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Abstract. Let A be a hereditary artin algebra and M a A-module
which is both a generator and a cogenerator. We are going to describe the
possibilities for the global dimension of End(M) in terms of the cardinali-

ties of the Auslander-Reiten orbits of indecomposable A-modules.

Let A be an artin algebra. The modules to be considered will be left A-modules of
finite length. Given a class M of modules we denote by add M the class of modules which
are direct summands of direct sums of modules in M. The Auslander-Reiten translation
will be denoted by 7. The 7-orbits to be considered will be those on the set of isomorphism
classes of indecomposable modules.

Recall that a module M is called a generator if any projective module belongs to
add M it is called a cogenerator if any injective module belongs to add M. The endomor-
phism rings of modules which are both generators and cogenerators have attracted a lot
of interest (Morita, Tachikawa, and many others, see for example [T]): these are just the
artin algebras of dominant dimension at least 2. The relevance of the global dimension d
of the endomorphism ring End(M) of such modules was stressed by M.Auslander [A]; in
particular, he introduced the representation dimension of A as the smallest possible value
d (provided A is not semisimple; for A semisimple, the representation dimension is defined
to be 1).

The aim of this note is to determine the set of all possible values d in case A is
hereditary.

Theorem. Let A be a hereditary artin algebra and let d be either a natural number
with d > 3 or else the symbol co. There exists a A-module M which is both a generator
and a cogenerator such that the global dimension of End(M) is equal to d if and only if
there exists a T-orbit of cardinality at least d.

Remark. Recall that Auslander has shown that A is representation-finite if and only
if its representation dimension is at most 2. Thus, a representation-infinite artin algebra
has no generator-cogenerator such that the global dimension of End(M) is equal to 2, but
it has T-orbits of cardinality at least 2. This shows that the assumption d > 3 cannot be
omitted.

We will use the following criterion due to Auslander. Given modules M and X, denote
by Qs (X) the kernel of a minimal right add M-approximation gy;x : M’ — X (this means
that M’ belongs to add M, that any map M — X factors through gp/x and that g/ x is a
right minimal map). We always will assume that M is a generator. Then any map gysx is
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surjective; and Qy7(X) = 0 if and only if X belongs to add M. Define inductively Qf,(X)
by Q9,(X) = X, and Q4H (X) = Qu (94, (X)). By definition, the M-dimension M-dim X
of X is the minimal value i such that Q%,(X) belongs to add M (and is oo if no Q¢,(X)
belongs to add M).

Lemma (Auslander). Let A be an artin algebra. Let M be a generator and a coge-
nerator and d > 2. The global dimension of End(M) is less or equal to d if and only if
M-dim X < d — 2 for any indecomposable A-module X .

Proof: see [EIHS] or [CP], both being based on [A].

Proposition 1. Let A be a hereditary artin algebra and let d > 2. Let M be a A-module
which is both a generator and a cogenerator. Assume that one of the following conditions
is satisfied:

(1) 792N =0 for any indecomposable non-injective module N in add M, or
(2) 791X =0 for any indecomposable module X which does not belong to add M.

Then the global dimension of End(M) is at most d.

Proof. We have to show that the M-dimension of any indecomposable module X is
at most d — 2. If X belongs to add M, then its M-dimension is zero. Thus we only have
to consider indecomposable modules X which do not belong to add M. In particular, X is
not injective.

Case (1): We assume that 792N = 0 for any indecomposable non-injective direct
summand N of M. Here, we can assume that d > 3. For, if d = 2, then any indecomposable
module in add M is injective, thus all projective modules are injective. But a hereditary
algebra with this property is semisimple, thus also End(M) is semisimple.

By assumption, all the modules M; are preprojective. We will use the predecessor
relation on the set of (isomorphism classes of) indecomposable preprojective modules (if
Z,7' are indecomposable preprojective modules, then Z’ is said to be a predecessor of Z
provided there is a path from Z’ to Z in the Auslander-Reiten quiver of A).

There is a non-split exact sequence

0—>QM(X)—>@Mi—>X—>O

with indecomposable direct summands M; of M. Note that none of the modules M; is
injective, since Hom(M;, X)) # 0 and X is not injective.

If X’ is an indecomposable direct summand of Q,;(X), then X’ is a predecessor
of some M;. By induction, we claim that any indecomposable direct summand Y of some
Q% ;(X) is a predecessor of a non-zero module of the form 7t~ M; for some i. The case t = 1
has just been shown. Now assume the assertion is true for some ¢. Write Q4,(X) = @ Z;
with indecomposable modules Z;. Let Y be an indecomposable direct summand of

2 (X) = Qu (Q4(X)) = (@D Z5) = P o (2))

There is some j such that Y is a direct summand of Q,,(Z;). Note that Z; does not belong
to add M, since otherwise Q,/(Z;) = 0. There is an exact sequence

0—Qu(Z) - M % Z; —0
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(where g is a minimal right M-approximation) which is non-split, thus any indecomposable
direct summand of Q7(Z;), in particular Y, is a predecessor of 7Z;. By induction, Z; is a
predecessor of 7t~ M, for some M;. Since Z; is not projective, also 7t~ M is not projective,
thus 7' M; # 0. Since Z; is a predecessor of 7/~ 1 M;, it follows that 7Z; is a predecessor of
the non-zero module 7¢M;. This completes the induction step.

