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The notion of a quasi-hereditary algebra has been introduced by E. Cline, B.
Parshall and L. Scott [7,2,5] in order to describe the so-called highest weight
categories arising in the representation theory of Lie algebras and algebraic groups.
Quasi-hereditary algebras are defined by the existence of a suitable chain of ideals,
and the finite dimensional hereditary algebras are typical examples. In [3], also finite
dimensional algebras of global dimension 2 are shown to be quasi-hereditary. Thus,
the Auslander algebras are quasi-hereditary. Recall that the Auslander algebras A can
be constructed in the following way. Let R be a representation-finite finite dimensional
algebra; then A is the endomorphism algebra End(Affl), where M is a finite
dimensional /{-module such that every indecomposable /{-module is isomorphic to a
direct summand of M. We are going to introduce the notion of a splitting filtration
on the class of all indecomposable /{-modules and show that in this way we obtain
a heredity chain of ideals of A (see the definition below). Usually, there exist many
splitting filtrations for a given R. Examples of splitting filtrations can be obtained
from the Rojter measure, used by A. V. Rojter in his proof of the first Brauer-Thrall
conjecture [6], or from the preprojective and preinjective partitions, introduced by
M. Auslander and S. Smalo in [1].

Instead of dealing with finite dimensional algebras, we shall consider, more
generally, semiprimary rings. Recall that an associative ring A with 1 is called
semiprimary provided that its Jacobson radical TV is nilpotent and A/N is semisimple
artinian. We say that an ideal J of A is a heredity ideal of A if P = J, JNJ = 0 and
/, considered as a right ideal, is a projective ^-module. Following [2], a semiprimary
ring A is said to be quasi-hereditary provided that there exists a chain

0 = 70 <= 4 c ... c ^ <= ̂  <= ... c: 4 = ,4

of ideals of A such that, for each 1 < t < m, the ideal Jt/Jt_x is a heredity ideal of
A/Jt_v Such a sequence of ideals is called a heredity chain. Some elementary facts
related to these concepts can be found in [3].

Splitting filtrations

Let R be a semiprimary ring of finite representation type. (Of course, this implies
that R is both left artinian and right artinian.) We denote by indR a complete
set of representatives of the isomorphism classes of indecomposable modules. If
M c ind R, then add M denotes the full additive subcategory of mod R generated
by M. Its objects are direct sums of copies of modules in M. A direct sum of a
copies of a module X will be denoted by aX.
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DEFINITION. A chain 0 = ^To c Jtx c ... c ^rm = ind i? of subsets of ind /? is
called a splitting filtration provided that the following two properties are satisfied for
1 ^ t ^ m.

(1) If M,M'eJtt, and <fi:M->M' is not invertible, then 0 factors through a
module in &ddJtt_v

(2) If 0 -> [/-* W-> K-> 0 is an exact sequence of /^-modules, with We add Mo

and if M is a module in M\Mt_x, then either
(a) Ue&ddJtt, and there is a decomposition U = aM® U' with a ^ 0 such that

M is not a direct summand of U' and such that

aM >aM® U' = U • W

is a split monomorphism, or else
(b) VeaddJtt, and there is a decomposition V = bM® V such that M is not a

direct summand of V, and such that

V t [10]

is a split epimorphism.

We shall see below that there are usually many splitting filtrations for a given R.
Note that the concept of a splitting filtration is self-dual. If J(Q c Mx £ ... <=, Mm is
a splitting filtration of ind R, and (mod R)op is identified with a module category
mod R' (where R' = End (QR)op for some finitely generated injective cogenerator QR),
then Jt°o

p c ^TJp c ... c ^ J * is a splitting filtration of indi?'. We shall use the
following criterion for verifying that a chain of subsets of ind R is a splitting filtration.

PROPOSITION 1. Let 0 = Ji0 £ jtx <=.... c j(m = ind R be a chain of subsets of
indR such that the following two properties are satisfied for all 1 < t ^ m.

(V) The modules in M\Mt_x are of equal length.
(2') Every monomorphism X-* Y, where Yt2iddJ£t andXzM\Jtt_x, splits.

