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1. Introduction

1.1. About this course. This is the first part of notes for a lecture course “In-
troduction to Representation Theory”. As a prerequisite only a good knowledge of
Linear Algebra is required. We will focus on the representation theory of quivers
and finite-dimensional algebras.

The intersection between the content of this course and a classical Algebra course
just consists of some elementary ring theory. We usually work over a fixed field K.
Field extensions and Galois theory do not play a role.

This part contains an introduction to general module theory. We prove the classical
theorems of Jordan-Hölder and Krull-Remak-Schmidt, and we develop the represen-
tation theory of semisimple algebras. (But let us stress that in this course, semisim-
ple representations carry the label “boring and not very interesting”.) We also start
to investigate short exact sequences of modules, pushouts, pullbacks and properties
of Auslander Reiten sequences. Some first results on the representation theory of
path algebras (or equivalently, the representation theory of quivers) are presented
towards the end of this first part. We study the Jacobson radical of an algebra,
decompositions of the regular representation of an algebra, and also describe the
structure of semisimple algebras (which is again regarded as boring). Furthermore,
we develop the theory of projective modules.

As you will notice, this first part of the script concentrates on modules and algebras.
But what we almost do not study yet are modules over algebras. (An exception are
semisimple modules and projective modules. Projective modules will be important
later on when we begin to study homological properties of algebras and modules.)

Here are some topics we will discuss in this series of lecture courses:

• Representation theory of quivers and finite-dimensional algebras
• Homological algebra
• Auslander-Reiten theory
• Knitting of preprojective components
• Tilting theory
• Derived and triangulated categories
• Covering theory
• Categorifications of cluster algebras
• Preprojective algebras
• Ringel-Hall algebras, (dual)(semi) canonical bases of quantized enveloping

algebras
• Quiver representations and root systems of Kac-Moody Lie algebras
• Homological conjectures
• Tame and wild algebras
• Functorial filtrations and applications to the representation theory of clans

and biserial algebras
• Gabriel-Roiter measure
• Degenerations of modules
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• Decomposition theory for irreducible components of varieties of modules

1.2. Notation and conventions. Throughout let K be a (commutative) field. Set
K∗ = K \{0}. Sometimes we will make additional assumptions on K. (For example,
we often assume that K is algebraically closed.)

Typical examples of fields are Q (the field of rational numbers), R (the real numbers),
C (the complex numbers), the finite fields Fp = Z/pZ where p is a prime number.
The field C is algebraically closed.

Let N = {0, 1, 2, 3, . . .} be the natural numbers (including 0).

All vector spaces will be K-vector spaces, and all linear maps are assumed to be
K-linear.

If I is a set, we denote its cardinality by |I|. If I ′ is subset of I we write I ′ ⊆ I. If
additionally I ′ 6= I we also write I ′ ⊂ I.

For a set M let Abb(M,M) be the set of maps M → M . By 1M (or idM) we
denote the map defined by 1M(m) = m for all m ∈M . Given maps f : L→M and
g : M → N , we denote the composition by gf : L → N . Sometimes we also write
g ◦ f instead of gf .

1.3. Acknowledgements. We thank Tim Eickmann, Alexander Ivanov, Julian
Kühlshammer, Nicola Pace and Jeff Serbus for typo hunting.

***********************************************************************
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Part 1. Modules I: J-Modules

2. Basic terminology

2.1. J-modules. Our aim is to study modules over algebras. Before defining what
this means, we introduce a very straightforward notion of a module which does not
involve an algebra:

Let J be a set (finite or infinite). This set is our “index set”, and in fact only the
cardinality of J is of interest to us. If J is finite, then we often take J = {1, . . . , n}.
We also fix a field K.

A J-module is given by (V, φj)j∈J where V is a vector space and for each j ∈ J we
have a linear map φj : V → V .

Often we just say “module” instead of J-module, and we might say “Let V be a
module.” without explicitly mentioning the attached linear maps φj.

For a natural number m ≥ 0 an m-module is by definition a J-module where
J = {1, . . . , m}.

2.2. Isomorphisms of J-modules. Two J-modules (V, φj)j and (W,ψj)j are iso-
morphic if there exists a vector space isomorphism f : V →W such that

fφj = ψjf

for all j ∈ J .

V

φj

��

f // W

ψj

��
V

f // W

The dimension of a J-module (V, φj)j is just the dimension of the vector space V .

Matrix version: If V and W are finite-dimensional, choose a basis v1, . . . , vn of V and
a basis w1, . . . , wn of W . Assume that the isomorphism f : V →W is represented by
a matrix F (with respect to the chosen bases), and let Φj and Ψj be a corresponding
matrices of φj and ψj , respectively. Then FΦj = ΨjF for all j, i.e. F−1ΨjF = Φj

for all j.

If two modules V and W are isomorphic we write V ∼= W .

2.3. Submodules. Let (V, φj)j be a module. A subspace U of V is a submodule
of V if φj(u) ∈ U for all u ∈ U and all j ∈ J . Note that the subspaces 0 and V are
always submodules of V . A submodule U of V is a proper submodule if U ⊂ V ,
i.e. U 6= V .

End of Lecture 1
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Example: Let

φ =

(
0 1
0 0

)
.

Then the 1-module (K2, φ) has exactly three submodules, two of them are proper
submodules.

Matrix version: If V is finite-dimensional, choose a basis v1, . . . , vn of V such that
v1, . . . , vs is a basis of U . Let φj,U : U → U be the linear map defined by φj,U(u) =
φj(u) for all u ∈ U . Observe that (U, φj,U)j is again a J-module. Then the matrix
Φj of φj (with respect to this basis) is of the form

Φj =

(
Aj Bj

0 Cj

)
.

In this case Aj is the matrix of φj,U with respect to the basis v1, . . . , vs.

Let V be a vector space and X a subset of V , then 〈X〉 denotes the subspace of
V generated by X. This is the smallest subspace of V containing X. Similarly, for
elements x1, . . . , xn in V let 〈x1, . . . , xn〉 be the subspace generated by the xi.

Let I be a set, and for each i ∈ I let Ui be a subspace of V . Then the sum
∑

i∈I Ui
is defined as the subspace 〈X〉 where X =

⋃
i∈I Ui.

Let V = (V, φj)j be a module, and let X be a subset of V . The intersection U(X)
of all submodules U of V with X ⊆ U is the submodule generated by X. We
call X a generating set of U(X). If U(X) = V , then we say that V is generated
by X.

Lemma 2.1. Let X be a subset of a module V . Define a sequence of subspaces Ui of
V as follows: Let U0 be the subspace of V which is generated by X. If Ui is defined,
let

Ui+1 =
∑

j∈J

φj(Ui).

Then

U(X) =
∑

i≥0

Ui.

Proof. Set

UX =
∑

i≥0

Ui.

One can easily check that UX is a submodule of V , and of course UX contains X.
Thus U(X) ⊆ UX . Vice versa, one can show by induction that every submodule
U with X ⊆ U contains all subspaces Ui, thus U also contains UX . Therefore
UX ⊆ U(X). �

Let now c be a cardinal number. We say that a module V is c-generated, if V can
be generated by a set X with cardinality at most c. A module which is generated
by a finite set is called finitely generated.
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By ℵ0 we denote the smallest infinite cardinal number. We call V countably
generated if V can be generated by a countable set. In other words, V is countably
generated if and only if V is ℵ0-generated.

If V can be generated by just one element, then V is a cyclic module.

A generating set X of a module V is called a minimal generating set if there
exists no proper subset X ′ of X which generates V . If Y is a finite generating set
of V , then there exists a subset X ⊆ Y , which is a minimal generating set of V .

Warning: Not every module has a minimal generating set. For example, let V be
a vector space with basis {ei | i ∈ N1}, and let φ : V → V be the endomorphism
defined by φ(ei) = ei−1 for all i ≥ 2 and φ(e1) = 0. Then every generating set of the
module N(∞) = (V, φ) is infinite.

Lemma 2.2. If V is a finitely generated module, then every generating set of V
contains a finite generating set.

Proof. LetX = {x1, . . . , xn} be a finite generating set of V , and let Y be an arbitrary
generating set of V . As before we have

V = U(Y ) =
∑

i≥0

Ui.

We have xj =
∑

i≥0 uij for some uij ∈ Ui and all but finitely many of the uij are

zero. Thus there exists some N ≥ 0 such that xj =
∑N

i=0 uij for all 1 ≤ j ≤ n. Each
element in Ui is a finite linear combination of elements of the form φji · · ·φj1(y) for
some j1, . . . , ji ∈ J and y ∈ Y . This yields the result. �

Warning: Finite minimal generating sets of a module V do not always have the
same cardinality: Let V = M2(K) be the vector space of 2 × 2-matrices, and take
the module given by V together with all linear maps A : V → V , A ∈M2(K). Then
{( 1 0

0 1 )} and {( 1 0
0 0 ) , ( 0 1

0 0 )} are minimal generating sets of V .

Lemma 2.3. A module V is finitely generated if and only if for each family Ui,
i ∈ I of submodules of V with V =

∑
i∈I Ui there exists a finite subset L ⊆ I such

that V =
∑

i∈L Ui.

Proof. Let x1, . . . , xn be a generating set of V , and let Ui be submodules with V =∑
i∈I Ui. Then each element xl lies in a finite sum

∑
i∈I(l) Ui. This implies V =∑n

l=1

∑
i∈I(l) Ui.

Vice versa, let X be an arbitrary generating set of V . For x ∈ X let Ux be the cyclic
submodule generated by x. We get V =

∑
x∈X Ux. If there exists a finite subset

Y ⊆ X with V =
∑

x∈Y Ux, then Y is a generating set of V . �

2.4. Factor modules. Let U be a submodule of V . Recall that

V/U = {v = v + U | v ∈ V }
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and v+U = v′ +U if and only if v−v′ ∈ U . Define φj : V/U → V/U by φj(v+U) =
φj(v) + U . This is well defined since U is a submodule.

Then (V/U, φj)j is a J-module, the factor module corresponding to U .

Matrix version: In the situation of Section 2.3, we have that vs+1 +U, . . . , vn +U is
a basis of V/U and the matrix of φj with respect to this basis is Cj.

2.5. The lattice of submodules. A partially ordered set (or poset) is given
by (S,≤) where S is a set and ≤ is a relation on S, i.e. ≤ is transitive (s1 ≤ s2 ≤ s3

implies s1 ≤ s3), reflexive (s1 ≤ s1) and anti-symmetric (s1 ≤ s2 and s2 ≤ s1

implies s1 = s2).

One can try to visualize a partially ordered set (S,≤) using its Hasse diagram:
This is an oriented graph with vertices the elements of S, and one draws an arrow
s→ t if s < t and if s ≤ m ≤ t implies s = m or m = t. Ususally one tries to draw
the diagram with arrows pointing upwards and then one forgets the orientation of
the arrows and just uses unoriented edges.

For example, the following Hasse diagram describes the partially ordered set (S,≤)
with three elements s1, s2, t with si < t for i = 1, 2, and s1 and s2 are not comparable
in (S,≤).

t
�

�
@

@s1 s2

For a subset T ⊆ S an upper bound for T is some s ∈ S such that t ≤ s for all
t ∈ T . A supremum s0 of T is a smallest upper bound, i.e. s0 is an upper bound
and if s is an upper bound then s0 ≤ s.

Similarly, define a lower bound and an infimum of T .

End of Lecture 2

The poset (S,≤) is a lattice if for any two elements s, t ∈ S there is a supremum
and an infimum of T = {s, t}. In this case write s + t (or s ∪ t) for the supremum
and s ∩ t for the infimum.

One calls (S,≤) a complete lattice if there is a supremum and infimum for every
subset of S.

Example: The natural numbers N together with the usual ordering form a lattice,
but this lattice is not complete. For example, the subset N itself does not have a
supremum in N.

A lattice (S,≤) is called modular if

s1 + (t ∩ s2) = (s1 + t) ∩ s2

for all elements s1, s2, t ∈ S with s1 ≤ s2.
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This is not a lattice:

r

A
A
A
A
AA

�
��

@
@@

r

r

r

�
��

@
@@

r r

This is a complete lattice, but it is not modular:

r

A
A
A
A
AA

�
��

@
@@

r

r

r

�
��

r

The following lemma is straightforward:

Lemma 2.4. Sums and intersections of submodules are again submodules.

Lemma 2.5. Let (V, φj)j be a module. Then the set of all submodules of V is a
complete lattice where U1 ≤ U2 if U1 ⊆ U2.

Proof. Straightforward: The supremum of a set {Ui | i ∈ I} of submodules is∑
i∈I Ui, and the infimum is

⋂
i∈I Ui. �

Lemma 2.6 (Dedekind). Let U1, U2,W be submodules of a module V such that
U1 ⊆ U2. Then we have

U1 + (W ∩ U2) = (U1 +W ) ∩ U2.

Proof. It is sufficient to proof the statement for subspaces of vector spaces. The
inclusion ⊆ is obvious. For the other inclusion let u ∈ U1, w ∈ W and assume
u + w ∈ U2. Then w = (u + w)− u belongs to U2 and thus also to W ∩ U2. Thus
u+ w ∈ U1 + (W ∩ U2). �

Thus the lattice of submodules of a module is modular.

2.6. Examples. (a): Let K be a field, and let V = (K2, φ, ψ) be a 2-module where

φ =

(
c1 0
0 c2

)
and ψ =

(
0 1
1 0

)

and c1 6= c2. By e1 and e2 we denote the canonical basis vectors of K2. The module
V is simple, i.e. V does not have any non-zero proper submodule. The 1-module
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(K2, φ) has exactly two non-zero proper submodules. Let

θ =

(
0 1
0 0

)
.

Then (K2, φ, θ) has exactly one non-zero proper submodule, namely U = 〈e1〉. We
have U ∼= (K, c1, 0), and V/U ∼= (K, c2, 0). In particular, U and V/U are not
isomorphic.

(b): Let

φ =




c1 0 0
0 c2 0
0 0 c3



 and ψ =




0 0 0
0 0 0
1 1 0





with pairwise different ci. Then the lattice of submodules of (K3, φ, ψ) looks like
this:

r

@
@@

�
��

r

@
@@

r

�
��

r

r

The non-zero proper submodules are 〈e3〉, 〈e1, e3〉 and 〈e2, e3〉.

(c): Let

φ =





c1 0
0 c2

c1 0
0 c2



 and ψ =





0 1
1 0

0 1
1 0





with c1 6= c2. If K = F3, then the lattice of submodules of (K4, φ, ψ) looks like this:

r

@
@@

�
��

r

@
@@

r

�
��

r

r

A
AA

�
��

r

�
��

A
AA

The non-zero proper submodules are 〈e1, e2〉, 〈e3, e4〉, 〈e1 + e3, e2 + e4〉 and 〈e1 +
2e3, e2 + 2e4〉.

(d):

Let

φ =





c1 0
0 c2

c3 0
0 c4



 and ψ =





0 1
1 0

0 1
1 0




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with pairwise different ci. Then the lattice of submodules of (K4, φ, ψ) looks like
this:

r

@
@@

�
��

r

@
@@

r

�
��

r

The non-zero proper submodules are 〈e1, e2〉 and 〈e3, e4〉.

2.7. Decompositons and direct sums of modules. Let (V, φj)j be a module,
and let U1 and U2 be submodules of V . If U1 ∩ U2 = 0 and U1 + U2 = V , then this
is called a direct decomposition of V , and we say (V, φj)j is the direct sum of
the submodules U1 and U2. In this case we write V = U1 ⊕ U2.

A submodule U of V is a direct summand of V if there exists a submodule U ′

such that U ⊕ U ′ = V . In this case we say that U ′ is a direct complement of U
in V .

Matrix version: Assume that V is finite-dimensional. Choose a basis v1, . . . , vs of U1

and a basis vs+1, . . . , vn of U2. Then the matrix Φj of φj with respect to the basis
v1, . . . , vn of V is of the form

Φj =

(
Aj 0
0 Bj

)

where Aj and Bj are the matrices of φj,U1 and φj,U2, respectively.