For t = d — 2, we see that any indecomposable direct summand of Qﬁ;z(X ) is a
predecessor of some 7?73 M; with M, an indecomposable non-injective direct summand of
M. But these modules 7%73 M; are projective, thus also Q%_Q(X ) is projective and therefore
in add M. This completes the proof in the first case.

Case (2): Now we assume that 797! X = 0 for any indecomposable A-module which
does not belong to add M. We claim that any indecomposable direct summand Y of (X))
is a predecessor of 7¢ X. The proof is by induction, the case t = 0 being trivial. Thus, assume
the condition is satisfied for some ¢ and let Y/ be an indecomposable direct summand
of Q41 (X). Write Qf,(X) = @ Z; with indecomposable modules Z;, thus Q4 (X) =
D Q0 (Z;). It follows that Y’ is a direct summand of some Q,/(Z;), thus a predecessor
of 7Z;. Since, by induction, Z; is a predecessor of 7' X, we see that Y’ is a predecessor of
71X, as required.

For t = d — 2, we see that any indecomposable direct summand of Q‘fW_Q(X ) is a
predecessor of 792X . Since 7% 1X = 0, we know that 772X is projective, thus also
Qﬁ;z(X ) is projective and therefore in add M. This completes the proof in the second
case.

Proof of Theorem. We first deal with the case where d is a natural number.

Let M be a generator-cogenerator with End(M) having global dimension d and as-
sume that all 7-orbits are of cardinality at most d — 1. We want to apply Proposition
1 with d replaced by d — 1. We show that the second assumption is valid: Let X be an
indecomposable A-module which is not in add M. In particular, X is not injective, thus
771X is non-zero (and indecomposable). Since any T-orbit has cardinality at most d — 1,
we must have 792X = 0, since otherwise the sequence of modules 771X, X, ..., 792X
provides d pairwise non-isomorphic indecomposable modules in a single 7-orbit. According
to Proposition 1, the global dimension of End(M) is at most d — 1, a contradiction.

The converse follows from the following construction:

Proposition 2. Let A be a hereditary artin algebra, let d > 3 be a natural number. Let
Z be an indecomposable non-injective module such that T2(Z) is simple and projective.
Let
0—7174— @ Y, -2 -0

be the Auslander-Reiten sequence ending in Z, with indecomposable modules Y;.

Let M be the class of all indecomposable A modules which are projective or injective
or of the form 7'Y; with 0 < i < d—3. Let add M = add M. Then the global dimension of
End(M) is precisely d.

Proof. In order to see that the global dimension of End(M) is at most d, we use
Proposition 1. Now the first assumption is satisfied. Namely, let N be an indecomposable
module in M which is not injective. If N is projective, then 7N = 0. Since d > 3, it follows
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that 792N = 0. Otherwise, N = Tin for some 0 < ¢ < d — 3, thus it is sufficient to
show that Td_ij = 0. Applying 7972 to an irreducible map Y, — Z, we see that either
Td_QYj =0 or else Td_QYj is a proper predecessor of 79727, The latter is impossible, since

we assume that 79727 is simple projective. Proposition 1 asserts that the global dimension
of End(M) is at most d.

In order to show that the global dimension of End(M) is at least d, we show that the
M-dimension of Z is equal to d — 2. For 0 < ¢ < d — 3, the Auslander-Reiten sequence
ending in 7°Z is of the form

0— itttz — @T’YJ I iz 0.

Since by construction all the modules Tin with 0 <7 < d — 3 belong to M, we see that
g; is a right M-approximation, and, of course, also minimal. Now, for 0 < i < d — 3, the
module 7°Z does not belong to M. This shows that

Q\(Z2)=1'Z, for 0<i<d-3,
and consequently, M-dim Z > d.

For the proof of Theorem, we have to verify that the existence of a 7-orbit of cardinality
at least d implies the existence of an indecomposable non-injective module Z such that
74=2(Z) is simple and projective.

Let X be indecomposable such that 7971 X # 0. We can assume that X is prepro-
jective (otherwise A is representation-infinite, and we can replace X by 7~ P for some
indecomposable projective A-module). Applying, if necessary some power of 7, we can as-
sume that 7¢71X # 0, but 79X = 0 Let Y = 7X, then Y is indecomposable and not
injective and 7972Y £ 0, whereas 7971Y = 0. The module 7972Y is projective (but not
necessarily simple). Let S be a simple projective module with Hom(S,7972Y") # 0 and
Z = 77942y, Then 7972Z = S is obviously simple projective. And 7¢72Z cannot be
injective, since Hom(Z, 7972Y") # 0 and 7¢72Y is not injective.

