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Abstract. Let Λ be a hereditary Artin algebra and M a Λ-module
that is both a generator and a cogenerator. We are going to describe the
possibilities for the global dimension of End(M) in terms of the cardinalities

of the Auslander–Reiten orbits of indecomposable Λ-modules.

Résumé. Soit Λ une algèbre d’Artin héréditaire et M un Λ-module qui
est un générateur-cogénérateur. Nous allons décrire toutes les possibilités

pour la dimension globale de End(M) à l’aide des cardinalités des orbites
d’Auslander–Reiten des Λ-modules indécomposables.

Let Λ be an Artin algebra. The modules to be considered will be left Λ-mod-
ules of finite length. Given a class M of modules we denote by addM the class
of modules which are direct summands of direct sums of modules in M. The
Auslander–Reiten translation will be denoted by τ . The τ -orbits to be considered
will be those on the set of isomorphism classes of indecomposable modules.

Recall that a module M is called a generator if any projective module belongs
to addM ; it is called a cogenerator if any injective module belongs to addM .
The endomorphism rings of modules which are both generators and cogenerators
have attracted much interest (Morita, Tachikawa, and many others, see, for
example, [6]): these are just the Artin algebras of dominant dimension at least 2.
The relevance of the global dimension d of the endomorphism ring End(M) of
such modules was stressed by M. Auslander [1]; in particular, he introduced the
representation dimension of Λ as the smallest possible value of d (provided Λ
is not semisimple; for Λ semisimple, the representation dimension is defined to
be 1).

The aim of this note is to determine the set of all possible values of d in case
Λ is hereditary.

Theorem 1. Let Λ be a hereditary Artin algebra and let d be either a natural

number with d ≥ 3 or else the symbol ∞. There exists a Λ-module M which is

both a generator and a cogenerator such that the global dimension of End(M) is

equal to d if and only if there exists a τ -orbit of cardinality at least d.
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Remark. Recall that Auslander has shown that Λ is representation-finite if and
only if its representation dimension is at most 2. Thus, a representation-infinite
Artin algebra has no generator-cogenerator such that the global dimension of
End(M) is equal to 2, but it has τ -orbits of cardinality at least 2. This shows
that the assumption d ≥ 3 cannot be omitted.

We will use the following criterion due to Auslander. Given modules M

and X, denote by ΩM (X) the kernel of a minimal right addM -approximation
gMX : M ′ → X (this means that M ′ belongs to addM , that any map M → X

factors through gMX , and that gMX is a right minimal map). We will always
assume that M is a generator. Then any map gMX is surjective, and ΩM (X) = 0
if and only if X belongs to addM . Define inductively Ωi

M (X) by Ω0
M (X) = X,

and Ωi+1
M (X) = ΩM (Ωi

M (X)). By definition, the M -dimension M -dim X of X is
the minimal value i such that Ωi

M (X) belongs to addM (and is ∞ if no Ωi
M (X)

belongs to addM).

Lemma 1 (Auslander). Let Λ be an Artin algebra. Let M be a generator

and a cogenerator and d ≥ 2. The global dimension of End(M) is less than or

equal to d if and only if M -dimX ≤ d − 2 for any indecomposable Λ-module X.

Proof. See [3, 4], both being based on [1]. ¤

Proposition 1. Let Λ be a hereditary Artin algebra and let d ≥ 2. Let M

be a Λ-module which is both a generator and a cogenerator. Assume that one of

the following conditions is satisfied:

(i) τd−2N = 0 for any indecomposable non-injective module N in addM ;

(ii) τd−1X = 0 for any indecomposable module X which does not belong to

addM .

Then the global dimension of End(M) is at most d.

Proof. We must show that the M -dimension of any indecomposable module
X is at most d − 2. If X belongs to addM , then its M -dimension is zero. Thus
we only consider indecomposable modules X which do not belong to addM . In
particular, X is not injective.

Case (1). We assume that τd−2N = 0 for any indecomposable non-injective
direct summand N of M . Here, we can assume that d ≥ 3. For, if d = 2, then
any indecomposable module in addM is injective, thus all projective modules
are injective. But a hereditary algebra with this property is semisimple, thus
also End(M) is semisimple.

There is a non-split exact sequence 0 → ΩM (X) →
⊕

Mi → X → 0 with
indecomposable direct summands Mi of M . Note that none of the modules Mi

is injective, since Hom(Mi,X) 6= 0 and X is not injective.
By assumption, all the modules Mi are preprojective. We will use the pre-

decessor relation on the set of (isomorphism classes of) indecomposable prepro-
jective modules (if Z,Z ′ are indecomposable preprojective modules, then Z ′ is
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said to be a predecessor of Z provided there is a path from Z ′ to Z in the
Auslander–Reiten quiver of Λ).