Vice versa, let (V, φj)j and (W,ψj)j be modules. Define

(V, φj)j ⊕ (W,ψj)j = (V ⊕W,φj ⊕ ψj)j

where

V ⊕W = V ×W = {(v, w) | v ∈ V, w ∈W}

and (φj ⊕ ψj)(v, w) = (φj(v), ψj(w)).

In this case V ⊕W is the direct sum of the submodules V ⊕ 0 and 0⊕W .

On the other hand, if (V, φj)j is the direct sum of two submodules U1 and U2, then
we get an isomorphism

U1 ⊕ U2 → V

defined by (u1, u2) 7→ u1 + u2.

A module (V, φj)j is indecomposable if the following hold:

• V 6= 0,
• Let U1 and U2 be submodules of V with U1 ∩U2 = 0 and U1 +U2 = V , then
U1 = 0 or U2 = 0.

If (V, φj)j is not indecomposable, then it is called decomposable.
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More generally, we can construct direct sums of more than two modules, and we
can look at direct decompositions of a module into a direct sum of more than two

modules. This is defined in the obvious way. For modules (Vi, φ
(i)
j )j, 1 ≤ i ≤ t we

write

(V1, φ
(1)
j )j ⊕ · · · ⊕ (Vt, φ

(t)
j )j =

t⊕

i=1

(Vi, φ
(i)
j )j.

2.8. Products of modules. Let I be a set, and for each i ∈ I let Vi be a vector
space. The product of the vector spaces Vi is by definition the set of all sequences
(vi)i∈I with vi ∈ Vi. We denote the product by

∏

i∈I

Vi.

With componentwise addition and scalar multiplication, this is again a vector space.
The Vi are called the factors of the product. For linear maps fi : Vi →Wi with i ∈ I
we define their product ∏

i∈I

fi :
∏

i∈I

Vi →
∏

i∈I

Wi

by
(∏

i∈I fi
)
((vi)i) = (fi(vi))i. Obviously,

⊕
i∈I Vi is a subspace of

∏
i∈I Vi. If I is a

finite set, then
∏

i∈I Vi =
⊕

i∈I Vi.

Now for each i ∈ I let Vi = (Vi, φ
(i)
j )j be a J-module. Then the product of the

modules Vi is defined as

(V, φj)j =
∏

i∈I

Vi =
∏

i∈I

(Vi, φ
(i)
j )j =

(
∏

i∈I

Vi,
∏

i∈I

φ
(i)
j

)

j

.

Thus V is the product of the vector spaces Vi, and φj is the product of the linear

maps φ
(i)
j .

2.9. Examples: Nilpotent endomorphisms. Sometimes one does not study all
J-modules, but one assumes that the linear maps associated to the elements in J
satisfy certain relations. For example, if J just contains one element, we could
study all J-modules (V, f) such that fn = 0 for some fixed n. Or, if J contains two
elements, then we can study all modules (V, f, g) such that fg = gf .

Assume |J | = 1. Thus a J-module is just (V, φ) with V a vector space and φ : V → V
a linear map. We additionally assume that φ is nilpotent, i.e. φm = 0 for some m
and that V is finite-dimensional. We denote this class of modules by N f.d..

We know from LA that there exists a basis v1, . . . , vn of V such that the correspond-
ing matrix Φ of φ is of the form

Φ =




J(λ1)

J(λ2)

...
J(λt)




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where J(λi), 1 ≤ i ≤ t is a λi × λi-matrix of the form

J(λi) =




0 1

0 1
...

...
0 1

0





for some partition λ = (λ1, . . . , λt) of n.

A partition of some n ∈ N is a sequence λ = (λ1, . . . , λt) of integers with λ1 ≥
λ2 ≥ · · · ≥ λt ≥ 1 and λ1 + · · ·+ λt = n.

Example: The partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).

One can visualize partitons with the help of Young diagrams: For example the
Young diagram of the partition (4, 2, 2, 1, 1) is the following:

Let e1, . . . , em be the standard basis of Km where

e1 =





1
0
...
0



 , . . . , em =





0
...
0
1



 .

To each partition λ = (λ1, . . . , λt) of n we associate a module

N(λ) =

t⊕

i=1

N(λi) = (Kn, φλ)

where for m ∈ N we have
N(m) = (Km, φm)

with φm the endomorphism defined by φm(ej) = ej−1 for 2 ≤ j ≤ m and φm(e1) = 0.
In other words, the matrix of φm with respect to the basis e1, . . . , em is J(m).

End of Lecture 3

We can visualize N(λ) with the help of Young diagrams. For example, for λ =
(4, 2, 2, 1, 1) we get the following diagram:

e11

e12

e13

e14

e21

e22

e31

e32

e41 e51
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Here the vectors

{eij | 1 ≤ i ≤ 5, 1 ≤ j ≤ λi}

denote a basis of

K10 = K4 ⊕K2 ⊕K2 ⊕K1 ⊕K1.

Let φλ : K10 → K10 be the linear map defined by φλ(eij) = eij−1 for 2 ≤ j ≤ λi and
φλ(ei1) = 0. Thus N(λ) = (K10, φλ).

So φλ operates on the basis vectors displayed in the boxes of the Young diagram
by mapping them to the vector in the box below if there is a box below, and by
mapping them to 0 if there is no box below.

The matrix of φλ with respect to the basis

e11, e12, e13, e14, e21, e22, e31, e32, e41, e51

is



J(4)

J(2)
J(2)

J(1)
J(1)



 =





0 1
0 1

0 1
0

0 1
0

0 1
0

0
0




.

Similarly, for an arbitrary partition λ = (λ1, . . . , λt) of n we will work with a basis
{eij | 1 ≤ i ≤ t, 1 ≤ j ≤ λi} of Kn, and we define a linear map φλ : Kn → Kn by
φλ(eij) = eij−1 for 2 ≤ j ≤ λi and φλ(ei1) = 0. For simplicity, define ei0 = 0 for all
i.

Theorem 2.7. For every module (V, φ) with V an n-dimensional vector space and
φ a nilpotent linear map V → V there exists a unique partition λ of n such that

(V, φ) ∼= N(λ).

Proof. Linear Algebra (Jordan Normal Form). �

Now let λ = (λ1, . . . , λt) be a again a partition of n, and let x ∈ N(λ) = (Kn, φ).
Thus

x =
∑

i,j

cijeij

for some cij ∈ K. We want to compute the submodule U(x) ⊆ N(λ) generated by
x:

We get

φ(x) = φ

(
∑

i,j

cijeij

)

=
∑

i,j

cijφ(eij) =
∑

i,j:j≥2

cijeij−1.

Similarly, we can easily write down φ2(x), φ3(x), etc. Now let r be maximal such
that cir 6= 0 for some i. This implies φr−1(x) 6= 0 but φr(x) = 0. It follows that the
vectors x, φ(x), . . . , φr−1(x) generate U(x) as a vector space, and we see that U(x)
is isomorphic to N(r).
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For example, the submodule U(eij) of N(λ) is isomorphic to N(j) and the corre-
sponding factor module N(λ)/U(eij) is isomorphic to

N(λi − j)⊕
⊕

a6=i

N(λa).

Let us look at a bit closer at the example λ = (3, 1):

e11

e12

e13

e21

We get

U(e21) ∼= N(1), N(3, 1)/U(e21) ∼= N(3),

U(e11) ∼= N(1), N(3, 1)/U(e11) ∼= N(2, 1),

U(e12) ∼= N(2), N(3, 1)/U(e12) ∼= N(1, 1),

U(e13) ∼= N(3), N(3, 1)/U(e13) ∼= N(1),

U(e12 + e21) ∼= N(2), N(3, 1)/U(e12 + e21) ∼= N(2).

Let us check the last of these isomorphisms: Let x = e12 + e21 ∈ N(3, 1) = (K4, φ).
We get φ(x) = e11 and φ2(x) = 0. It follows that U(x) is isomorphic to N(2).
Now as a vector space, N(3, 1)/U(x) is generated by the residue classes e13 and
e12. We have φ(e13) = e12 and φ(e12) = e11. In particular, φ(e12) ∈ U(x). Thus
N(3, 1)/U(x) ∼= N(2).

2.10. Exercises. 1: Let W and Ui, i ∈ I be a set of submodules of a module
(V, φj)j such that for all k, l ∈ I we have Uk ⊆ Ul or Uk ⊇ Ul. Show that

∑

i∈I

Ui =
⋃

i∈I

Ui

and
⋃

i∈I

(W ∩ Ui) = W ∩

(
⋃

i∈I

Ui

)
.

2: Let K be a field and let V = (K4, φ, ψ) be a module such that

φ =





λ1

λ2

λ3

λ4





with pairwise different λi ∈ K. How can the lattice of submodules of V look like?

3: Which of the following lattices can be the lattice of submodules of a 4-dimensional
module of the form (V, φ, ψ)? In each case you can work with a fieldK of your choice.
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Of course it is better if you find examples which are independent of the field, if this
is possible.

(see the pictures distributed during the lecture)

4: Classify all submodules U of V = N(2, 1), N(3, 1), N(2, 2) and determine in each
case the isomorphism class of U and of the factor module V/U .

For K = F2 and K = F3 draw the corresponding Hasse diagrams.

Let K = Fp with p a prime number, and let λ and µ be partitions. How many
submodules U of V with U ∼= N(λ) and V/U ∼= N(µ) are there?

5: Let U be a maximal submodule of a module V , and let W be an arbitrary
submodule of V . Show that either W ⊆ U or U +W = V .

6: Find two 2× 2-matrices A and B with coefficients in K such that (K2, A,B) has
exactly 4 submodules.

7: Show: If V is a 2-dimensional module with at least 5 submodules, then every
subspace of V is a submodule.

8: Let V be a 2-dimensional module with at most 4 submodules. Show that V is
cyclic.

————————————————————————————-

3. Homomorphisms between modules

3.1. Homomorphisms. Let (V, φj)j and (W,ψj)j be two modules. A linear map
f : V →W is a homomorphism (or module homomorphism) if

fφj = ψjf

for all j ∈ J .

V

φj

��

f // W

ψj

��
V

f // W

We write f : (V, φj)j → (W,ψj)j or just f : V → W . An injective homomorphism
is also called a monomorphism, and a surjective homomorphism is an epimor-
phism. A homomorphism which is injective and surjective is an isomorphism,
compare Section 2.2.

If f : (V, φj)j → (W,ψj)j is an isomorphism, then the inverse f−1 : W → V is also a
homomorphism, thus also an isomorphism: We have

f−1ψj = f−1ψjff
−1 = f−1fφjf

−1 = φjf
−1.
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For modules (U, µj)j, (V, φj)j , (W,ψj)j and homomorphisms f : U → V and g : V →
W the composition gf : U →W is again a homomorphism.

Here is a trivial example of a homomorphism: Let (V, φj)j be a module, and let U be
a submodule of V . Then the map ι : U → V defined by ι(u) = u is a homomorphism,
which is called the (canonical) inclusion.

Similarly, the map π : V → V/U defined by π(v) = v+U is a homomorphism, which
is called the (canonical) projection.

If f : (V, φj)j → (W,ψj)j is a homomorphism, then define

Ker(f) = {v ∈ V | f(v) = 0},

the kernel of f , and

Im(f) = {f(v) | v ∈ V },

the image of f . Furthermore, Cok(f) = W/ Im(f) is the cokernel of f .

One can easily check that Ker(f) is a submodule of V : For v ∈ Ker(f) and j ∈ J
we have fφj(v) = ψjf(v) = ψj(0) = 0.

Similarly, Im(f) is a submodule of W : For v ∈ V and j ∈ J we have ψjf(v) =
fφj(v), thus ψjf(v) is in Im(f).

For a homomorphism f : V → W let f1 : V → Im(f) defined by f1(v) = f(v) (the
only difference between f and f1 is that we changed the target module of f from
W to Im(f)), and let f2 : Im(f) → W be the canonical inclusion. Then f1 is an
epimorphism and f2 a monomorphism, and we get f = f2f1. In other words, every
homomorphism is the composition of an epimorphism followed by a monomorphism.

Let V and W be J-modules. For homomorphisms f, g : V → W define

f + g : V → W

by (f + g)(v) = f(v) + g(v). This is again a homomorphism. Similarly, for c ∈ K
we can define

cf : V →W

by (cf)(v) = cf(v), which is also a homomorphism. Thus the set of homomorphisms
V → W forms a subspace of the vector space HomK(V,W ) of linear maps from
V to W . This subspace is denoted by HomJ(V,W ) and sometimes we just write
Hom(V,W ).

A homomorphism V → V is also called an endomorphism. The set HomJ(V, V )
of endomorphisms is denoted by EndJ(V ) or just End(V ). This is a K-algebra with
multiplication given by the composition of endomorphims. One often calls End(V )
the endomorphism algebra (or the endomorphism ring) of V .

3.2. Definition of a ring. A ring is a set R together with two maps +: R×R→ R,
(a, b) 7→ a+ b (the addition) and · : R×R→ R, (a, b) 7→ ab (the multiplication)
such that the following hold:
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• Associativity of addition: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R,

• Commutativity of addition: a+ b = b+ a for all a, b ∈ R,

• Existence of a 0-element: There exists exactly one element 0 ∈ R with a +
0 = a for all a ∈ R,

• Existence of an additive inverse: For each a ∈ R there exists exactly one
element −a ∈ R such that a+ (−a) = 0,

• Associativity of multiplication: (ab)c = a(bc) for all a, b, c ∈ R,

• Existence of a 1-element: There exists exactly one element 1 ∈ R with 1a =
a1 = a for all a ∈ R,

• Distributivity: (a + b)c = ac + bc and a(b+ c) = ab+ ac for all a, b, c ∈ R.

A ring R is commutative if ab = ba for all a, b ∈ R.

3.3. Definition of an algebra. A K-algebra is a K-vector space A together with
a map · : A×A→ A, (a, b) 7→ ab (the multiplication) such that the following hold:

• Associativity of multiplication: (ab)c = a(bc) for all a, b, c ∈ A;

• Existence of a 1-element: There exists an element 1 which satisfies 1a =
a1 = a for all a ∈ A;

• Distributivity: a(b+ c) = ab+ ac and (a+ b)c = ac + ac for all a, b, c ∈ A;

• Compatibility of multiplication and scalar multiplication: λ(ab) = (λa)b =
a(λb) for all λ ∈ K and a, b ∈ A.

The element 1 is uniquely determined and we often also denoted it by 1A.

In other words, a K-algebra is a ring A, which is also a K-vector space such that
additionally λ(ab) = (λa)b = a(λb) for all λ ∈ K and a, b ∈ A.

In contrast to the definition of a field, the definitions of a ring and an algebra do not
require that the element 0 is different from the element 1. Thus there is a ring and
an algebra which contains just one element, namely 0 = 1. If 0 = 1, then R = {0}.

3.4. Homomorphism Theorems.

Theorem 3.1 (Homomorphism Theorem). If V and W are J-modules, and if
f : V →W is a homomorphism, then f induces an isomorphism

f : V/Ker(f)→ Im(f)

defined by f(v + Ker(f)) = f(v).

Proof. One easily shows that f is well defined, and that it is a homomorphism.
Obviously f is injective and surjective, and thus an isomorphism. �
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Remark: The above result is very easy to prove. Nevertheless we call it a Theorem,
because of its importance.

We derive some consequences from Theorem 3.1:

Corollary 3.2 (First Isomorphism Theorem). If U1 ⊆ U2 are submodules of a
module V , then

V/U2
∼= (V/U1)/(U2/U1).

Proof. Note that U2/U1 is a submodule of V/U1. Thus we can build the factor
module (V/U1)/(U2/U1). Let

V → V/U1 → (V/U1)/(U2/U1)

be the composition of the two canonical projections. This homomorphism is obvi-
ously surjective and its kernel is U2. Now we use Theorem 3.1. �

Corollary 3.3 (Second Isomorphism Theorem). If U1 and U2 are submodules of a
module V , then

U1/(U1 ∩ U2) ∼= (U1 + U2)/U2.