If A is a representation-finite hereditary artin algebra and M is a generator and a
cogenerator, then the global dimension of End(M) is finite. This is an immediate conse-
quence of Proposition 1. We can argue also as follows: a representation-finite hereditary
artin algebra is representation-directed, thus the quiver of the endomorphism ring of any
A-module has to be directed.

Assume now that A is representation-infinite. Then there is a A-module N whose
endomorphism ring is a division ring and such that Extl(N ,N) # 0. We show how such a
module N can be used in order to construct a generator-cogenerator M such that End(M)
has infinite global dimension.

Proposition 3. A be a hereditary artin algebra, let N be a A-module whose endomor-
phism ring is a division ring and such that there is a non-split exact sequence

0NN SN0
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Let M be the class of all indecomposable A modules which are projective or injective or
isomorphic to N'. Let add M = add M. Then the global dimension of End(M) is infinite.

Proof: First, observe that any map f: N’ — N factors through v. Namely, fu = 0,
since otherwise fu would be a non-zero endomorphism of N, thus invertible, and therefore
u would be a split monomorphism. But fu = 0 implies that f factors through the cokernel
v of u.

Let p: P(N) — N be a projective cover of N. We claim that

[v,p]: N'® P(N) — N

is a right M-approximation (may-be not minimal). Since N is indecomposable and not
injective, Hom(/, N) = 0 for any injective module I. Since p is a projective cover, any
map P — N with P projective factors through p. And we have already seen that any map
N’ — N factors through v.

Note that p itself is not a right M-approximation, since the map v: N’ — N cannot be
factored through a projective module (otherwise N’ would be projective). Thus, a minimal
right M-approximation of N is of the form [v,p’]: N’ ® P’ — N with P’ projective.

The kernel of [v,p/] is isomorphic to N & P’. Namely, we start with the given exact
sequence with maps u,v and consider the induced sequence given by the map p’. This
yields the following commutative diagram with exact rows

0 N —~>5 N —>5 N 0
| [
0 N Z P 0

The right square is a pullback and a pushout, thus there is a corresponding exact sequence

0—7Z—-NoP 2L N,

this shows that the kernel of [v,p’] is isomorphic to Z. Since P’ is projective, the exact
sequence with middle term Z splits, thus Z is isomorphic to N & P’.

This shows that Q/(N) = N @& P’. Inductively, we see that N is a direct summand
of Q4 (N) for all t > 0, thus the M-dimension of N is not finite. This completes the proof
of Proposition 3, and also of Theorem.

Theorem shows that the possible values for the global dimension of a generator-
cogenerator depend on the maximal length of the 7-orbits. Let us stress that the maximal
length d of the T-orbits depends not only on the Dynkin type of A, but on the given ori-
entation. In fact, the following (optimal) bounds d’ < d < d” for the length of T-orbits are
well-known (for the simply laced cases, see [G]):

Dynkin type An Bn Cn D2m—1 ng EG E7 Eg F4 G2

& n 2m-2 2m—-1 6 9 15 6 3

—

N3

—
3

3
S

d"” n 2m—1 2m-—1 8 9 15 6 3




(Here, [a] denotes the minimal integer z with o < z.)

As an illustration, let us exhibit two hereditary algebras H = k(@) with ) a quiver of
type Eg. First, we consider the subspace orientation, then d = d’ = 6, since the Auslander-
Reiten quiver I'(H) looks as follows:

0 s ANANSNANANA
Fo LRIl T
X, NN AN AN AN AN

Here all T-orbits have cardinality 6.
Second, consider an orientation with a path of length 4, so that d = d” = &:

0 £ ANANANAN
oéo oZoéoZo}—oéoéozoéoZoéoe—o F( H )
v NN TN TN TN N
v NN N TN NN TN

The smallest generator-cogenerator M such that the global dimension of End(M) is equal
to 8 is obtained by taking the direct sum of the indecomposable modules which are marked
below by a star.

We denote by a the source of the quiver (), and by b its neighboring vertex, then the
encircled module X = 77%P(a) has the following M-resolution

0 — P(a) = P(b) - 7 'P(b) = 7 2P(b) - 7 3P(b) - 77 *P(b) - 7 °P(b) - X — 0

(according to the proof of the Auslander lemma, we obtain in this way a projective reso-
lution of a simple End(M)-module S which shows that the projective dimension of S is
8.)

Of course, there are many additonal generator-cogenerators M’ such that the global
dimension of End(M’) is equal to 8: just add to M summands from the 7-orbits of the
indecomposable projective modules P(c) with ¢ different from the vertices a and b.
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