Then, Ji^ ^ Mx ^ ... ^ Mm is a splitting filtration.

Proof. We assume that the properties (T) and (2') are satisfied. First, we show
that add Jit is closed under submodules. For, let X be an indecomposable submodule
of Y, where Ye add J(t. Let XeM\Jis_x, and assume that s > t. Since Mt £ M^ it
follows from (2') that the inclusion X -> Y splits, thus X belongs to Mt £ Ms_x; a
contradiction.

In order to verify (1), let <f>:M^>M' be a non-invertible map, with M,M' in
M\Mt_x. Let / be the image of 0. Since Af,M' have equal length, and <j> is not
invertible, / is a proper submodule. As we have seen above, Ie add Jit. Let / ' be an
indecomposable direct summand of /. Then / ' e J(t_x, since otherwise the inclusion
/ ' -> M' would split. This shows that IediddJit_x.

Before we verify (2), let us show, by induction, that (2') implies the following
stronger assertion. If 7 e a d d ^ and XzM\Jlt_x, then the monomorphism aX-> Y,
a 5* 1 splits. Indeed, assume that n: aX -> Y is such a monomorphism and write
fj. = [/ix,fi2]:(a-\)X@X->Y. By induction, px splits; hence, up to isomorphism,

nL :(a~\)X®X
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It follows that p.22 is a monomorphism X-+ Y' and 7'eaddJ^. Thus, according to
(2'), fi22 splits: pp.22 = 1 for some p: Y' -*• X. Then

Y' >{a-\)X®X
P J

is a retraction for p..
Now, to show the validity of (2), let 0 -* U -t IV ̂  V-> 0 be exact and We add Mt.

Choose M&Jtt\Jit_v We claim that (a) is satisfied. Since add.^ is closed under
submodules, f /eadd^. Decompose U = aM® U' so that M is not a direct
summand of U'. The map

k l </>
aM >aM® Uf = U > W

is a monomorphism, and thus it splits according to the preceding assertion.

For the convenience of the reader, we state the dual result.

PROPOSITION 1*. Let 0 = Jf0 £ Jtx s ... £ Jtm = ind R be a chain of subsets of
ind .ft, such that the following two properties are satisfied for all 1 ^ t ^ m.

(V) The modules in Jt^Jt^ are of equal length.
(2'*) Every epimorphism Y-*Z, where Yeadd^t and ZeJt\J(t_Xi splits.

Then, Ji0 £ Mx ^ ... ^ Mm is a splitting filtration.

In the remainder of this section, let us exhibit some examples of splitting
filtrations.

The Rojter filtration. In his proof of the first Brauer-Thrall conjecture for finite
dimensional algebras, A. V. Rojter [6] used a specific ordering of the indecomposable
modules. This procedure (or rather its dual) was formalized by P. Gabriel [4] by
introducing the notion of the Rojter measure p{X) for any object in a length category:
p(X) = max {liXJ, l(X2),..., l(Xn)}, where l(Xt) denotes the length of the object Xt and
the maximum is taken over all chains 0 <= Xx <= X2 a ... c Xn £ A'of indecomposable
subobjects Xt of X with respect to the following (linear) order defined on the finite
subsets of the set of all positive integers. If K # L are two such subsets, K < L if and
only if the least natural number in (K\J L)\(Kf] L) belongs to L. Given a ring R, let
px < p2< ... < pmbe all possible Rojter measures of (indecomposable) i?-modules,
and let Mt be the set of all modules M in ind R with p(M) ^ pt, 1 ^ t ^ m. By the
definition of the Rojter measure, indecomposable modules with the same Rojter
measure are of equal length. By [4, Proposition 5.2], the condition (2') is satisfied.
Thus 0 c= Jix <= M2 a ... <= J(m is a splitting filtration. Let us add that the modules
in Jtx are just all simple modules.