Proof. Let

U1 → U1 + U2 → (U1 + U2)/U2

be the composition of the inclusion U1 → U1 + U2 and the projection U1 + U2 →
(U1 + U2)/U2. This homomorphism is surjective (If u1 ∈ U1 and u2 ∈ U2, then
u1+u2+U2 = u1+U2 is the image of u1.) and its kernel is U1∩U2 (An element u1 ∈ U1

is mapped to 0 if and only if u1 + U2 = U2, thus if and only if u1 ∈ U1 ∩ U2.). �

U1 + U2

vvvvvvvvv

HHHHHHHHH

U1

HHHHHHHHH U2

vvvvvvvvv

U1 ∩ U2

In particular, if U1 ⊂ U2 and W are submodules of a module V , then the above
results yield the isomorphisms

(U2 ∩W )/(U1 ∩W ) ∼= (U1 + U2 ∩W )/U1,

U2/(U1 + U2 ∩W ) ∼= (U2 +W )/(U1 +W ).

The module (U1 + U2 ∩W )/U1 is a submodule of U2/U1, and U2/(U1 +W ∩ U2) is
the corresponding factor module.
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U2

U1 + U2 ∩W

rrrrrrrrrrr

OOOOOOOOOOO
U2 +W

ooooooooooo

LLLLLLLLLLL

U1

LLLLLLLLLLL U2 ∩W

ooooooooooo
U1 +W

OOOOOOOOOOO
U2

rrrrrrrrrrr

U1 ∩W U1 + U2 ∩W

End of Lecture 4

3.5. Homomorphisms between direct sums. Let

V =
n⊕

j=1

Vj

be a direct sum of modules. By

ιV,j : Vj → V

we denote the canonical inclusion and by

πV,j : V → Vj

the canonical projection. (Each v ∈ V is of the form v =
∑n

j=1 vj where the vj ∈ Vj
are uniquely determined. Then πV,j(v) = vj .) These maps are all homomorphisms.
They satisfy

πV,j ◦ ιV,j = 1Vj
,

πV,i ◦ ιV,j = 0 if i 6= j,
n∑

j=1

ιV,j ◦ πV,j = 1V .

Now let V and W be modules, which are a finite direct sum of certain submodules,
say

V =

n⊕

j=1

Vj and W =

m⊕

i=1

Wi.

If f : V → W is a homomorphism, define

fij = πW,i ◦ f ◦ ιV,j : Vj →Wi

We can write f : V →W in matrix form

f =




f11 · · · f1n
...

...
fm1 · · · fmn




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and we can use the usual matrix calculus: Let us write elements v ∈ V and w ∈W
as columns

v =




v1
...
vn



 and w =




w1
...
wm





with vj ∈ Vj and wi ∈ Wi. If f(v) = w we claim that




f11 · · · f1n
...

...
fm1 · · · fmn








v1
...
vn



 =





∑n
j=1 f1j(vj)

...∑n
j=1 fmj(vj)



 =




w1
...
wm



 .

Namely, if v ∈ V we get for 1 ≤ i ≤ m

n∑

j=1

fij(vj) =

n∑

j=1

(πW,i ◦ f ◦ ιV,j) (vj)

=

(
πW,i ◦ f ◦

(
n∑

j=1

ιV,j ◦ πV,j

))
(v)

= (πW,i ◦ f)(v) = wi.

The first term is the matrix product of the ith row of the matrix of f with the
column vector v, the last term is the ith entry in the column vector w.

Vice versa, if fij : Vj → Wi with 1 ≤ j ≤ n and 1 ≤ i ≤ m are homomorphisms,
then we obtain with ∑

i,j

ιW,i ◦ fij ◦ πV,j

a homomorphism f : V →W , and of course we can write f as a matrix

f =




f11 · · · f1n
...

...
fm1 · · · fmn



 .

The composition of such morphisms given by matrices can be realized via matrix
multiplication.

If A is a matrix, we denote its transpose by tA. In particular, we can write the
column vector v we looked at above as v = t[v1, . . . , vn].

Now f 7→ (fij)ij defines an isomorphism of vector spaces

HomJ

(
n⊕

j=1

Vj ,

m⊕

i=1

Wi

)

→
n⊕

j=1

m⊕

i=1

HomJ(Vj,Wi).

In particular, for every module X we obtain isomorphisms of vector spaces

HomJ

(
X,

m⊕

i=1

Wi

)
→

m⊕

i=1

HomJ(X,Wi)
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and

HomJ

(
n⊕

j=1

Vj, X

)

→
n⊕

j=1

HomJ(Vj, X).

3.6. Idempotents and direct decompositions. An element r in a ring R is an
idempotent if r2 = r. We will see that idempotents in endomorphism rings of
modules play an important role.

Let V = U1 ⊕ U2 be a direct decomposition of a module V . Thus U1 and U2 are
submodules of V such that U1 ∩ U2 = 0 and U1 + U2 = V . Let ιi : Ui → V and
πi : V → Ui be the corresponding inclusions and projections. We can write these
homomorphisms in matrix form

ι1 = t[1 0], ι2 = t[0 1], π1 = [1 0], π2 = [0 1].

Define e1 = ι1π1 and e2 = ι2π2. Then both e1 and e2 are idempotents in the
endomorphism ring End(V ) of V . (For example, e21 = ι1π1ι1π1 = ι11U1π1 = e1.) Set

e(U1, U2) = e1.

Proposition 3.4. Let V be a J-module. If we associate to an idempotent e ∈
End(V ) the pair (Im(e),Ker(e)), then we obtain a bijection between the set of all
idempotents in EndJ(V ) and the set of pairs (U1, U2) of submodules of V such that
V = U1 ⊕ U2.

Proof. Above we associated to a direct decompositon V = U1 ⊕ U2 the idempotent
e1 = ι1π1 ∈ End(V ). This idempotent is uniquely determined by the following
two properties: For all u1 ∈ U1 we have e1(u1) = u1, and for all u2 ∈ U2 we have
e1(u2) = 0. From e1 we can easily obtain the above direct decomposition: We have
U1 = Im(e1) and U2 = Ker(e1).

Vice versa, let e ∈ End(V ) be an idempotent. Define U1 = Im(e) and U2 = Ker(e).
Of course U1 and U2 are submodules of V . We also get U1 ∩U2 = 0: If x ∈ U1 ∩U2,
then x ∈ U1 = Im(f), thus x = e(y) for some y, and x ∈ U2 = Ker(e), thus e(x) = 0.
Since e2 = e we obtain x = e(y) = e2(y) = e(x) = 0.

Finally, we show that U1 + U2 = V : If v ∈ V , then v = e(v) + (v − e(v)) and
e(v) ∈ Im(e) = U1. Furthermore, e(v − e(v)) = e(v) − e2(v) = 0 shows that
v − e(v) ∈ Ker(e) = U2.

Thus our idempotent e yields a direct decomposition V = U1⊕U2. Since e(u1) = u1

for all u1 ∈ U1 and e(u2) = 0 for all u2 ∈ U2, we see that e is the idempotent
corresponding to the direct decomposition V = U1 ⊕ U2. �

The endomorphism ring End(V ) of a module V contains of course always the idem-
potents 0 and 1. Here 0 corresponds to the direct decomposition V = 0⊕ V , and 1
corresponds to V = V ⊕ 0.

If e is an idempotent in a ring, then 1−e is also an idempotent. (Namely (1−e)2 =
1− e− e+ e2 = 1− e.)
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If the idempotent e ∈ End(V ) corresponds to the pair (U1, U2) with V = U1 ⊕ U2,
then 1− e corresponds to (U2, U1). (One easily checks that Im(1− e) = Ker(e) and
Ker(1− e) = Im(e).)

Corollary 3.5. For a module V the following are equivalent:

• V is indecomposable;
• V 6= 0, and 0 and 1 are the only idempotents in End(V ).

Later we will study in more detail the relationship between idempotents in endo-
morphism rings and direct decompositions.

3.7. Split monomorphisms and split epimorphisms. Let V and W be mod-
ules. An injective homomorphism f : V → W is called split monomorphism if
Im(f) is a direct summand of W . A surjective homomorphism f : V →W is a split
epimorphism if Ker(f) is a direct summand of V .

Lemma 3.6. Let f : V →W be a homomorphism. Then the following hold:

(i) f is a split monomorphism if and only if there exists a homomorphism
g : W → V such that gf = 1V ;

(ii) f is a split epimorphism if and only if there exists a homomorphism h : W →
V such that fh = 1W .

Proof. Assume first that f is a split monomorphism. Thus W = Im(f)⊕C for some
submodule C of W . Let ι : Im(f) → W be the inclusion homomorphism, and let
π : W → Im(f) be the projection with kernel C. Let f0 : V → Im(f) be defined by
f0(v) = f(v) for all v ∈ V . Thus f = ιf0. Of course, f0 is an isomorphism. Define
g = f−1

0 π : W → V . Then we get

gf = (f−1
0 π)(ιf0) = f−1

0 (πι)f0 = f−1
0 f0 = 1V .

Vice versa, assume there is a homomorphism g : W → V such that gf = 1V . Set
e = fg. This is an endomorphism of W , and we have

e2 = (fg)(fg) = f(gf)g = f1V g = e,

thus e is an idempotent. In particular, the image of e is a direct summand of W .
But it is easy to see that Im(e) = Im(f): Since e = fg we have Im(e) ⊆ Im(f), and
f = f1V = fgf = ef yields the other inclusion Im(f) ⊆ Im(e). Thus Im(f) is a
direct summand of W .

This proves part (i) of the statement. We leave part(ii) as an exercise. �

3.8. Exercises. 1: Prove part (ii) of the above lemma.
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2: Let K be a field of characteristic 0. For integers i, j ∈ Z with i ≤ j let M(i, j)
be the 2-module (Kj−i+1,Φ,Ψ) where

Φ =




i
i+1

...
j−1

j



 and Ψ =




0 1

0 1
...

...
0 1

0



 .

Compute Hom(M(i, j),M(k, l)) for all integers i ≤ j and k ≤ l.

3: Let

V = (K2,

(
0 1
0 0

)
).

Show: End(V ) is the set of matrices of the form

(
a b
0 a

)
with a, b ∈ K.

Compute the idempotents in End(V ).

Compute all direct sum decompositions V = V1⊕V2, with V1 and V2 submodules of
V .

4: Let

V = (K3,




0 0 0
1 0 0
0 0 0



 ,




0 0 0
0 0 0
1 0 0



).

Show: End(V ) is the set of matrices of the form



a 0 0
b a 0
c 0 a





with a, b, c ∈ K.

Use this to show that V is indecomposable.

Show that V is not simple.

5: Let V and W be J-modules. We know that V ×W is again a J-module.

Let f : V →W be a module homomorphism, and let

Γf = {(v, f(v)) | v ∈ V }

be the graph of f .

Show: The map f 7→ Γf defines a bijection between HomJ(V,W ) and the set of
submodules U ⊆ V ×W with U ⊕ (0×W ) = V ×W .

6: Let

V = (K3,




0 1 0
0 0 0
0 0 0



).
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Compute End(V ) (as a set of 3× 3-matrices).

Determine all idempotents e in End(V ).

Determine all direct sum decompositions V = V1⊕V2 (with drawings in caseK = R).

Describe the map e 7→ (Im(e),Ker(e)) (where e runs through the set of idempotents
in End(V )).

————————————————————————————-

4. Examples of infinite dimensional 1-modules

4.1. The module N(∞). Let V be a K-vector space with basis {ei | i ≥ 1}. Define
a K-linear endomorphism φ : V → V by φ(e1) = 0 and φ(ei) = ei−1 for all i ≥ 2.

We want to study the 1-module

N(∞) := (V, φ).

We clearly have a chain of submodules

N(0) ⊂ N(1) ⊂ · · · ⊂ N(i) ⊂ N(i+ 1) ⊂ · · ·

of N(∞) where N(0) = 0, and N(i) is the submodule with basis e1, . . . , ei where
i ≥ 1. Clearly,

N(∞) =
⋃

i∈N0

N(i).

The following is clear and will be used in the proof of the next lemma: Every
submodule of a J-module is a sum of cyclic modules.

Lemma 4.1. The following hold:

(i) The N(i) are the only proper submodules of N(∞);
(ii) The N(i) are cyclic, but N(∞) is not cyclic;
(iii) N(∞) is indecomposable.

Proof. First we determine the cyclic submodules: Let x ∈ V . Thus there exists
some n such that x ∈ N(n) and

x =
n∑

i=1

aiei.

If x = 0, the submodule U(x) generated by x is just N(0) = 0. Otherwise, U(x) is
equal to N(i) where i the the maximal index 1 ≤ j ≤ n such that aj 6= 0. Note that
the module N(∞) itself is therefore not cyclic.



30 CLAUS MICHAEL RINGEL AND JAN SCHRÖER

Now let U be any submodule of V . It follows that U is a sum of cyclic modules,
thus

U =
∑

i∈I

N(i)

for some I ⊆ N0. If I is finite, we get U = N(max{i ∈ I}), otherwise we have
U = N(∞). In particular, this implies that N(∞) is indecomposable. �

A J-module V is uniform if for any non-zero submodules U1 and U2 one has U1 ∩
U2 6= 0. It follows from the above considerations that N(∞) is a uniform module.

4.2. Polynomial rings. This section is devoted to study some interesting and im-
portant examples of modules arising from the polynomial ring K[T ] in one variable
T .

As always, K is a field. Recall that the characteristic char(K) is by definition the
minimum n such that the n-fold sum 1 + 1 + · · ·+ 1 of the identity element of K is
zero, if such a minimum exists, and char(K) = 0 otherwise. One easily checks that
char(K) is either 0 or a prime number.

The elements in K[T ] are of the form

f =

m∑

i=0

aiT
i

with ai ∈ K for all i and m ≥ 0. We set T 0 = 1. One calls f monic if an = 1 where
n is the maximal 1 ≤ i ≤ m such that ai 6= 0. If f 6= 0, then the degree of f is the
maximum of all i such that ai 6= 0. Otherwise the degree of f is −∞.

By P we denote the set of monic, irreducible polynomials in K[T ]. For example, if
K = C we have P = {T − c | c ∈ C}.

Exercise: Determine P in case K = R. (Hint: All irreducible polynomials over R

have degree at most 2.)

Note that {1, T 1, T 2, . . .} is a basis of the K-vector space K[T ].

Let

T · : K[T ]→ K[T ]

be the K-linear map which maps a polynomial f to Tf . In particular, T i is mapped
to T i+1.

Another important K-linear map is

d

dT
: K[T ]→ K[T ]

which maps a polynomial
∑m

i=0 aiT
i to its derivative

d

dT
(f) =

m∑

i=1

aiiT
i−1.
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Of course, in the above expression, i stands for the i-fold sum 1 + 1 + · · · + 1 of
the identity 1 of K. Thus, if char(K) = p > 0, then i = 0 in K if and only if i is
divisible by p. In particular d

dT
(T np) = 0 for all n ≥ 0.

We know that every polynomial p can be written as a product

p = cp1p2 · · · pt

where c is a constant (degree 0) polynomial, and the pi are monic irreducible poly-
nomials. The polynomials pi and c are uniquely determined up to reordering.

4.3. The module (K[T ], d
dT

). We want to study the 1-module

V := (K[T ],
d

dT
).

Let Vn be the submodule of polynomials of degree ≤ n in V . With respect to the
basis 1, T 1, . . . , T n we get

Vn ∼= (Kn+1,




0 1

0 2
...

...
0 n

0



).

Exercise: If char(K) = 0, then

(Kn+1,




0 1

0 2
...

...
0 n

0



) ∼= (Kn+1,




0 1

0 1
...

...
0 1

0



).

Proposition 4.2. We have

(K[T ],
d

dT
) ∼=

{
N(∞) if char(K) = 0,⊕

i∈N0
N(p) if char(K) = p.