If X ′ is an indecomposable direct summand of ΩM (X), then X ′ is a pre-
decessor of some Mi. By induction, we claim that any indecomposable direct
summand Y of some Ωt

M (X) is a predecessor of a non-zero module of the form
τ t−1Mi for some i. The case t = 1 has just been shown. Now assume the asser-
tion is true for some t. Write Ωt

M (X) =
⊕

Zj with indecomposable modules Zj .

Let Y be an indecomposable direct summand of

Ωt+1
M (X) = ΩM (Ωt

M (X)) = ΩM (
⊕

Zj) =
⊕

ΩM (Zj)

There is some j such that Y is a direct summand of ΩM (Zj). Note that Zj does
not belong to addM , since otherwise ΩM (Zj) = 0. There is an exact sequence

0 → ΩM (Zj) → M ′
g
→ Zj → 0,

(where g is a minimal right M -approximation) which is non-split, thus any in-
decomposable direct summand of ΩM (Zj), in particular Y , is a predecessor of
τZj . By induction, Zj is a predecessor of τ t−1Mi for some Mi. Since Zj is not
projective, τ t−1Mi too is not projective, thus τ tMi 6= 0. Since Zj is a predeces-
sor of τ t−1Mi, it follows that τZj is a predecessor of the non-zero module τ tMi.

This completes the induction step.
For t = d− 2, we see that any indecomposable direct summand of Ωd−2

M (X) is
a predecessor of some τd−3Mi with Mi an indecomposable non-injective direct
summand of M . But these modules τd−3Mi are projective, thus also Ωd−2

M (X)
is projective and therefore in addM . This completes the proof in the first case.

Case (2). Now we assume that τd−1X = 0 for any indecomposable Λ-module
which does not belong to addM . We claim that any indecomposable direct
summand Y of Ωt

M (X) is a predecessor of τ tX. The proof is by induction, the
case t = 0 being trivial. Thus, assume the condition is satisfied for some t and let
Y ′ be an indecomposable direct summand of Ωt+1

M (X). Write Ωt
M (X) =

⊕
Zj

with indecomposable modules Zj , thus Ωt+1
M (X) =

⊕
ΩM (Zj). It follows that

Y ′ is a direct summand of some ΩM (Zj), thus a predecessor of τZj . Since, by
induction, Zj is a predecessor of τ tX, we see that Y ′ is a predecessor of τ t+1X,

as required.
For t = d − 2, we see that any indecomposable direct summand of Ωd−2

M (X)
is a predecessor of τd−2X. Since τd−1X = 0, we know that τd−2X is projective,
thus also Ωd−2

M (X) is projective and therefore in addM . This completes the
proof in the second case. ¤

Proof of Theorem 1 We first deal with the case where d is a natural
number.

Let M be a generator-cogenerator with End(M) having global dimension d,
and assume that all τ -orbits are of cardinality at most d− 1. We want to apply
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Proposition 1 with d replaced by d − 1. We show that the second assump-
tion is valid. Let X be an indecomposable Λ-module which is not in addM .
In particular, X is not injective, thus τ−1X is non-zero (and indecomposable).
Since any τ -orbit has cardinality at most d − 1, we must have τd−2X = 0,
since otherwise the sequence of modules τ−1X,X, . . . , τd−2X provides d pair-
wise non-isomorphic indecomposable modules in a single τ -orbit. According to
Proposition 1, the global dimension of End(M) is at most d−1, a contradiction.

The converse follows from the following construction.

Proposition 2. Let Λ be a hereditary Artin algebra, and let d ≥ 3 be a

natural number. Let Z be an indecomposable non-injective module such that

τd−2(Z) is simple and projective. Let

0 → τZ →
⊕

Yj → Z → 0

be the Auslander–Reiten sequence ending in Z, with indecomposable modules Yj.

Let M be the class of all indecomposable Λ modules which are projective or

injective or of the form τ iYj with 0 ≤ i ≤ d− 3. Let addM = addM . Then the

global dimension of End(M) is precisely d.

Proof. In order to see that the global dimension of End(M) is at most
d, we use Proposition 1. Now the first assumption is satisfied. Namely, let N

be an indecomposable module in M which is not injective. If N is projective,
then τN = 0. Since d ≥ 3, it follows that τd−2N = 0. Otherwise, N = τ iYj for
some 0 ≤ i ≤ d− 3, thus it is sufficient to show that τd−2Yj = 0. Applying τd−2

to an irreducible map Yj → Z, we see that either τd−2Yj = 0 or else τd−2Yj is
a proper predecessor of τd−2Z. The latter is impossible, since we assume that
τd−2Z is simple projective. Proposition 1 asserts that the global dimension of
End(M) is at most d.

