used the ∆-filtration of T (43) in order to show that T (43) has simple
socle, and this implied that the coefficient cbb had to be non-zero. In this way,
we have obtained the somewhat strange relations presented in the Proposition.
Let us now consider the same quiver Q(10, 05, 51, 43), but with the relations

α′α = 0, α′β = 0, β′α = 0, β′β = 0,
γ′γ = 0, γ′(αα′ − ββ′) = 0, (αα′ − ββ′)γ = 0, γ′αα′γ = 0.

The corresponding algebra A′ still is quasi-hereditary, and the ∆-modules and
the ∇-modules have the same shape as those for the algebra A = A(10, 05, 51, 43).
However, now it turns out that the tilting module for 43 is of length 11, with a
∆-filtration of the form

∆(10) ⊕ ∆(10) | ∆(05) ⊕ ∆(51) | ∆(43)

and a similar ∇-filtration.
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