Proof. Define a K-linear map

f : (K[T ],
d

dT
)→ N(∞)

by T i 7→ i! · ei+1 where i! := i(i− 1) · · ·1 for i ≥ 1. Set 0! = 1. We have

f

(
d

dT
(T i)

)
= f(iT i−1) = if(T i−1) = i(i− 1)! · ei = i! · ei.

On the other hand,

φ(f(T i)) = φ(i! · ei+1) = i! · ei.

This implies that the diagram

K[T ]
f //

d
dT

��

N(∞)

φ
��

K[T ]
f // N(∞)
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commutes, and therefore f is a homomorphism of 1-modules. If char(K) = 0, then
f is an isomorphism with inverse

f−1 : ei+1 7→
1

i!
· T i

where i ≥ 0.

Now assume char(K) = p > 0. We get i! = 0 if and only if i ≥ p.

The 1-module
(W,φ) :=

⊕

i∈N0

N(p)

has as a basis {eij | i ∈ N0, 1 ≤ j ≤ p} where

φ(eij) =

{
0 if j = 1,

ei,j−1 otherwise.

Define a K-linear map
f : W → K[T ]

by

eij 7→
1

(j − 1)!
T ip+j−1.

Since j ≤ p we know that p does not divide (j − 1)!, thus (j − 1)! 6= 0 in K. One
easily checks that f defines a vector space isomorphism.

Exercise: Prove that

f(φ(eij)) =
d

dT
(f(eij))

and determine f−1.

We get that f is an isomorphism of 1-modules. �

4.4. The module (K[T ], T ·). Next, we want to study the 1-module

V := (K[T ], T ·).

Let a =
∑n

i=0 aiT
i be a polynomial in K[T ]. The submodule U(a) of V generated

by a is
(a) := U(a) = {ab | b ∈ K[T ]}.

We call (a) the principal ideal generated by a.

Proposition 4.3. All ideals in the ring K[T ] are principal ideals.

Proof. Look it up in any book on Algebra. �

In other words: Each submodule of V is of the form (a) for some a ∈ K[T ].

Now it is easy to check that (a) = (b) if and only if a|b and b|a if and only if there
exists some c ∈ K∗ with b = ca. (For polynomials p and q we write p|q if q = pf for
some f ∈ K[T ].)
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It follows that for submodules (a) and (b) of V we have

(a) ∩ (b) = l.c.m.(a, b)

and
(a) + (b) = g.c.d.(a, b).

Here l.c.m.(a, b) denotes the lowest common multiple, and g.c.d.(a, b) is the greatest
common divisor.

Let R = K[T ] be the polynomial ring in one variable T , and let a1, . . . , an be
elements in R.

Lemma 4.4 (Bézout). Let R = K[T ] be the polynomial ring in one variable T ,
and let a1, . . . , an be elements in R. There exists a greatest common divisor d of
a1, . . . , an, and there are elements ri in R such that

d =
n∑

i=1

riai.

It follows that d is the greatest common divisor of elements a1, . . . , an in K[T ] if and
only if the ideal (a1, . . . , an) generated by the ai is equal to the ideal (d) generated
by d.

The greatest common divisor of elements a1, . . . , an in K[T ] is 1 if and only if there
exists elements r1, . . . , rn in K[T ] such that

1 =
n∑

i=1

riai.

Let P be the set of monic irreducible polynomials in K[T ]. Recall that every poly-
nomial p 6= 0 in K[T ] can be written as

p = cpe11 p
e2
2 · · · p

et

t

where c ∈ K∗, ei ≥ 1 and the pi are pairwise different polynomials in P. Further-
more, c, the ei and the pi are uniquely determined (up to reordering).

If b|a then there is an epimorphism

K[T ]/(a)→ K[T ]/(b)

defined by p+ (a) 7→ p+ (b).

Now let p be a non-zero polynomial with

p = cpe11 p
e2
2 · · · p

et

t

as above.

Proposition 4.5 (Chinese Reminder Theorem). There is an isomorphism of 1-
modules

K[T ]/(p)→
t∏

i=1

K[T ]/(pei

i ).



34 CLAUS MICHAEL RINGEL AND JAN SCHRÖER

Proof. We have pei

i |p and therefore there is an epimorphism (of 1-modules)

πi : K[T ]/(p)→ K[T ]/(pei

i ).

This induces a homomorphism

π : K[T ]/(p)→
t∏

i=1

K[T ]/(pei

i )

defined by π(a) = (π1(a), . . . , πt(a)). Clearly, a ∈ Ker(π) if and only if πi(a) = 0 for
all i if and only if pei

i |a for all i if and only if p|a. This implies that π is injective.

For a polynomial a of degree n we have dimK[T ]/(a) = n, and the residue classes
of 1, T, . . . , T n−1 form a basis of K[T ]/(a).

In particular, dimK[T ]/(pei

i ) = deg(pei

i ) and

t∏

i=1

dimK[T ]/(pei

i ) = deg(p).

Thus for dimension reasons we get that π must be also surjective. �

Exercises: Let p be an irreducible polynomial in K[T ].

Show: The module (K[T ]/(p), T ·) is a simple 1-module, and all simple 1-modules
(over a field K) are isomorphic to a module of this form.

Show: The submodules of the factor module K[T ]/(pe) are

0 = (pe)/(pe) ⊂ (pe−1)/(pe) ⊂ · · · ⊂ (p)/(pe) ⊂ K[T ]/(pe),

and we have

((pi)/(pe))/((pi+1)/(pe)) ∼= (pi)/(pi+1) ∼= K[T ]/(p).

Special case: The polynomial T is an irreducible polynomial in K[T ], and one easily
checks that the 1-modules (K[T ]/(T e), T ·) and N(e) are isomorphic.

Notation: Let p ∈ P be a monic, irreducible polynomial in K[T ]. Set

N

(
n

p

)
= (K[T ]/(pn), T ·).

This is a cyclic and indecomposable 1-module. The modules N
(
1
p

)
are the only

simple 1-modules (up to isomorphism).

Exercise: If p = T − c for some c ∈ K, then we have

N

(
n

p

)
∼= (Kn,Φ :=




c 1
c 1
...

...
c 1

c



).

The residue classes of the elements (T − c)i, 0 ≤ i ≤ n − 1 form a basis of N
(
n
p

)
.

We have
T · (T − c)i = (T − c)i+1 + c(T − c)i.
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The module

(Kn,




c 1
c 1
...

...
c 1

c



)

has as a basis the canonical basis vectors e1, . . . , en. We have Φ(e1) = ce1 and
Φ(ei) = cei + ei−1 if i ≥ 2. Then

f : (T − c)i 7→ en−i

for i ≥ 0 yields an isomorphism of 1-modules: One easily checks that

f(T · (T − c)i) = Φ(f((T − c)i))

for all i ≥ 0.

Conclusion: If we can determine the set P of irreducible polynomials in K[T ], then
one has quite a good description of the submodules and also the factor modules of
(K[T ], T ·). But of course, describing P is very hard (or impossible) if the field K is
too complicated.

4.5. The module (K(T ), T ·). Let K(T ) be the ring of rational functions in one
variable T . The elements of K(T ) are of the form p

q
where p and q are polynomials

in K[T ] wit q 6= 0. Furthermore, p
q

= p′

q′
if and only if pq′ = qp′. Copying the

ususal rules for adding and multiplying fractions, K(T ) becomes a ring (it is even
a K-algebra). Clearly, all non-zero elements in K(T ) have an inverse, thus K(T ) is
also a field. It contains K[T ] as a subring, the embedding given by p 7→ p

1
.

Set K[T ] = (K[T ], T ·) and K(T ) = (K(T ), T ·).

Obviously, K[T ] is a submodule of K(T ). But there are many other interesting
submodules:

For p ∈ P, set

K[T, p−1] =

{
q

pn
| q ∈ K[T ], n ∈ N0

}
⊂ K(T ).

For example, if p = T , we can think of the elements of K[T, T−1] as linear combi-
nations ∑

i∈Z

aiT
i

with only finitely many of the ai being non-zero. Here we write T−m = 1
Tm for

m ≥ 1.

4.6. Exercises. 1: Show: The module K[T, T−1]/K[T ] is isomorphic to N(∞). Its
basis are the residue classes of T−1, T−2, . . ..

2: Let K[T ] be the vector space of polynomials in one variable T with coefficients in
a field K, and let d

dT
be the differentiation map, i.e if p =

∑n
i=0 aiT

i is a polynomial,
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then
d

dT
(p) =

n∑

i=1

aiiT
i−1.

Show that the 1-module (K[T ], d
dT

) is indecomposable if char(K) = 0.

Write (K[T ], d
dT

) as a direct sum of indecomposable modules if char(K) > 0.

3: Let T · be the map which sends a polynomial p to Tp.

Show that the 2-module (K[T ], d
dT
, T ·) is simple and that K ∼= End(K[T ], d

dT
, T ·) if

char(K) = 0.

Compute End(K[T ], d
dT
, T ·) if char(K) > 0.

Show that (K[T ], d
dT
, T ·) is not simple in case char(K) > 0.

For endomorphisms f and g of a vector space let [f, g] = fg−gf be its commutator.

Show that [T ·, d
dT

] = 1.

4: Let K be a field, and let P be the set of monic irreducible polynomials in K[T ].
For a ∈ K(T ) set

K[T ]a = {fa | f ∈ K[T ]} ⊂ K(T ).

For every p ∈ P let K[T, p−1] be the subalgebra of K(T ) generated by T and p−1.
In other words,

K[T, p−1] = {
q

pn
| q ∈ K[T ], n ∈ N0} ⊂ K(T ).

a: Show: The modules K[T ]p−n/K[T ] and K[T ]/(pn) are isomorphic. Use this to
determine the submodules of K[T ]p−n/K[T ].

b: If U is a proper submodule of K[T ]p−n/K[T ], then U = K[T ]p−n/K[T ] for some
n ∈ N0.

c: We have
K(T ) =

∑

p∈P

K[T, p−1].

Let
ιp : K[T, p−1]/K[T ]→ K(T )/K[T ]

be the inclusion.

Show: The homomorphism

ι =
⊕

p∈P

ιp :
∑

p∈P

(K[T, p−1]/K[T ])→ K(T )/K[T ]

is an isomorphism.

d: Determine the submodules of K(T )/K[T ].
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————————————————————————————-

5. Semisimple modules and their endomorphism rings

Some topics discussed in this section are also known as “Artin-Wedderburn Theory”.
Just open any book on Algebra.

5.1. Semisimple modules. A module V is simple (or irreducible) if V 6= 0 and
the only submodules are 0 and V .

A module V is semisimple if V is a direct sum of simple modules.

End of Lecture 5

A proper submodule U of a module V is called a maximal submodule of V , if
there does not exist a submodule U ′ with U ⊂ U ′ ⊂ V . It follows that a submodule
U ⊆ V is maximal if and only if the factor module V/U is simple.

Theorem 5.1. For a module V the following are equivalent:

(i) V is semisimple;
(ii) V is a sum of simple modules;
(iii) Every submodule of V is a direct summand.

The proof of Theorem 5.1 uses the Axiom of Choice:

Axiom 5.2 (Axiom of Choice). Let f : I → L be a surjective map of sets. Then
there exists a map g : L→ I such that fg = 1L.

Let I be a partially ordered set. A subset C of I is a chain in I if for all c, d ∈ C
we have c ≤ d or d ≤ c. An equivalent formulation of the Axiom of Choice is the
following:

Axiom 5.3 (Zorn’s Lemma). Let I be a non-empty partially ordered set. If for
every chain in I there exists a supremum, then I contains a maximal element.

This is not surprising: The implication (ii) =⇒ (i) yields the existence of a basis
of a vector space. (We just look at the special case J = ∅. Then J-modules are just
vector spaces. The simple J-modules are one-dimensional, and every vector space
is a sum of its one-dimensional subspaces, thus condition (ii) holds.)

Proof of Theorem 5.1. The implication (i) =⇒ (ii) is obvious. Let us show (ii) =⇒
(iii): Let V be a sum of simple submodules, and let U be a submodule of V . LetW
be the set of submodules W of V with U ∩W = 0. Together with the inclusion ⊆,
the set W is a partially ordered set. Since 0 ∈ W, we know that W is non-empty.
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If W ′ ⊆ W is a chain, then

W ′ =
⋃

W∈W ′

W

belongs to W: If x ∈ U ∩ W ′, then x belongs to some W in W ′, and therefore
x ∈ U ∩W = 0.

Now Zorn’s Lemma 5.3 says thatW contains a maximal element. So let W ∈ W be
maximal. We know that U ∩W = 0. On the other hand, we show that U +W = V :
Since V is a sum of simple submodules, it is enough to show that each simple
submodule of V is containd in U + W . Let S be a simple submodule of V . If we
assume that S is not contained in U +W , then (U +W )∩S is a proper submodule
of S. Since S is simple, we get (U + W ) ∩ S = 0, and therefore U ∩ (W + S) = 0:
If u = w + s with u ∈ U , w ∈ W and s ∈ S, then u − w = s ∈ (U + W ) ∩ S = 0.
Thus s = 0 and u = w ∈ U ∩W = 0.

This implies that W + S belongs to W. The maximality of W in W yields that
W = W+S and therefore we get S ⊆W , which is a contradiction to our assumption
S 6⊆ U +W . Thus we see that U +W = V . So W is a direct complement of U in
V .

(iii) =⇒ (ii): Let S be the set of submodules of V , which are a sum of simple
submodules of V . We have 0 ∈ S. (We can think of 0 as the sum over an empty set
of simple submodules of V .)

Together with the inclusion ⊆, the set S forms a partially ordered set. Since 0
belongs to S, we know that S is non-empty.

If S ′ is a chain in S, then
⋃

U∈S′

U

belongs to S. Zorn’s Lemma tells us that S contains a maximal element. Let U be
such a maximal element.

We claim that U = V : Assume there exists some v ∈ V with v /∈ U . Let W be the
set of submodules W of V with U ⊆W and v /∈W . Again we interpret W together
with the inclusion ⊆ as a partially ordered set. Since U ∈ W, we know that W is
non-empty, and if W ′ is a chain in W, then

⋃

W∈W ′

W

belongs to W. Zorn’s Lemma yields a maximal element in W, say W . Let W ′ be
the submodule generated by W and v. Since v /∈ W , we get W ⊂ W ′. On the
other hand, if X is a submodule with W ⊆ X ⊂ W ′, then v cannot be in X, since
W ′ is generated by W and v. Thus X belongs to W, and the maximality of W
implies W = X. Thus we see that W is a maximal submodule of W ′. Condition
(iii) implies that W has a direct complement C. Let C ′ = C ∩ W ′. We have
W ∩ C ′ = W ∩ (C ∩W ′) = 0, since W ∩ C = 0. Since the submodule lattice of a
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module is modular (and since W ⊆W ′), we get

W + C ′ = W + (C ∩W ′) = (W + C) ∩W ′ = V ∩W ′ = W ′.

This implies

W ′/W = (W + C ′)/W ∼= C ′/(W ∩ C ′) = C ′.

Therefore C ′ is simple.
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C ′
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Because U is a sum of simple modules, we get that U+C ′ is a sum of simple modules,
thus it belongs to S. Now U ⊂ U + C ′ yields a contradiction to the maximality of
U in S.

(ii) =⇒ (i): We show the following stronger statement:

Lemma 5.4. Let V be a module, and let U be the set of simple submodules U of V .
If V =

∑
U∈U U , then there exists a subset U ′ ⊆ U such that V =

⊕
U∈U ′ U .

Proof. A subset U ′ of U is called independent, if the sum
∑

U∈U ′ U is a direct sum.
Let T be the set of independent subsets of U , together with the inclusion of sets ⊆
this is a partially ordered set. Since the empty set belongs to T we know that T is
non-empty. If T ′ is a chain in T , then

⋃

U ′∈T ′

U ′

is obviously in T . Thus by Zorn’s Lemma there exists a maximal element in T . Let
U ′ be such a maximal element. Set

W =
∑

U∈U ′

U.