In order to show that the global dimension of End(M) is at least d, we show
that the M -dimension of Z is equal to d − 2. For 0 ≤ i ≤ d − 3, the Auslander–
Reiten sequence ending in τ iZ is of the form

0 → τ i+1Z →
⊕

τ iYj
gi

→ τ iZ → 0.

Since by construction all the modules τ iYj with 0 ≤ i ≤ d − 3 belong to M, we
see that gi is a right M -approximation, and, of course, also minimal. Now, for
0 ≤ i ≤ d − 3, the module τ iZ does not belong to M. This shows that

Ωi
M (Z) = τ iZ, for 0 ≤ i ≤ d − 3,

and consequently, M -dim Z ≥ d. ¤

For the proof of Theorem 1, we must verify that the existence of a τ -orbit of
cardinality at least d implies the existence of an indecomposable non-injective
module Z such that τd−2(Z) is simple and projective.
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Let X be indecomposable such that τd−1X 6= 0. We can assume that X is
preprojective (otherwise Λ is representation-infinite, and we can replace X by
τ−d+1P for some indecomposable projective Λ-module). Applying, if necessary
some power of τ , we can assume that τd−1X 6= 0, but τdX = 0. Let Y = τX.
Then Y is indecomposable and not injective and τd−2Y 6= 0, whereas τd−1Y =
0. The module τd−2Y is projective (but not necessarily simple). Let S be a
simple projective module with Hom(S, τd−2Y ) 6= 0 and Z = τ−d+2Y . Then
τd−2Z = S is obviously simple projective. And τd−2Z cannot be injective, since
Hom(Z, τd−2Y ) 6= 0 and τd−2Y is not injective.

If Λ is a representation-finite hereditary Artin algebra and M is a genera-
tor and a cogenerator, then the global dimension of End(M) is finite. This
is an immediate consequence of Proposition 1. We can also argue as follows:
a representation-finite hereditary Artin algebra is representation-directed, thus
the quiver of the endomorphism ring of any Λ-module has to be directed.

Assume now that Λ is representation-infinite. Then there is a Λ-module N

whose endomorphism ring is a division ring and such that Ext1(N,N) 6= 0.
We show how such a module N can be used in order to construct a generator-
cogenerator M such that End(M) has infinite global dimension.

Proposition 3. Let Λ be a hereditary Artin algebra, let N be a Λ-module

whose endomorphism ring is a division ring and such that there is a non-split

exact sequence

0 → N
u
→ N ′ v

→ N → 0.

Let M be the class of all indecomposable Λ modules which are projective or

injective or isomorphic to N ′. Let addM = addM . Then the global dimension

of End(M) is infinite.

Proof. First, observe that any map f : N ′ → N factors through v. Namely,
fu = 0, since otherwise fu would be a non-zero endomorphism of N , thus
invertible, and therefore u would be a split monomorphism. But fu = 0 implies
that f factors through the cokernel v of u.

Let p : P (N) → N be a projective cover of N . We claim that

[v, p] N ′ ⊕ P (N) → N

is a right M-approximation (perhaps not minimal). Since N is indecomposable
and not injective, Hom(I,N) = 0 for any injective module I. Since p is a
projective cover, any map P → N with P projective factors through p. And we
have already seen that any map N ′ → N factors through v.

Note that p itself is not a right M-approximation, since the map v : N ′ → N

cannot be factored through a projective module (otherwise N ′ would be projec-
tive). Thus, a minimal right M-approximation of N is of the form [v, p′] : N ′ ⊕
P ′ → N with P ′ projective.

The kernel of [v, p′] is isomorphic to N ⊕P ′. Namely, we start with the given
exact sequence with maps u, v and consider the induced sequence given by the
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map p′. This yields the following commutative diagram with exact rows

0 // N
u

// N ′

v
// N // 0

0 // N // Z //

OO

P ′

p′

OO

// 0

The right square is a pullback and a pushout, thus there is a corresponding exact
sequence

0 → Z → N ′ ⊕ P ′
[v,p′]
→ N → 0.

This shows that the kernel of [v, p′] is isomorphic to Z. Since P ′ is projective,
the exact sequence with middle term Z splits, thus Z is isomorphic to N ⊕ P ′.