The dual Rojter filtration. Given an i?-module M, let p*(M) be the Rojter
measure of M considered as an object of (mod R)op. (Whereas p(M) measures the
existence of indecomposable submodules of M, the dual Rojter measure p*(M)
measures the existence of indecomposable factor modules of M.) Let p* < ... < /?*•
be the possible dual Rojter measures p*(M) of (indecomposable) /^-modules M. Let
Jt* be the set of modules M in ind R with p*(M) ^ p*. Then

is a splitting filtration, and again, Jt\ is the set of all simple modules.
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The filiations corresponding to the preprojective partition. Let ^0, 0>y,...,0>v be
the preprojective partition of ind R, as introduced by Auslander and Smalo [1]. Given
an indecomposable module M, let n(M) be defined by MefPHlM). Let

0 = l j c l j c . . . c Mv
m. = ind R

be a chain of subsets of ind R such that for 1 ^ / ^ m', the modules in Mf/Mf_x have
equal length, and such that for MsM^M^NeMfXMf^, with s < t, we have
n(M) ^ TT(AT). The defining property of the preprojective partition shows that the
condition (2'*) "is satisfied, thus Ml c M\ £ ... c JC^, is a splitting filtration.

The filtrations corresponding to the preinjective partition. These are defined in the
same way. Again, we use the ordering given by this partition, and refine it in order
that the length condition (1') is satisfied.

Let us remark that these four kinds of filtrations are, in general, distinct. Consider
a hereditary algebra of type A3 with one simple projective and two simple injective
modules: its Auslander-Reiten quiver is of the following form.

M7 M4

\ / \ ,
M'2 M\

The Rojter filtration is

0 c {Mlt M4, A Q c {Mv Af2, M'2i M4, A Q c ind R,

and the dual Rojter filtration is

0 c {Ml5 M4, M4} c {Mlt M3, Af4, A Q C ind tf;
there are several filtrations corresponding to the preprojective partition
0»o = {M15M2,AQ, ^ = {M3}, ̂ 2 = {M4,M;}; for example,

0 c {M4, A Q c {M3, M4, M;} C {M1S M3, M4, Af 4} c ind i?;

and several filtrations corresponding to the preinjective partition /„ = {Af3, Mv M\],
fx = {M2,M'2}, if2 = {MJ; for example,

0 c {MJ c: {M15 M2, M
f
2) a {Af15 Af2, M2, Mz} cr ind /?.

All these filtrations are distinct.
Given a splitting filtration Mo ^ jjf± c ... c ^ m ) it may or may not be the case

that the subcategories add Mt, 0 < t < m, are closed under submodules, or under
factor modules. In the case when a splitting filtration is given by Proposition 1 (such
as the Rojter filtration, or any filtration derived from the preinjective partition), these
subcategories are closed under submodules. Dually, in the case when a splitting
filtration is given by Proposition 1* (such as the dual Rojter filtration, or any filtration
derived from the preprojective partition), these subcategories are closed under factor
modules. The example above (a hereditary algebra of type A3 with one simple
projective and two simple injective modules) shows that in general there will not exist
any splitting filtration Mo ^ Mx ^ ... ?= Mm such that all add Mt are closed both
under submodules and factor modules.
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The main theorem

As before, R is a semiprimary ring of finite representative type. Let A be the
endomorphism ring End(© X) of the direct sum of all XeindR. Thus A is a basic
Auslander algebra (and any basic Auslander algebra can be obtained in this way).

THEOREM. Let M^ £ Mx <=,... £ Mm be a splitting filtration of ind R. Let Jt be the
set of all endomorphisms in A which factor through a module in add Jtt, \ ^ t ^m. Then

is a heredity chain of A.

Proof Given YeindR, we denote by e{Y) the endomorphism of ©A' which
projects canonically © X onto Y. Thus, the elements e(X), Xe ind R, form a set of
pairwise orthogonal primitive idempotents of A. Of course, A is basic: for different
modules X, Yin indR, the idempotents e(X) and e(Y) are non-equivalent. Note that
for X, YeindR, we can identify e(X)Ae(Y) with HomR(Y,X). If AT is the radical of
A, e(X)Ne(Y) is the set of non-invertible maps from Y to X. The ideal Jt is generated
by the set of all e(X) with XeMt; thus Jt is an idempotent ideal. Let 1 ̂  / < m, and
consider the residue ring A = A/Jt_v The residue class of cue A will be denoted by a;
a similar notation will be used for subsets of A. It will be convenient to denote Jt by
J, and write e = Y^xejt e(X)\ thus, J = AeA. Clearly, / i s idempotent. Furthermore,
note that JNJ = 0. For, given X, YeJtt, e(X)Ne(Y) is the set of non-invertible maps
Y-* X, and these, by condition (1), belong to Jt_v Hence, it remains to show that JA