Since U ′ belongs to T , we know that this is a direct sum. We claim that W = V :
Otherwise there would exist a submodule U in U with U 6⊆ W , because V is the
sum of the submodules in U . Since U is simple, this would imply U ∩W = 0. Thus
the set U ′∪{U} is independent and belongs to T , a contradiction to the maximality
of U ′ in T . �

This finishes the proof of Theorem 5.1. �

Here is an important consequence of Theorem 5.1:
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Corollary 5.5. Submodules and factor modules of semisimple modules are semisim-
ple.

Proof. Let V be a semisimple module. If W is a factor module of V , then W = V/U
for some submodule U of V . Now U has a direct complement C in V , and C is
isomorphic to W . Thus every factor module of V is isomorphic to a submodule of
V . Therefore it is enough to show that all submodules of V are semisimple.

V
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U
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C

~~
~~

~~
~~

0

Let U be submodule of V . We check condition (iii) for U : Every submodule U ′ of
U is also a submodule of V . Thus there exists a direct complement C of U ′ in V .
Then C ∩ U is a direct complement of U ′ in U .

V
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Of course U ′∩(C∩U) = 0, and the modularity yields U ′+(C∩U) = (U ′+C)∩U =
V ∩ U = U . �

Let V be a semisimple module. For every simple module S let VS be the sum of
all submodules U of V such that U ∼= S. The submodule VS depends only on the
isomorphism class [S] of S. Thus we obtain a family (VS)[S] of submodules of V
which are indexed by the isomorphism classes of simple modules. The submodules
VS are called the isotypical components of V .

Proposition 5.6. Let V be a semisimple module. Then the following hold:

• V =
⊕

[S] VS;

• If V ′ is a submodule of V , then V ′
S = V ′ ∩ VS;

• If W is another semisimple module and f : V → W is a homomorphism,
then f(VS) ⊆WS.

Proof. First, we show the following: If U is a simple submodule of V , and if W is
a set of simple submodules of V such that V =

∑
W∈W W , then U ∼= W for some
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W ∈ W: Since V =
∑

W∈W W , there is a subsetW ′ ofW such that V =
⊕

W∈W ′ W .
For every W ∈ W ′ let πW : V →W be the corresponding projection. Let

ι : U → V =
⊕

W∈W ′

W

be the inclusion homomorphism. If U and W are not isomorphic, then πW ◦ ι = 0.
Since ι 6= 0 there must be some W ∈ W ′ with πW ◦ ι 6= 0. Thus U and W are
isomorphic.

Since V is semisimple, we have V =
∑

[S] VS. To show that this sum is direct, let us

look at a fixed isomorphism class [S]. Let T be the set of all isomorphism classes of
simple modules different from [S]. Define

U = VS ∩
∑

[T ]∈T

VT .

Since U is a submodule of V , we know that U is semisimple. Thus U is generated
by simple modules. If U ′ is a simple submodule of U , then U ′ is isomorphic to S,
because U and therefore also U ′ are submodules of VS. On the other hand, since U ′

is a submodule of
∑

[T ]∈T VT , we get that U ′ is isomorphic to some T with [T ] ∈ T ,
a contradiction. Thus U contains no simple submodules, and therefore U = 0.

If V ′ is a submodule of V , then we know that V ′ is semisimple. Obviously, we have
V ′
S ⊆ V ′∩VS . On the other hand, every simple submodule of V ′∩VS is isomorphic to
S and therefore contained in V ′

S. Since V ′ ∩ VS is generated by simple submodules,
we get V ′ ∩ VS ⊆ V ′

S.

Finally, let W be also a semisimple module, and let f : V →W be a homomorphism.
If U is a simple submodule of VS, then U ∼= S. Now f(U) is either 0 or again
isomorphic to S. Thus f(U) ⊆WS. Since VS is generated by its simple submodules,
we get f(VS) ⊆WS. �

5.2. Endomorphism rings of semisimple modules. A skew field is a ring D
(with 1) such that every non-zero element in D has a multiplicative inverse.

Lemma 5.7 (Schur (Version 1)). Let S be a simple module. Then the endomorphism
ring End(S) is a skew field.

Proof. We know that End(S) is a ring. Let f : S → S be an endomorphism of S. It
follows that Im(f) and Ker(f) are submodules of S. Since S is simple we get either
Ker(f) = 0 and Im(f) = S, or we get Ker(f) = S and Im(f) = 0. In the first case,
f is an isomorphism, and in the second case f = 0. Thus every non-zero element in
End(S) is invertible. �

Let us write down the following reformulation of Lemma 5.7:

Lemma 5.8 (Schur (Version 2)). Let S be a simple module. Then every endomor-
phism S → S is either 0 or an isomorphism.

End of Lecture 6
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Let V be a semisimple module, and as before let VS be its isotypical components.
We have

V =
⊕

[S]

VS,

and every endomorphism f of V maps VS to itself. Let fS : VS → VS be the homo-
morphism obtained from f via restriction to VS, i.e. fS(v) = f(v) for all v ∈ VS.
Then f 7→ (fS)[S] defines an algebra isomorphism

End(V )→
∏

[S]

End(VS).

Products of rings: Let I be an index set, and for each i ∈ I let Ri be a ring. By
∏

i∈I

Ri

we denote the product of the rings Ri. Its elements are the sequences (ri)i∈I
with ri ∈ Ri, and the addition and multiplication is defined componentwise, thus
(ri)i + (r′i)i = (ri + r′i)i and (ri)i · (r′i)i = (rir

′
i)i.

The above isomorphism tells us, that to understand End(V ), we only have to un-
derstand the rings End(VS). Thus assume V = VS. We have

V =
⊕

i∈I

S

for some index set I. The structure of End(V ) only depends on the skew field
D = End(S) and the cardinality |I| of I.

If I is finite, then |I| = n and End(V ) is just the ring Mn(D) of n×n-matrices with
entries in D.

If I is infinite, we can interpret End(V ) as an “infinite matrix ring”: Let MI(D)
be the ring of column finite matrices: Let R be a ring. Then the elements of
MI(R) are double indexed families (rij)ij with i, j ∈ I and elements rij ∈ R such
that for every j only finitely many of the rij are non-zero. Now one can define the
multiplication of two such column finite matrices as

(rij)ij · (r
′
st)st =

(
∑

j∈I

rijr
′
jt

)

it

.

The addition is defined componentwise. (This definition makes also sense if I is
finite, where we get the usual matrix ring with rows and columns indexed by the
elements in I and not by {1, . . . , n} as usual.)

Lemma 5.9. For every index set I and every finitely generated module W we have

End

(
⊕

i∈I

W

)
∼= MI(End(W )).
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Proof. Let ιj : W →
⊕

i∈IW be the canonical inclusions, and let πj :
⊕

i∈IW →W
be the canonical projections. We map

f ∈ End

(
⊕

i∈I

W

)

to the double indexed family (πi ◦ f ◦ ιj)ij. Since W is finitely generated, the image
of every homomorphism f : W →

⊕
i∈IW is contained in a submodule

⊕
i∈I′ W

where I ′ is a finite subset of I. This yields that the matrix (πi ◦ f ◦ ιj)ij is column
finite. �

5.3. Exercises. 1: Let K be an algebraically closed field.

Classify the simple 1-modules (V, φ).

Classify the 2-dimensional simple 2-modules (V, φ, ψ).

For every n ≥ 1 construct an n-dimensional simple 2-module (V, φ, ψ).

2: Show that every simple 1-module is finite-dimensional.

Show: If K is algebraically closed, then every simple 1-module is 1-dimensional.

Show: If K = R, then every simple 1-module is 1- or 2-dimensional.

3: Let (V, φ1, φ2) be a 2-module with V 6= 0 and [φ1, φ2] = 1.

Show: If char(K) = 0, then V is infinite dimensional.

Hint: Assume V is finite-dimensional, and try to get a contradiction. You could
work with the trace (of endomorphisms of V ). Which endomorphisms does one have
to look at?

4: Let A =

(
1 0
0 2

)
∈ M(2,C). Find a matrix B ∈ M(2,C) such that (C2, A,B) is

simple.

5: Let A =

(
2 0
0 2

)
∈ M(2,C). Show that there does not exist a matrix B ∈

M(2,C) such that (C2, A,B) is simple.

6: Let V = (V, φj)j∈J be a finite-dimensional J-module such that all φj are diago-
nalizable.

Show: If [φi, φj] = 0 for all i, j ∈ J and if V is simple, then V is 1-dimensional.

————————————————————————————-
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6. Socle and radical of a module

6.1. Socle of a module. The socle of a module V is by definition the sum of
all simple submodules of V . We denote the socle of V by soc(V ). Thus soc(V ) is
semisimple and every semisimple submodule U of V is contained in soc(V ).

Let us list some basic properties of socles:

Lemma 6.1. We have V = soc(V ) if and only if V is semisimple.

Proof. Obvious. �

Lemma 6.2. soc(soc(V )) = soc(V ).

Proof. Obvious. �

Lemma 6.3. If f : V → W is a homomorphism, then f(soc(V )) ⊆ soc(W ).

Proof. The module f(soc(V )) is isomorphic to a factor module of soc(V ), thus it is
semisimple. As a semisimple submodule of W , we know that f(soc(V )) is contained
in soc(W ). �

Lemma 6.4. If U is a submodule of V , then soc(U) = U ∩ soc(V ).

Proof. Since soc(U) is semisimple, it is a submodule of soc(V ), thus of U ∩ soc(V ).
On the other hand, U ∩ soc(V ) is semisimple, since it is a submodule of soc(V ).
Because U∩soc(V ) is a semisimple submodule of U , we get U∩soc(V ) ⊆ soc(U). �

Lemma 6.5. If Vi with i ∈ I are modules, then

soc

(
⊕

i∈I

Vi

)
=
⊕

i∈I

soc(Vi).

Proof. Let V =
⊕

i∈I Vi. Every submodule soc(Vi) is semisimple, thus it is contained
in soc(V ). Vice versa, let U be a simple submodule of V , and let πi : V → Vi be
the canonical projections. Then πi(U) is either 0 or simple, thus it is contained
in soc(Vi). This implies U ⊆

⊕
i∈I soc(Vi). The simple submodules of V generate

soc(V ), thus we also have soc(V ) ⊆
⊕

i∈I soc(Vi). �

6.2. Radical of a module. The socle of a module V is the largest semisimple
submodule. One can ask if every module has a largest semisimple factor module.

For |J | = 1 the example V = (K[T ], T ·) shows that this is not the case: For every
irreducible polynomial p in K[T ], the module K[T ]/(p) is simple with basis the
residue classes of 1, T, T 2, . . . , Tm−1 where m is the degree of the polynomial p.
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Now assume that W = K[T ]/U is a largest semisimple factor module of V . This
would imply U ⊆ (p) for every irreducible polynomial p. Since

⋂

p∈P

(p) = 0,

we get U = 0 and therefore W = K[T ]. Here P denotes the set of all irreducible
polynomials in K[T ]. But V is not at all semisimple. Namely V is indecomposable
and not simple. In fact, V does not contain any simple submodules.

Recall: A submodule U of a module V is called a maximal submodule if U ⊂ V
and if U ⊆ U ′ ⊂ V implies U = U ′.

By definition the radical of V is the intersection of all maximal submodules of V .
The radical of V is denoted by rad(V ).

Note that rad(V ) = V if V does not contain any maximal submodule. For example,
rad(N(∞)) = N(∞).

The factor module V/ rad(V ) is called the top of V and is denoted by top(V ).

Lemma 6.6. Let V be a module. The radical of V is the intersection of all submod-
ules U of V such that V/U is semisimple.

Proof. Let r(V ) be the intersection of all submodules U of V such that V/U is
semisimple. Clearly, we get r(V ) ⊆ rad(V ). To get the other inclusion rad(V ) ⊆
r(V ), let U be a submodule of V with V/U semisimple. We can write V/U as a
direct sum of simple modules Si, say V/U =

⊕
i∈I Si. For every i ∈ I let Ui be the

kernel of the projection V → V/U → Si. This is a maximal submodule of V , and
therefore we know that rad(V ) ⊆ Ui. Since U =

⋂
i∈I Ui, we get rad(V ) ⊆ U which

implies rad(V ) ⊆ r(V ). �

Note that in general the module V/ rad(V ) does not have to be semisimple: If
V = (K[T ], T ·), then from the above discussion we get V/ rad(V ) = V and V is not
semisimple. However, if V is a “module of finite length”, then the factor module
V/ rad(V ) is semisimple. This will be discussed in Part 3, see in particular Lemma
14.9.

Let us list some basic properties of the radical of a module:

Lemma 6.7. We have rad(V ) = 0 if and only if 0 can be written as an intersection
of maximal submodules of V .

Lemma 6.8. If U is a submodule of V with U ⊆ rad(V ), then rad(V/U) =
rad(V )/U . In particular, rad(V/ rad(V )) = 0.

Proof. Exercise. �

Lemma 6.9. If f : V → W is a homomorphism , then f(rad(V )) ⊆ rad(W ).
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Proof. We show that f(rad(V )) is contained in every maximal submodule of W : Let
U be a maximal submodule ofW . If f(V ) ⊆ U , then we get of course f(rad(V )) ⊆ U .
Thus, assume f(V ) 6⊆ U . It is easy to see that U ∩ f(V ) = f(f−1(U)).

W

LLLLLLLLLLL

ttttttttttt

U

IIIIIIIIII f(V )

ssssssssss

f(f−1(U))

Thus

W/U ∼= f(V )/f(f−1(U)) ∼= V/f−1(U)

is simple, and therefore f−1(U) is a maximal submodule of V and contains rad(V ).
So we proved that f(rad(V )) ⊆ f(f−1(U)) for all maximal submodules U of W .
Since rad(V ) ⊆ f−1(U) for all such U , we get

f(rad(V )) ⊆ ff−1(rad(W )) ⊆ rad(W ).

�

Lemma 6.10. If U is a submodule of V , then (U + rad(V ))/U ⊆ rad(V/U).

Proof. Exercise. �

In Lemma 6.10 there is normally no equality: Let V = (K[T ], T ·) and U = 〈T 2〉 =
(T 2). We have rad(V ) = 0, but rad(V/U) = (T )/(T 2) 6= 0.

Lemma 6.11. If Vi with i ∈ I are modules, then

rad

(
⊕

i∈I

Vi

)
=
⊕

i∈I

rad(Vi).

Proof. Let V =
⊕

i∈I Vi, and let πi : V → Vi be the canonical projections. We
have πi(rad(V )) ⊆ rad(Vi), and therefore rad(V ) ⊆

⊕
i∈I rad(Vi). Vice versa, let

U be a maximal submodule of V . Let Ui be the kernel of the composition Vi →
V → V/U of the obvious canonical homomorphisms. We get that either Ui is a
maximal submodule of Vi or Ui = Vi. In both cases we get rad(Vi) ⊆ Ui. Thus⊕

i∈I rad(Vi) ⊆ U . Since rad(V ) is the intersection of all maximal submodules of V ,
we get

⊕
i∈I rad(Vi) ⊆ rad(V ). �

6.3. Exercises. 1: Show: If the submodules of a finite-dimensional module V form
a chain (i.e. if for all submodules U1 and U2 of V we have U1 ⊆ U2 or U2 ⊆ U1),
then U is cyclic.

2: Assume char(K) = 0. Show: The submodules of the 1-module (K[T ], d
dT

) form

a chain, but (K[T ], d
dT

) is not cyclic.
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3: For λ ∈ K let J(λ, n) be the Jordan block of size n × n with eigenvalue λ. For
λ1 6= λ2 in K, show that the 1-module (Kn, J(λ1, n))⊕ (Km, J(λ2, m)) is cyclic.

End of Lecture 7

***********************************************************************
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Part 2. Short Exact Sequences

7. Digression: Categories

This section gives a quick introduction to the concept of categories.