This shows that ΩM (N) = N ⊕ P ′. Inductively, we see that N is a direct
summand of Ωt

M (N) for all t ≥ 0, thus the M -dimension of N is not finite. This
completes the proof of Proposition 3, and also of Theorem 1. ¤

Theorem 1 shows that the possible values for the global dimension of the
endomorphism ring of a generator-cogenerator depend on the maximal length of
the τ -orbits. Let us stress that the maximal length d of the τ -orbits depends
not only on the Dynkin type of Λ, but on the given orientation. In fact, the
following (optimal) bounds d′ ≤ d ≤ d′′ for the length of τ -orbits are well known
(for the simply laced cases, see [5]):

Dynkin type An Bn Cn D2m−1 D2m E6 E7 E8 F4 G2

d′ ⌈n
2 ⌉ n n 2m − 2 2m − 1 6 9 15 6 3

d′′ n n n 2m − 1 2m − 1 8 9 15 6 3

(Here, ⌈α⌉ denotes the minimal integer z with α ≤ z.)
As an illustration, let us exhibit two hereditary algebras H = kQ with Q a

quiver of type E6. First, we consider the subspace orientation, then d = d′ = 6,
since the Auslander–Reiten quiver Γ(H) looks as follows:

H

Γ(H)

◦
~~~~~

◦
~~~~~

◦ ◦oo

◦

``@@@

◦

``@@@

◦
ÃÃ@

@@ ◦
ÃÃ@

@@ ◦
ÃÃ@

@@ ◦
ÃÃ@

@@ ◦
ÃÃ@

@@ ◦

◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

◦ //
>>~~~

ÃÃ@
@@ ◦ // ◦ //

>>~~~

ÃÃ@
@@ ◦ // ◦ //

>>~~~

ÃÃ@
@@ ◦ // ◦ //

>>~~~

ÃÃ@
@@ ◦ // ◦ //

>>~~~

ÃÃ@
@@ ◦ // ◦ //

>>~~~

ÃÃ@
@@ ◦

◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

ÃÃ@
@@

◦

>>~~~
◦

>>~~~
◦

>>~~~
◦

>>~~~
◦

>>~~~
◦

Here all τ -orbits have cardinality 6.
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Second, consider an orientation with a path of length 4, so that d = d′′ = 8:

H Γ(H)

◦
~~~~~

◦
~~~~~

◦
~~~~~

◦oo

◦
~~~~~

◦

◦
ÃÃ@

@@ ◦
ÃÃ@

@@ ◦
ÃÃ@

@@ ◦
ÃÃ@

@@

◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

ÃÃ@
@@

◦

>>~~~ //
ÃÃ@

@@ ◦ // ◦

>>~~~ //
ÃÃ@

@@ ◦ // ◦

>>~~~ //
ÃÃ@

@@ ◦ // ◦

>>~~~ //
ÃÃ@

@@ ◦ // ◦

>>~~~ //
ÃÃ@

@@ ◦ // ◦ //
ÃÃ@

@@ ◦

◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

>>~~~

ÃÃ@
@@ ◦

ÃÃ@
@@

◦

>>~~~
◦

>>~~~
◦

>>~~~
◦

>>~~~
◦

>>~~~
◦

>>~~~
◦

>>~~~
◦

The smallest generator-cogenerator M such that the global dimen-
sion of End(M) is equal to 8 is obtained by taking the direct sum of the inde-

composable modules which are marked below by a star.

Γ(H)
P (a)

P (b)

∗
ÂÂ@

@@
◦

ÂÂ@
@@

◦
ÂÂ@

@@ ∗
ÂÂ@

@

∗

??~~

ÂÂ@
@@

◦

??~~~

ÂÂ@
@@

◦

??~~~

ÂÂ@
@@

◦

??~~~

ÂÂ@
@@ ∗

!!C
CC

∗

??~~ //
ÂÂ@

@ ∗ // ◦

??~~~ //
ÂÂ@

@@
◦ // ◦

??~~~ //
ÂÂ@

@@
◦ // ◦

??~~~ //
ÂÂ@

@@
◦ // ◦

??~~~ //
ÂÂ@

@@
◦ // ∗c //

!!CC
C ∗

∗

??~~

ÁÁ>
>>

∗

??~~~

ÁÁ>
>>

∗

??~~~

ÁÁ>
>>

∗

??~~~

ÁÁ>
>>

∗

??~~~

ÁÁ>
>>

∗

=={{{

ÃÃB
BB ∗

ÁÁ>
>>

∗

@@¡¡¡
◦

@@¡¡¡
◦

@@¡¡¡
◦

@@¡¡¡
◦

@@¡¡¡
◦

@@¡¡¡
⊚

>>|||
∗

We denote by a the source of the quiver Q, and by b its neighboring vertex,
then the encircled module X = τ−6P (a) has the following M -resolution

0 → P (a) → P (b) → τ−1P (b) → τ−2P (b) → τ−3P (b)

→ τ−4P (b) → τ−5P (b) → X → 0.

(According to the proof of the Auslander lemma, we obtain in this way a pro-
jective resolution of a simple End(M)-module S which shows that the projective
dimension of S is 8.)

Of course, there are many additonal generator-cogenerators M ′ such that the
global dimension of End(M ′) is equal to 8: just add to M summands from the
τ -orbits of the indecomposable projective modules P (c) with c different from the
vertices a and b.
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