is projective, or, equivalently, that the multiplication map Ae(S>gAgeA-^ A is injective
(cf. [3, Statement 7, Appendix]). Multiplying from the left by e{X) and from the
right by e(Y), where X, YeindR, we note that the multiplication map is the direct
sum of the corresponding multiplication maps e(X) Ae (x) gAgeAe\ Y) -> e(X) Ae\ Y).
Thus, it is sufficient to show that the multiplication map e(X)Ae ®gAge~Ae\Y) -* A is
injective. To this end, we fix X, Y in ind R.

Let M\Jtt_x = {Mx,...,Mp} and ei = e(Mt); thus e = Y^f-i*v Since we know that
JNJ = 0, it follows that eAe = 0f_x et Aet and that e{ Aei are division rings. It follows
that e(X) Ae (x) gAge~Ae( Y) can be identified with 0f=1G<5 where

Gi = e(X)Aei ® etAe(Y).
ttA*t

Let gteGt, and assume that the element (gi,...,gp)e®f_1Gi is mapped under the
multiplication map to zero. The element g{ e Gt is of the form gt = YJi-i % ® 0\
aw£Homf i(Mj,J) and y?y e Homfl( Y, Mt), for 1 ^ y < cv Let

U i
= [<xa...<xtCi]:ciMi

We put

C=®ciMi,
'Pi
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The multiplication map sends (gx, ...,gp)to the residue class of £?-i Y,jLi<*(A m A.
By our assumption, this residue class is zero, thus <x^eJt_v This means that a/? = a'/?',
where OL'.C'^X, p':Y-+C\ with C £2iddJ(t_x. Consequently, there is a com-
mutative diagram

_ C
P

such that the sequence

(*) o >U- c®c
is exact. Indeed, denote by (U,(f),<f>') the pullback of a,a', and by (V,y/,y/') the
pushout of <p, <j>'. We want to show that gt = 0 for each 1 ̂  i"^ p. Consider the exact
sequence and the module Mt: The condition (2) of a splitting filtration shows that one
of the two assertions (a), (b) holds. Without loss of generality and, up to duality, we
may assume that i = 1, and that the assertion (a) holds. Thus, UeaddJtt, and there
is a decomposition U = aMx © U', such that Mx is not a direct summand of U', and

r.aMx-+C®C is a splitsuch that for /z = : aMx -> aMx © U', the map

monomorphism. Since Mx is not a direct summand of C, also <j>fi\aMx -*• C is a split
monomorphism. Now, C = ®f.x ci Mt, and we denote by n{: C -> c4 Af4 the canonical
projections. Since the M4 are pairwise non-isomorphic, also 7^^// is a split
monomorphism and thus there is a retraction p such that p7ix(pp,= \aM . Let
co = nx<f)fip, and co' = 1 — co; these are idempotent endomorphisms of cxMx.

We claim that co'/^ and <xxco belong to Jt_v To furnish a proof, let

and 6 = \:aMx@U'-

thus 0! = 0/*. Then

since

(ti'n^Ji = (1 -co)^^^ = (1 -nx$iip)iix<t>iiP[ = nx(pfipx-nx<f>fipnx(f>iip'x = 0.

But 7rx<f>2:U' -> cxMx is not invertible and therefore factors through a module in
a d d ^ _ 1 by (1) of the definition of a splitting filtration. Hence co'/^ = co'nx<f>2Pl
belongs to ^_ r The first assertion is established.

To prove the second assertion, we note that

and thus

consequently,

co = <xx nx 'MP-
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But nt <j>n: aM1 -* c{ Mt belongs to Jt_x for / ^ 2, and <x'<f>'fip factors through
C'eaddJf^, and thus it also belongs to Jt_v

Now, we want to rewrite gx in order to see that gx = 0. This will be done using the
following general lemma concerning tensor products of homomorphism spaces.