7.1. Categories. A category C consists of objects and morphisms, the objects
form a class, and for any objects X and Y there is a set C(X, Y ), the set of mor-
phisms from X to Y . Is f such a morphism, we write f : X → Y . For all objects
X, Y, Z in C there is a composition map

C(Y, Z)× C(X, Y )→ C(X,Z), (g, f) 7→ gf,

which satisfies the following properties:

• For any object X there is a morphism 1X : X → X such that f1X = f and
1Xg = g for all morphisms f : X → Y and g : Z → X.
• The composition of morphisms is associative: For f : X → Y , g : Y → Z

and h : Z → A we assume (hg)f = h(gf).

For morphisms f : X → Y and g : Y → Z we call gf : X → Z the composition of
f and g.

A morphism f : X → Y is an isomorphism if there exists a morphism g : Y → X
such that gf = 1X and fg = 1Y .

When necessary, we write Ob(C) for the class of objects in C. However for an object
X, we often just say “X lies in C” or write “X ∈ C”.

Remark: Note that we speak of a “class” of objects, and not of sets of objects, since
we want to avoid set theoretic difficulties: For example the J-modules do not form
a set, otherwise we would run into contradictions. (Like: “The set of all sets.”)

If C′ and C are categories with Ob(C′) ⊆ Ob(C) and C′(X, Y ) ⊆ C(X, Y ) for all
objects X, Y ∈ C′ such that the compositions of morphisms in C′ coincide with the
compositions in C, then C′ is called a subcategory of C. In case C′(X, Y ) = C(X, Y )
for all X, Y ∈ C′, one calls C′ a full subcategory of C.

We only look at K-linear categories: We assume additionally that the morphism
sets C(X, Y ) are K-vector spaces, and that the composition maps

C(Y, Z)× C(X, Y )→ C(X,Z)

are K-bilinear. In K-linear categories we often write Hom(X, Y ) instead of C(X, Y ).

By Mod(K) we denote the category ofK-vector spaces. Let mod(K) be the category
of finite-dimensional K-vector spaces.

7.2. Functors. Let C and D be categories. A covariant functor F : C → D
associates to each object X ∈ C an object F (X) ∈ D, and to each morphism
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f : X → Y in C a morphism F (f) : F (X) → F (Y ) in D such that the following
hold:

• F (1X) = 1F (X) for all objects X ∈ C;
• F (gf) = F (g)F (f) for all morphisms f, g in C such that their composition
gf is defined.

By a functor we always mean a covariant functor. A trivial example is the following:
If C′ is a subcategory of C, then the inclusion is a functor.

Similarly, a contravariant functor F : C → D associates to any object X ∈ C an
object F (X) ∈ D, and to each morphism f : X → Y in C a morphism F (f) : F (Y )→
F (X) such that the following hold:

• F (1X) = 1F (X) for all objects X ∈ C;
• F (gf) = F (f)F (g) for all morphisms f, g in C such that their composition
gf is defined.

Thus if we deal with contravariant functors, the order of the composition of mor-
phisms is reversed.

End of Lecture 8

If C and D are K-linear categories, then a covariant (resp. contravariant) functor
F : C → D is K-linear, if the map C(X, Y ) → D(F (X), F (Y )) (resp. C(X, Y ) →
D(F (Y ), F (X))) defined by f 7→ F (f) is K-linear for all objects X, Y ∈ C.

In Section 8 we will see examples of functors.

7.3. Equivalences of categories. Let F : C → D be a functor. Then F is called
full, if for all objects X, Y ∈ C the map C(X, Y ) → D(F (X), F (Y )), f 7→ F (f) is
surjective, and F is faithful if these maps are all injective. If every object X ′ ∈ D
is isomorphic to an object F (X) for some X ∈ C, then F is dense.

A functor which is full, faithful and dense is called an equivalence (of categories).
If F : C → D is an equivalence, then there exists an equivalence G : D → C such that
for all objects C ∈ C the objects C and GF (C) are isomorphic, and for all objects
D ∈ D the objects D and FG(D) are isomorphic.

If F : C → D is an equivalence of categories such that Ob(C)→ Ob(D), X → F (X)
is bijective, then F is called an isomorphism (of categories). If F is such an
isomorphism, then there exists a functor G : D → C such that C = GF (C) for all
objects C ∈ C and D = FG(D) for all objects D ∈ D. Then G is obviously also an
isomorphism. Isomorphisms of categories are very rare. In most constructions which
yield equivalences F of categories, it is difficult to decide if F sends two isomorphic
objects X 6= Y to the same object.
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7.4. Module categories. Given a class M of J-modules, which is closed under
isomorphisms and under finite direct sums. Then M (together with the homomor-
phisms between the modules inM) is called a module category.

(Thus we assume the following: If V ∈ M and if V ∼= V ′, then V ′ ∈ M. Also, if
V1, . . . , Vt are modules inM, then V1 ⊕ · · · ⊕ Vt ∈M.)

If we say that f : X → Y is a homomorphism in M, then this means that both
modules X and Y lie inM (and that f is a homomorphism).

The module category of all J-modules is denoted byM(J). Thus Mod(K) =M(∅).
For J = {1, . . . , n} set M(n) :=M(J).

7.5. Exercises. 1: For c ∈ K let Nc be the module category of 1-modules (V, φ)
with (φ−c1V )m = 0 for some m. Show that all module categories Nc are isomorphic
(as categories) to N := N0.

————————————————————————————-

8. Hom-functors and exact sequences

Let V,W,X, Y be modules, and let f : V →W and h : X → Y be homomorphisms.
For g ∈ HomJ(W,X) we define a map

HomJ(f, h) : HomJ(W,X)→ HomJ(V, Y ), g 7→ hgf.

It is easy to check that HomJ(f, h) is a linear map of vector spaces: For g, g1, g2 ∈
HomJ(W,X) and c ∈ K we have

h(g1 + g2)f = hg1f + hg2f and h(cg)f = c(hgf).

If V = W and f = 1V , then instead of HomJ(1V , h) we mostly write

HomJ(V, h) : HomJ(V,X)→ HomJ(V, Y ),

thus by definition HomJ(V, h)(g) = hg for g ∈ HomJ(V,X). If X = Y and h = 1X ,
then instead of HomJ(f, 1X) we write

HomJ(f,X) : HomJ(W,X)→ HomJ(V,X),

thus HomJ(f,X)(g) = gf for g ∈ HomJ(W,X).

Typical examples of functors are Hom-functors: LetM be a module category, which
consists of J-modules. Each J-module V ∈M yields a functor

HomJ(V,−) : M→ mod(K)

which associate to any module X ∈ M the vector space HomJ(V,X) and to any
morphism h : X → Y inM the morphism HomJ(V, h) : HomJ(V,X)→ HomJ(V, Y )
in mod(K).
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Similarly, every object X ∈ M yields a contravariant functor

HomJ(−, X) : M→ mod(K).

Let U, V,W be modules, and let f : U → V and g : V → W be homomorphisms. If
Im(f) = Ker(g), then (f, g) is called an exact sequence. Mostly we denote such
an exact sequence in the form

U
f
−→ V

g
−→ W.

We also say, the sequence is exact at V . Given such a sequence with U = 0,
exactness implies that g is injective. (For U = 0 we have Im(f) = 0 = Ker(g), thus
g is injective.) Similarly, if W = 0, exactness yields that f is surjective. (For W = 0
we have Ker(g) = V , but Im(f) = V means that f is surjective.)

Given modules Vi with 0 ≤ i ≤ t and homomorphisms fi : Vi−1 → Vi with 1 ≤ i ≤ t,
then the sequence (f1, . . . , ft) is an exact sequence if

Im(fi−1) = Ker(fi)

for all 2 ≤ i ≤ t. Also here we often write

V0
f1
−→ V1

f2
−→ · · ·

ft
−→ Vt.

Typical examples of exact sequences can be obtained as follows: Let V and W
be modules and let g : V → W be a homomorphism. Let ι : Ker(g) → V be the
inclusion, and let π : W → Cok(g) be the projection. Then the sequence

0→ Ker(g)
ι
−→ V

g
−→W

π
−→ Cok(g)→ 0

is exact. (Recall that Cok(g) = W/ Im(g).)

Vice versa, if we have an exact sequence of the form

0→ U
f
−→ V

g
−→W

then f is injective and Im(f) = Ker(g). Similarly, if

U
g
−→ V

h
−→W → 0

is an exact sequence, then h is surjective and Im(g) = Ker(h).

Lemma 8.1. Let 0 → U
f
−→ V

g
−→ W be an exact sequence of J-modules. Then

gf = 0, and for every homomorphism b : X → V with gb = 0 there exists a unique
homomorphism b′ : X → U with b = fb′.

X

b
��

b′

~~~
~

~
~

0 // U
f // V

g // W
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Proof. Of course we have gf = 0. Let now b : X → V be a homomorphism with
gb = 0. This implies that Im(b) ⊆ Ker(g). Set U ′ = Ker(g), and let ι : U ′ → V
be the inclusion. Thus b = ιb0 for some homomorphism b0 : X → U ′. There is an
isomorphism f0 : U → U ′ with f = ιf0. If we define b′ = f−1

0 b0, then we obtain

fb′ = (ιf0)(f
−1
0 b0) = ιb0 = b.

We still have to show the uniqueness of b′: Let b′′ : X → U be a homomorphism
with fb′′ = b. Then the injectivity of f implies b′ = b′′. �

There is the following reformulation of Lemma 8.1:

Lemma 8.2. Let 0 → U
f
−→ V

g
−→ W be an exact sequence of J-modules. Then for

every J-module X, the sequence

0→ HomJ(X,U)
HomJ(X,f)
−−−−−−→ HomJ(X, V )

HomJ (X,g)
−−−−−−→ HomJ(X,W )

is exact. (“HomJ(X,−) is a left exact functor.”)

Proof. We have HomJ(X, g) ◦ HomJ(X, f) = 0: For any homomorphism a : X → U
we get

(HomJ(X, g) ◦ HomJ(X, f))(a) = gfa = 0.

This implies Im(HomJ(X, f)) ⊆ Ker(HomJ(X, g)).

Vice versa, let b ∈ Ker(HomJ(X, g)). Thus b : X → V is a homomorphism with gb =
0. We know that there exists some b′ : X → U with fb′ = b. Thus HomJ(X, f)(b′) =
fb′ = b. This shows that b ∈ Im(HomJ(X, f)). The uniqueness of b′ means that
HomJ(X, f) is injective. �

Here are the corresponding dual statements of the above lemmas:

Lemma 8.3. Let U
f
−→ V

g
−→ W → 0 be an exact sequence of J-modules. Then

gf = 0, and for every homomorphism c : V → Y with cf = 0 there exists a unique
homomorphism c′ : W → Y with c = c′g.

U
f // V

c

��

g // W //

c′

~~}
}

}
}

0

Y

Proof. Exercise. �

And here is the corresponding reformulation of Lemma 8.2:

Lemma 8.4. Let U
f
−→ V

g
−→ W → 0 be an exact sequence of J-modules. Then for

every J-module X, the sequence

0→ HomJ(W,Y )
HomJ (g,Y )
−−−−−−→ HomJ(V, Y )

HomJ(f,Y )
−−−−−−→ HomJ(U, Y )
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is exact. (“HomJ(−, Y ) is a left exact contravariant functor.”)

Proof. Exercise. �

————————————————————————————-

9. Equivalences of short exact sequences

9.1. Short exact sequences. An exact sequence of the form

0→ U
f
−→ V

g
−→W → 0

is called a short exact sequence. This sequence starts in U and ends in W .
Its middle term is V and its end terms are U and W . For such a short exact
sequence we often write (f, g) instead of (0, f, g, 0).

Two short exact sequences

0→ U
f
−→ V

g
−→W → 0

and

0→ U
f ′

−→ V ′ g′

−→ W → 0

are equivalent if there exists a homomorphism h : V → V ′ such that the following
diagram is commutative:

0 // U
f // V

g //

h
��

W // 0

0 // U
f ′ // V ′

g′ // W // 0

Remark: The expression “commutative diagram” means the following: Given are
certain modules and between them certain homomorphisms. One assumes that for
any pair of paths which start at the same module and also end at the same module,
the compositions of the corresponding homomorphisms coincide. It is enough to
check that for the smallest subdiagrams. For example, in the diagram appearing in
the next lemma, commutativity means that bf = f ′a and cg = g′b. (And therefore
also cgf = g′f ′a.) In the above diagram, commutativity just means hf = f ′ and
g = g′h. We used the homomorphisms 1U and 1W to obtain a nicer looking diagram.
Arranging such diagrams in square form has the advantage that we can speak about
rows and columns of a diagram. A frequent extra assumption is that certain columns
or rows are exact. In this lecture course, we will see many more commutative
diagrams!
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Lemma 9.1. Let

0 // U
f //

a

��

V
g //

b
��

W

c

��

// 0

0 // U ′
f ′ // V ′

g′ // W ′ // 0

be a commutative diagram with exact rows. If a and c are isomorphisms, then b is
also an isomorphism.

End of Lecture 9

Proof. First, we show that b is injective: If b(v) = 0 for some v ∈ V , then cg(v) =
g′b(v) = 0. This implies g(v) = 0 since c is an isomorphism. Thus v belongs to
Ker(g) = Im(f). So v = f(u) for some u ∈ U . We get f ′a(u) = bf(u) = b(v) = 0.
Now f ′a is injective, which implies u = 0 and therefore v = f(u) = 0.

Second, we prove that b is surjective: Let v′ ∈ V ′. Then c−1g′(v′) ∈ W . Since g
is surjective, there is some v ∈ V with g(v) = c−1g′(v′). Thus cg(v) = g′(v′). This
implies

g′(v′ − b(v)) = g′(v′)− g′b(v) = g′(v′)− cg(v) = 0.

So v′ − b(v) belongs to Ker(g′) = Im(f ′). Therefore there exists some u′ ∈ U ′ with
f ′(u′) = v′ − b(v). Let u = a−1(u′). Because f ′(u′) = f ′a(u) = bf(u), we get
v′ = f ′(u′) + b(v) = b(f(u) + v). Thus v′ is in the image of b. So we proved that b
is an isomorphism. �

The method used in the proof of the above lemma is called “Diagram chasing”.

Lemma 9.1 shows that equivalence of short exact sequences is indeed an equivalence
relation on the set of all short exact sequences starting in a fixed module U and
ending in a fixed module W :

Given two short exact exact sequences (f, g) and (f ′, g′) like in the assumption of
Lemma 9.1. If there exists a homomorphism h : V → V ′ such that hf = f ′ and
g = g′h, then h−1 satisfies h−1f ′ = f and g′ = gh−1. This proves the symmetry of
the relation.

If there is another short exact sequence (f ′′, g′′) with f ′′ : U → V ′′ and g′′ : V ′′ →
W and a homomorphism h′ : V ′ → V ′′ such that h′f ′ = f ′′ and g′ = g′′h′, then
h′h : V → V ′′ is a homomorphism with h′hf = f ′′ and g = g′′h′h. This shows our
relation is transitive.

Finally, (f, g) is equivalent to itself, just take h = 1V . Thus the relation is reflexive.

A short exact sequence

0→ U
f
−→ V

g
−→W → 0

is a split exact sequence (or splits) if Im(f) is a direct summand of V . In other
words, the sequence splits if f is a split monomorphism, or (equivalently) if g is a
split epimorphism. (Remember that Im(f) = Ker(g).)



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 55

Lemma 9.2. A short exact sequence 0→ U → V → W → 0 splits if and only if it
is equivalent to the short exact sequence

0→ U
ι1−→ U ⊕W

π2−→W → 0,

where ι1 is the inclusion of U into U ⊕W , and π2 is the projection from U ⊕W
onto W with kernel U .

Proof. Let (f, g) with f : U → V and g : V → W be a short exact sequence. If it
splits, then f is a split monomorphism. Thus there exists some f ′ : V → U with
f ′f = 1U . So

0 // U
f // V

g //

h

f ′
g

i

��

W // 0

0 // U
ι1 // U ⊕W

π2 // W // 0

is a commutative diagram: If we write ι1 = t[1, 0] and π2 = [0, 1], then we see that
t[f ′, g]f = t[1, 0] = ι1 and g = [0, 1] ◦ t[f ′, g] = π2 ◦

t[f ′, g]. Thus (f, g) is equivalent
to (ι1, π2).

Vice versa, assume that (f, g) and (ι1, π2) are equivalent. Thus there exists some
h : V → U⊕W such that hf = ι1 and g = π2h. Let π1 be the projection from U⊕W
onto U with kernel W . Then π1hf = π1ι1 = 1U . Thus f is a split monomorphism.

�

9.2. Exercises. 1: Let

0 // V1

f1 // V
f2 //

a

��

V2
// 0

0 // W1

g1 // W
g2 // W2

// 0

be a diagram of J-modules with exact rows.

Show: There exists a homomorphism a1 : V1 → W1 with af1 = g1a1 if and only if
there exists a homomorphism a2 : V2 → W2 with g2a = a2f2.

2: Let

V1

f1 //

a1
��

V2

f2 //

a2
��

V3

f3 //

a3
��

V4

f4 //

a4
��

V5

a5
��

W1

g1 // W2

g2 // W3

g3 // W4

g4 // W5

be a commutative diagramm of J-modules with exact rows.

Show: If a1 is an epimorphism, and if a2 and a4 are monomorphisms, then a3 is a
monomorphism.

If a5 is a monomorphism, and if a2 and a4 are epimorphisms, then a3 is an epimor-
phism.
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If a1, a2, a4, a5 are isomorphisms, then a3 is an isomorphism.

3: Let

0→ U
f
−→ V

g
−→W → 0

be a short exact sequence of J-modules.

Show: The exact sequence (f, g) splits if and only if for all J-modulesX the sequence

0→ HomJ(X,U)
HomJ (X,f)
−−−−−−→ HomJ(X, V )

HomJ (X,g)
−−−−−−→ HomJ(X,W )→ 0

is exact. (By the results we obtained so far, it is enough to show that HomJ(X, g)
is surjective for all X.)

4: If the sequence

0→ Ui
fi−→ Vi

gi−→ Ui+1 → 0

is exact for all i ∈ Z, then the sequence

· · · → Vi−1
figi−1
−−−→ Vi

fi+1gi
−−−→ Vi+1 → · · ·

is exact.

5: Construct an example of a short exact sequence

0→ U → U ′ ⊕W →W → 0

such that U 6∼= U ′.

————————————————————————————-

10. Pushout and pullback

10.1. Pushout. Let U, V1, V2 be modules, and let f1 : U → V1 and f2 : U → V2 be
homomorphisms.

V1

U

f1
>>~~~~~~~

f2   @
@@

@@
@@

V2

Define

W = V1 ⊕ V2/{(f1(u),−f2(u)) | u ∈ U}

and gi : Vi →W where g1(v1) = (v1, 0) and g2(v2) = (0, v2). Thus gi is the composi-
tion of the inclusion Vi → V1 ⊕ V2 followed by the projection V1 ⊕ V2 →W .

One calls W (or more precisely W together with the homomorphisms g1 and g2) the
pushout (or fibre sum) of f1 and f2.
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So W is the cokernel of the homomorphism t[f1,−f2] : U → V1⊕V2, and [g1, g2] : V1⊕
V2 →W is the corresponding projection. We get an exact sequence

U
t[f1,−f2]
−−−−−→ V1 ⊕ V2

[g1,g2]
−−−→ W → 0.

Obviously,

U
t[f1,f2]
−−−−→ V1 ⊕ V2

[g1,−g2]
−−−−→W → 0

is also an exact sequence.

Proposition 10.1 (Universal property of the pushout). For the module W and
the homomorphisms g1 : V1 → W and g2 : V2 → W as defined above the following
hold: We have g1f1 = g2f2, and for every module X together with a pair (h1 : V1 →
X, h2 : V2 → X) of homomorphisms such that h1f1 = h2f2 there exists a uniquely
determined homomorphism h : W → X such that h1 = hg1 and h2 = hg2.

V1

g1   A
AA

AA
AA

A
h1

**TTTTTTTTTTTTTTTTTTTTT

U

f1
>>~~~~~~~

f2   @
@@

@@
@@

W
h //______ X

V2

g2
>>}}}}}}}} h2

44jjjjjjjjjjjjjjjjjjjjj

Proof. Of course g1f1 = g2f2. If we have h1f1 = h2f2 for some homomorphisms
hi : Vi → X, then we can write this as

[h1, h2]

[
f1

−f2

]
= 0.

This implies that the homomorphism [h1, h2] factorizes through the cokernel of
t[f1,−f2]. In other words there is a homomorphism h : W → X such that

[h1, h2] = h[g1, g2].

But this means that h1 = hg1 and h2 = hg2. The factorization through the cokernel
is unique, thus h is uniquely determined. �

More generally, let f1 : U → V1, f2 : U → V2 be homomorphisms. Then a pair
(g1 : V1 →W, g2 : V2 →W ) is called a pushout of (f1, f2), if the following hold:

• g1f1 = g2f2;
• For all homomorphisms h1 : V1 → X, h2 : V2 → X such that h1f1 = h2f2

there exists a unique(!) homomorphism h : W → X such that hg1 = h1 and
hg2 = h2.

Lemma 10.2. Let f1 : U → V1, f2 : U → V2 be homomorphisms, and assume that
(g1 : V1 → W, g2 : V2 → W ) and also (g′1 : V1 → W ′, g′2 : V2 → W ′) are pushouts of
(f1, f2). Then there exists an isomorphism h : W → W ′ such that hg1 = g′1 and
hg2 = g′2. In particular, W ∼= W ′.
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Proof. Exercise. �

End of Lecture 10

10.2. Pullback. Let V1, V2,W be modules, and let g1 : V1 → W and g2 : V2 → W
be homomorphisms.

V1
g1

  A
AA

AA
AA

A

W

V2

g2

>>}}}}}}}}

Define
U = {(v1, v2) ∈ V1 ⊕ V2 | g1(v1) = g2(v2)}.

One easily checks that U is a submodule of V1⊕V2. Define fi : U → Vi by fi(v1, v2) =
vi. Thus fi is the composition of the inclusion U → V1⊕V2 followed by the projection
V1 ⊕ V2 → Vi. One calls U (or more precisely U together with the homomorphisms
f1 and f2) the pullback (or fibre product) of g1 and g2. So U is the kernel
of the homomorphism [g1,−g2] : V1 ⊕ V2 → W and t[f1, f2] : U → V1 ⊕ V2 is the
corresponding inclusion. We get an exact sequence

0→ U
t[f1,f2]
−−−−→ V1 ⊕ V2

[g1,−g2]
−−−−→ W.

Of course, also

0→ U
t[f1,−f2]
−−−−−→ V1 ⊕ V2

[g1,g2]
−−−→ W.

is exact.

Proposition 10.3 (Universal property of the pullback). For the module U and
the homomorphisms f1 : U → V1 and f2 : U → V2 as defined above the following
hold: We have g1f1 = g2f2, and for every module Y together with a pair (h1 : Y →
V1, h2 : Y → V2) of homomorphisms such that g1h1 = g2h2 there exists a uniquely
determined homomorphism h : Y → U such that h1 = f1h and h2 = f2h.

V1
g1

  A
AA

AA
AA

A

Y
h //______

h1

55jjjjjjjjjjjjjjjjjjjjj

h2
))TTTTTTTTTTTTTTTTTTTTT U

f1

>>~~~~~~~

f2

  @
@@

@@
@@

W

V2

g2

>>}}}}}}}}

Proof. Exercise. �

More generally, let g1 : V1 → W , g2 : V2 → W be homomorphisms. Then a pair
(f1 : U → V1, f2 : U → V2) is called a pullback of (g1, g2), if the following hold:
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• g1f1 = g2f2;
• For all homomorphisms h1 : Y → V1, h2 : Y → V2 such that g1h1 = g2h2

there exists a unique(!) homomorphism h : Y → U such that f1h = h1 and
f2h = h2.

Lemma 10.4. Let g1 : V1 → W , g2 : V2 → W be homomorphisms, and assume that
(f1 : U → V1, f2 : U → V2) and also (f ′

1 : U ′ → V1, f
′
2 : U ′ → V2) are pullbacks of

(g1, g2). Then there exists an isomorphism h : U ′ → U such that f1h = f ′
1 and

f2h = f ′
2. In particular, U ∼= U ′.

Proof. Exercise. �

Since the pushout of a pair (f1 : U → V1, f2 : U → V2) (resp. the pullback of a pair
(g1 : V1 →W, g2 : V2 → W )) is uniquely determined up to a canonical isomorphism,
we speak of “the pushout” of (f1, f2) (resp. “the pullback” of (g1, g2)).

10.3. Properties of pushout and pullback.

Lemma 10.5. Let (g1 : V1 → W, g2 : V2 → W ) be the pushout of homomorphisms
(f1 : U → V1, f2 : U → V2), and let (f ′

1 : U ′ → V1, f
′
2 : U ′ → V2) be the pullback of

(g1, g2). Then the uniquely determined homomorphism h : U → U ′ with f1 = f ′
1h

and f2 = f ′
2h is surjective. If t[f1, f2] is injective, then h is an isomorphism, and

(f1, f2) is a pullback of (g1, g2).

V1

g1

  A
AA

AA
AA

A

U
h //______

f1

55jjjjjjjjjjjjjjjjjjjjj

f2
))TTTTTTTTTTTTTTTTTTTTT U ′

f ′1

>>}}}}}}}

f ′2

  A
AA

AA
AA

W

V2

g2

>>}}}}}}}}

Proof. Exercise. �

Lemma 10.6. Let (f1 : U → V1, f2 : U → V2) be the pullback of homomorphisms
(g1 : V1 → W, g2 : V2 → W ), and let (g′1 : V1 → W ′, g′2 : V2 → W ′) be the pushout of
(f1, f2). Then the uniquely determined homomorphism h : W ′ → W with g1 = hg′1
and g2 = hg′2 is injective. If [g1, g2] is surjective, then h is an isomorphism, and
(g1, g2) is the pushout of (f1, f2).
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V1

g′1 !!B
BB

BB
BB

B
g1

**TTTTTTTTTTTTTTTTTTTTTT

U

f1
??~~~~~~~

f2 ��@
@@

@@
@@

W ′ h //______ W

V2

g′2
>>|||||||| g2

44jjjjjjjjjjjjjjjjjjjjjj

Proof. Exercise. �

Lemma 10.7. Let (g1 : V1 → W, g2 : V2 → W ) be the pushout of a pair (f1 : U →
V1, f2 : U → V2). If f1 is injective, then g2 is also injective.

Proof. Assume g2(v2) = 0 for some v2 ∈ V2. By definition g2(v2) is the residue class
of (0, v2) in W , thus there exists some u ∈ U with (0, v2) = (f1(u),−f2(u)). If we
assume that f1 is injective, then 0 = f1(u) implies u = 0. Thus v2 = −f2(u) = 0. �

Lemma 10.8. Let (f1 : U → V1, f2 : U → V2) be the pullback of a pair (g1 : V1 →
W, g2 : V2 → W ). If g1 is surjective, then f2 is also surjective.

Proof. Let v2 ∈ V2. If we assume that g1 is surjective, then for g2(v2) ∈ W there
exists some v1 ∈ V1 such that g1(v1) = g2(v2). But then u = (v1, v2) belongs to U ,
and therefore f2(u) = v2. �

Pushouts are often used to construct bigger modules from given modules. If V1, V2

are modules, and if U is a submodule of V1 and of V2, then we can construct the
pushout of the inclusions f1 : U → V1, f2 : U → V2. We obtain a module W and
homomorphisms g1 : V1 → W , g2 : V2 → W with g1f1 = g2f2.

V1
g1

  A
AA

AA
AA

A

U

f1
>>~~~~~~~

f2   @
@@

@@
@@

W

V2

g2

>>}}}}}}}}

Since f1 and f2 are both injective, also g1 and g2 are injective. Also (up to canonical
isomorphism) (f1, f2) is the pullback of (g1, g2).

10.4. Induced exact sequences. Let

0→ U
f
−→ V

g
−→W → 0

be a short exact sequence, and let a : U → X be any homomorphism. We construct
the pushout (a′ : V → P, f ′ : X → P ) of (f : U → V, a : U → X). Since the
homomorphisms g : V →W and 0: X →W satisfy the equation gf = 0 = 0a, there
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is a homomorphism g′ : P → W with g′a′ = g and g′f ′ = 0. Thus we obtain the
commutative diagram

0 // U
f //

a

��

V
g //

a′

��

W // 0

0 // X
f ′ // P

g′ // W // 0

and we claim that (f ′, g′) is again a short exact sequence, which we call the (short
exact) sequence induced by a. We write a∗(f, g) = (f ′, g′).

Proof. Since f is injective, we know that f ′ is also injective. Since g = g′a′ is
surjective, also g′ is surjective. By construction g′f ′ = 0, thus Im(f ′) ⊆ Ker(g′). We