LEMMA. Let X, Y, M be modules and c a positive integer. Let S: Y -> cM and
y: cM -* X be homomorphisms, co an endomorphism of cM with co2 = co, and define
co' = \-coeEnd(cM). For l^j^c, let if.M-^cM be the jth inclusion, and
E} : cM -*• M the jth projection. Then, in Horn {M, X) (x) End (M) Horn ( Y, M), we have

c c c

cod + £ yco'ij ® ej co'd.

Proof. First using that Yjj-\lie}= 'CM> BJcoiae'EaA{M) and co2 = co, we can
rewrite the first term on the right of the equality as follows:

J-l j-l \ S - 1 / j,8

Similarly, the second term can be rewritten as follows:

c c

E yw'^ ® £j u>'$ — £ y< '̂'« ® es <5-

Thus, since co + co' = \cM,

c c

E ywij ® £}&><>+£ yw'^ ® £j w'b* = E y^'s ®£* ̂  •+• £ J*0'1

The lemma is established.

Now, we are ready to finish the proof that gi = 0. We use the lemma for M = Mv

As in the lemma, the inclusions Mx -> cx Mx are denoted by ip the projections
cx Mx -> Mx by ep 1 ̂ y ^ cx. In the tensor product

e(X) Aex (x) ex Ae(Y) = Horn (Mx, X) (g) Horn (Y, Mx),
elAel EniKAfj)

rewrite
h, h, ii, i , /

Since aa a) and c o ^ belong to Jt_x, we see that both right-hand terms become zero in
e{X)Aex ®e jg exAe(Y). Thus gx = 0. The proof of the theorem is complete.

EXAMPLE. The following illustration of the theorem may be found useful. Let R
be the path algebra of

7
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modulo the ideal generated by {a2,a/?-/fy,y2}. The algebra R possesses nine
indecomposable modules which may be easily displayed in the Auslander-Reiten
quiver as follows (here the two vertical dashed lines indicate the identification).

1
A"

\}
2

1 =

= a

= b

1 2
N = c
1 2

1 2

1
\=f
2

1 2

Denoting the simple modules of the Auslander algebra A = EndR(a 0 b © . . . © / )
corresponding to the indecomposable i?-module x again by x, we see readily that
AA = Pa@Pb®...@Pt, where

Pa= a

<<>

y
y

p.—

c

yi

o\
a
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P,= f Pg= g P,= h P,= i

N y / \
y y v

/ y ta

Now, consider the following splitting filtrations of ind R.

(i) The Rojter filtration

0 c {h, i} c {d, h, i) c {b, dj, g, h, i) c= {b, c, d,f, g, h, i}
<= {b, c, d, e,f,g,h,i}cz ind R.

(ii) The dual Rojter filtration
0 c: {h, /} c= {e, h, i) a {b, e,f, g, h, i) c {b, c, e,f, g, h, i)

e {b, c, d, ej, g, h, i) a ind R.
(iii) A filtration

0 c= {h, i} c= {/, g, h, i} c {e,f, g, h, i} c {d, e,f, g, h, i} c {c, d, e,f, g, h, i)

c {b, c, d, e,f,g,h,i}a ind R

corresponding to the preprojective partition

(iv) A filtration

0 c {h, i} c= {b,f, h, i) a {b, d,f, h, i} cz {b, d, e,f, h, i} c= {b, c, d, e,f, h, i)

c {b, c, d, e,f, g, h, i} cz ind R

corresponding to the preinjective partition

So = {a, g}, A = {c, e), J2 = {b, d,f), J3 = {h, /}.

In each case, the heredity chain, as well as the sequence of the (residue) quasi-
hereditary algebras is easy to describe. For example, describing the (residue) quasi-
hereditary algebras as (right) modules, one gets in (iii) the following sequence:

/' f. © | © e @ g

a
\ b d
d ® \ ® c ® \ , ,
\ c c
c

a

a
1d
\

|
a

®

b
1
•
C

1 <
i

©

c
1
i

/?

C

e
\
a

®

®

d
\
c

(
a

®

8

e

' 1
a

a ® i © c , a © b, a.
c
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