have to show that also the other inclusion holds: Let (v, x) ∈ Ker(g′) where v ∈ V
and x ∈ X. Thus

0 = g′((v, x)) = g′(a′(v) + f ′(x)) = g′(a′(v)) = g(v).

Since (f, g) is an exact sequence, there is some u ∈ U with f(u) = v. This implies

f ′(x+ a(u)) = (0, x+ a(u)) = (v, x),

because (v, x)− (0, x+ a(u)) = (v,−a(u)) = (f(u),−a(u)). �

Dually, let b : Y → W be any homomorphism. We take the pullback (g′′ : Q →
Y, b′′ : Q → Y ) of (b : Y → W, g : V → W ). Since the homomorphisms 0: U → Y
and f : U → V satisfy b0 = 0 = gf , there exists a homomorphism f ′′ : U → Q with
g′′f ′′ = 0 and b′′f ′′ = f . Again we get a commutative diagram

0 // U
f ′′ // Q

b′′

��

g′′ // Y

b

��

// 0

0 // U
f // V

g // W // 0,

and similarly as before we can show that (f ′′, g′′) is again a short exact sequence.
We write b∗(f, g) = (f ′′, g′′), and call this the (short exact) sequence induced
by b.

Lemma 10.9. Let

0→ U
f
−→ V

g
−→W → 0

be a short exact sequence. Then the following hold:

(i) If a : U → X is a homomorphism, then there exists a homomorphism

a′′ : V → X

with a = a′′f if and only if the induced sequence a∗(f, g) splits;
(ii) If b : Y → W is a homomorphism, then there exists a homomorphism

b′′ : Y → V

with b = gb′′ if and only if the induced sequence b∗(f, g) splits.
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Y

b
��

b′′

~~}
}

}
}

0 // U
f //

a

��

V
g //

a′′~~~
~

~
~

W // 0

X

Proof. Let a : U → X be a homomorphism. We obtain a commutative diagram with
exact rows:

0 // U
f //

a

��

V
g //

a′

��

W // 0

0 // X
f ′ // P

g′ // W // 0

The lower sequence is by definition a∗(f, g). If this sequence splits, then there
exists some f ′′ : P → X such that f ′′f ′ = 1X . Define a′′ = f ′′a′. Then a′′f =
f ′′a′f = f ′′f ′a = a. Vice versa, let a′′ : V → X be a homomorphism with a′′f = a.
Since a′′f = 1Xa, the universal property of the pushout shows that there exists a
homomorphism h : P → X such that a′′ = ha′, 1X = hf ′.

V

a′   @
@@

@@
@@

a′′

))TTTTTTTTTTTTTTTTTTTTT

U

f
>>~~~~~~~

a   @
@@

@@
@@

P
h //______ X

X

f ′
>>~~~~~~~ 1X

55jjjjjjjjjjjjjjjjjjjjj

In particular, f ′ is a split monomorphism. Thus the sequence (f ′, g′) = a∗(f, g)
splits.

The second part of the lemma is proved dually. �

End of Lecture 11

Lemma 10.10. Let

0 // U
f //

a

��

V
g //

a′′

��

W // 0

0 // X
f ′′ // P ′

g′′ // W // 0

be a commutative diagram with exact rows. Then the pair (a′′, f ′′) is a pushout of
(f, a).

Proof. We construct the induced exact sequence a∗(f, g) = (f ′, g′): Let (a′ : V →
P, f ′ : X → P ) be the pushout of (f, a). For g′ : P →W we have g = g′a′.
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Since a′′f = f ′′a there exists some homomorphism h : P → P ′ with a′′ = ha′

and f ′′ = hf ′. We claim that g′ = g′′h: This follows from the uniqueness of the
factorization through a pushout, because we know that

g′a′ = g = g′′a′′ = g′′ha′

and
g′f ′ = 0 = g′′f ′′ = g′′hf ′.

Thus we have seen that h yields an equivalence of the short exact sequences (f ′, g′)
and (f ′′, g′′), In particular, h has to be an isomorphism. But if h is an isomorphism,
then the pair (a′′ = ha′, f ′′ = hf ′) is a pushout of (f, a), since by assumption (a′, f ′)
is a pushout of (f, a). �

We leave it as an exercise to prove the corresponding dual of the above lemma:

Lemma 10.11. Let

0 // U
f ′′′ // Q′ g′′′ //

b′′′

��

Y

b
��

// 0

0 // U
f // V

g // W // 0

be a commutative diagram with exact rows. Then the pair (b′′′, g′′′) is a pullback of
(g, b).

10.5. Examples. Let

0→ N(2)
f
−→ N(3)

g
−→ N(1)→ 0

be a short exact sequence, and let h : N(2)→ N(1) be a homomorphism. As before,
N(m) is the m-dimensional 1-module (Km, φ) with basis e1, . . . , em, φ(e1) = 0 and
φ(ei) = ei−1 for all 2 ≤ i ≤ m. We will fix such bases for each m, and display the
homomorphisms f , g and h as matrices: For example, let

f =




1 0
0 1
0 0



 and g = [0, 0, 1].

For h = [0, 1], the induced sequence h∗(f, g) is of the form

0→ N(1)→ N(2)→ N(1)→ 0.

For h = [0, 0], the induced sequence h∗(f, g) is of the form

0→ N(1)→ N(1)⊕N(1)→ N(1)→ 0.

Similarly as above let

0→ N(3)
f
−→ N(4)

g
−→ N(1)→ 0

be the obvious canonical short exact sequence, and let h : N(3) → N(2) be the
homomorphism given by the matrix

[
0 1 0
0 0 1

]
.
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Thus h is the canonical epimorphism from N(3) onto N(2). Now one can check that
the pushout of (f, h) is isomorphic to N(3).

On the other hand, if h is given by the matrix
[
0 0 1
0 0 0

]
.

Then the pushout of (f, h) is isomorphic to N((2, 1)) = N(2)⊕N(1).

10.6. Exercises. 1: Let

0→ U
f1−→ V1

g1−→ W → 0

and

0→ U
f2−→ V2

g2−→ W → 0

be equivalent short exact sequences of J-modules, and let a : U → X be a homo-
morphism. Show that the two short exact sequences a∗(f1, g1) and a∗(f2, g2) are
equivalent.

2: Recall: For any partition λ, we defined a 1-module N(λ). Let

0→ N(n)
f1
−→ N(2n)

g1
−→ N(n)→ 0

be the short exact sequence with f1 the canonical inclusion and g1 the canonical
projection, and let

η : 0→ N(n)
f2
−→ N(λ)

g2
−→ N(n)→ 0

be a short exact sequence with λ = (λ1, λ2).

Show: There exists some homomorphism a : N(n)→ N(n) such that a∗(f1, g1) = η.

3: Let

0→ U
f
−→ V

g
−→W → 0

be a short exact sequence of J-modules, and let a : U → X, a′ : X → X ′, b : Y →W ,
b′ : Y ′ → Y be homomorphisms of J-modules. Show:

• The induced sequences (a′a)∗(f, g) and a′∗(a∗(f, g)) are equivalent;
• The induced sequences (bb′)∗(f, g) and (b′)∗(b∗(f, g)) are equivalent;
• The induced sequences a∗(b

∗(f, g)) and b∗(a∗(f, g)) are equivalent.

————————————————————————————-

11. Irreducible homomorphisms and Auslander-Reiten sequences

11.1. Irreducible homomorphisms. LetM be a module category. A homomor-
phism f : V →W inM is irreducible (inM) if the following hold:

• f is not a split monomorphism;
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• f is not a split epimorphism;
• For any factorization f = f2f1 in M, f1 is a split monomorphism or f2 is a

split epimorphism.

Note that any homomorphism f : V → W has many factorizations f = f2f1 with
f1 a split monomorphism or f2 a split epimorphism: Let C be any module in M,
and let g : V → C and h : C → W be arbitrary homomorphisms. Define f1 =
t[1, 0] : V → V ⊕ C and f2 = [f, h] : V ⊕ C → W . Then f = f2f1 with f1 a split
monomorphism.

Similarly, define f ′
1 = t[f, g] : V → W ⊕ C and f ′

2 = [1, 0] : W ⊕ C → W . Then
f = f ′

2f
′
1 with f ′

2 a split epimorphism. We could even factorize f as f = f ′′
2 f

′′
1 with

f ′′
1 a split monomorphism and f ′′

2 a split epimorphism: Take f ′′
1 = t[1, 1, 0] : V →

V ⊕ V ⊕W and f ′′
2 = [0, f, 1] : V ⊕ V ⊕W → W .

Thus the main point is that the third condition in the above definition applies to
ALL factorizations f = f2f1 of f .

The notion of an irreducible homomorphism makes only sense if we talk about a
certain fixed module categoryM.

Examples: Let V and W be non-zero modules in a module categoryM. Examples
of homomorphisms which are NOT irreducible are 0→ 0, 0→ W , V → 0, 0 : V →
W , 1V : V → V . (Recall that the submodule 0 of a module is always a direct
summand.)

Lemma 11.1. Assume that M is a module category which is closed under images
(i.e. if f : U → V is a homomorphism in M, then Im(f) is in M). Then every
irreducible homomorphism in M is either injective or surjective.

Proof. Assume that f : U → V is a homomorphism inM which is neither injective
nor surjective, and let f = f2f1 where f1 : U → Im(f) is the homomorphism defined
by f1(u) = f(u) for all u ∈ U , and f2 : Im(f)→ V is the inclusion homomorphism.
Then f1 is not a split monomorphism (it is not even injective), and f2 is not a split
epimorphism (it is not even surjective). �

11.2. Auslander-Reiten sequences and Auslander-Reiten quivers. Again let
M be a module category. An exact sequence

0→ U
f
−→ V

g
−→W → 0

with U, V,W ∈ M is an Auslander-Reiten sequence inM if the following hold:

(i) The homomorphisms f and g are irreducible inM;
(ii) Both modules U and W are indecomposable.

(We will see that for many module cateogories assumption (ii) is not necessary: IfM
is closed under kernels of surjective homomorphisms and f : U → V is an injective
homomorphism which is irreducible inM, then Cok(f) is indecomposable. Similarly,
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if M is closed under cokernels of injective homomorphisms and g : V → W is a
surjective homomorphism which is irreducible inM, then Ker(g) is indecomposable.)

Let (Γ0,Γ1) and (Γ0,Γ2) be two “quivers” with the same set Γ0 of vertices, but with
disjoint sets Γ1 and Γ2 of arrows. Then (Γ0,Γ1,Γ2) is called a biquiver. The arrows
in Γ1 are the 1-arrows and the arrows in Γ2 the 2-arrows. To distinguish these two
types of arrows, we usually draw dotted arrows for the 2-arrows. (Thus a biquiver
Γ is just an oriented graph with two types of arrows: The set of vertices is denoted
by Γ0, the “1-arrows” are denoted by Γ1 and the “2-arrows” by Γ2.)

Let M be a module category, which is closed under direct summands. Then the
Auslander-Reiten quiver ofM is a biquiver ΓM which is defined as follows: The
vertices are the isomorphism classes of indecomposable modules inM. For a module
V we often write [V ] for its isomorphism class. There is a 1-arrow [V ] → [W ] if
and only if there exists an irreducible homomorphism V → W inM, and there is a
2-arrow from [W ] to [U ] if and only if there exists an Auslander-Reiten sequence

0→ U → V → W → 0.

The Auslander-Reiten quiver is an important tool which helps to understand the
structure of a given module category.

Later we will modify the above definition of an Auslander-Reiten quiver and also
allow more than one arrow between two given vertices.

11.3. Properties of irreducible homomorphisms. We want to study irreducible
homomorphisms in a module categoryM in more detail.

For this we assume that M is closed under kernels of surjective homomorphisms,
that is for every surjective homomorphism g : V → W in M, the kernel Ker(g)
belongs toM. In particular, this implies the following: If g1 : V1 → W , g2 : V2 →W
are inM, and if at least one of these homomorphisms gi is surjective, then also the
pullback of (g1, g2) is inM.

Lemma 11.2 (Bottleneck Lemma). Let M be a module category which is closed
under kernels of surjective homomorphisms. Let

0→ U
f
−→ V

g
−→W → 0

be a short exact sequence inM, and assume that f is irreducible inM. If g′ : V ′ →
W is any homomorphism, then there exists a homomorphism b1 : V ′ → V with
gb1 = g′, or there exists a homomorphism b2 : V → V ′ with g′b2 = g.

V ′

g′

��

b1

~~}
}

}
}

0 // U
f // V

g // W // 0

or V ′

g′

��
0 // U

f // V
g //

b2
>>}

}
}

}

W // 0
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The name “bottleneck” is motivated by the following: Any homomorphism with
target W either factors through g or g factors through it. So everything has to pass
through the “bottleneck” g.

Proof. The induced sequence (g′)∗(f, g) looks as follows:

0 // U
f1 // P

f2
��

g1 // V ′

g′

��

// 0

0 // U
f // V

g // W // 0

The module P is the pullback of (g, g′), thus P belongs to M. We obtain a factor-
ization f = f2f1 inM. By our assumption, f is irreducible inM, thus f1 is a split
monomorphism or f2 is a split epimorphism. In the second case, there exists some
f ′

2 : V → P such that f2f
′
2 = 1V . Therefore for b2 := g1f

′
2 we get

g′b2 = g′g1f
′
2 = gf2f

′
2 = g1V = g.

On the other hand, if f1 is a split monomorphism, then the short exact sequence
(f1, g1) splits, and it follows that g1 is a split epimorphism. We obtain a homomor-
phism g′1 : V ′ → P with g1g

′
1 = 1V ′. For b1 := f2g

′
1 we get

gb1 = gf2g
′
1 = g′g1g

′
1 = g′1V ′ = g′.

�

Corollary 11.3. Let M be a module category which is closed under kernels of
surjective homomorphisms. If

0→ U
f
−→ V

g
−→W → 0

is a short exact sequence inM with f irreducible inM, then W is indecomposable.

End of Lecture 12

Proof. Let W = W1 ⊕W2, and let ιi : Wi → W be the inclusions. We assume that
W1 6= 0 6= W2. Thus none of these two inclusions is surjective. By the Bottleneck
Lemma, there exist homomorphisms ci : Wi → V with gci = ιi. (If there were
homomorphisms c′i : V → Wi with ιic

′
i = g, then g and therefore also ιi would be

surjective, a contradiction.)

Let C = Im(c1) + Im(c2) ⊆ V . We have Im(f) ∩ C = 0: If f(u) = c1(w1) + c2(w2)
for some u ∈ U and wi ∈Wi, then

0 = gf(u) = gc1(w1) + gc2(w2) = ι1(w1) + ι2(w2)

and therefore w1 = 0 = w2.

On the other hand, we have Im(f) + C = V : If v ∈ V , then g(v) = ι1(w
′
1) + ι2(w

′
2)

for some w′
i ∈ Wi. This implies g(v) = gc1(w

′
1) + gc2(w

′
2), thus v − c1(w′

1)− c2(w
′
2)

belongs to Ker(g) and therefore to Im(f). If we write this element in the form f(u′)
for some u′ ∈ U , then v = f(u′) + c1(w

′
1) + c2(w

′
2).
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Altogether, we see that Im(f) is a direct summand of V , a contradiction since we
assumed f to be irreducible. �

Corollary 11.4. Let M be a module category which is closed under kernels of
surjective homomorphisms. If

0→ U1
f1−→ V1

g1−→W → 0

0→ U2
f2−→ V2

g2−→W → 0

are two Auslander-Reiten sequences inM, then there exists a commutative diagram

0 // U1

a

��

f1 // V1

b
��

g1 // W // 0

0 // U2
f2 // V2

g2 // W // 0

with a and b isomorphisms.

Proof. Since f1 is irreducible, there exists a homomorphism b : V1 → V2 with g1 = g2b
or a homomorphism b′ : V2 → V1 with g2 = g1b

′. For reasons of symmetry, it
is enough to consider only one of these cases. Let us assume that there exists
b : V1 → V2 with g1 = g2b. This implies the existence of a homomorphism a : U1 → U2

with bf1 = f2a. (Since g2bf1 = 0, we can factorize bf1 through the kernel of g2.)
Thus we constructed already a commutative diagram as in the statement of the
corollary.

It remains to show that a and b are isomorphisms: Since g1 is irreducible, and
since g2 is not a split epimorphism, the equality g1 = g2b implies that b is a split
monomorphism. Thus there is some b′ : V2 → V1 with b′b = 1V1. We have b′f2a =
b′bf1 = f1, and since f1 is irreducible, a is a split monomorphism or b′f2 is a split
epimorphism. Assume b′f2 : U2 → V1 is a split epimorphism. We know that U2 is
indecomposable and that V1 6= 0, thus b′f2 has to be an isomorphism. This implies
that f2 is a split monomorphism, a contradiction. So we conclude that a : U2 → U1

is a split monomorphism. Now U2 is indecomposable and U1 6= 0, thus a is an
isomorphism. This implies that b also has to be an isomorphism. �

Corollary 11.5. LetM be a module category which is closed under direct summands
and under kernels of surjective homomorphisms. Let

0→ U
f
−→ V

g
−→W → 0

be an Auslander-Reiten sequence in M. If Y is a module in M which can be writ-
ten as a finite direct sum of indecomposable modules, and if h : Y → W is a ho-
momorphism which is not a split epimorphism, then there exists a homomorphism
h′ : Y → V with gh′ = h.

Proof. We first assume that Y is indecomposable. By the Bottleneck Lemma, instead
of h′ there could exist a homomorphism g′ : V → Y with g = hg′. But g is irreducible
and h is not a split epimorphism. Thus g′ must be a split monomorphism. Since
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Y is indecomposable and V 6= 0, this implies that g′ is an isomorphism. Thus
h = g(g′)−1.

Now let Y =
⊕t

i=1 Yi with Yi indecomposable for all i. As usual let ιs : Ys →⊕t
i=1 Yi be the inclusion homomorphisms. Set hi = hιi. By our assumptions, h is

not a split epimorphism, thus the same is true for hi. Thus we know that there
are homomorphisms h′i : Yi → V with gh′i = hi. Then h′ = [h′1, . . . , h

′
t] satisfies

gh′ = h. �

Now we prove the converse of the Bottleneck Lemma (but note the different assump-
tion onM):

Lemma 11.6 (Converse Bottleneck Lemma). LetM be a module category which is
closed under cokernels of injective homomorphisms. Let

0→ U
f
−→ V

g
−→W → 0

be a non-split short exact sequence in M such that the following hold: For every
homomorphism g′ : V ′ → W in M there exists a homomorphism b1 : V ′ → V with
gb1 = g′, or there exists a homomorphism b2 : V → V ′ with g′b2 = g. Then it follows
that f is irreducible in M.

End of Lecture 13

Proof. Let f = f2f1 be a factorization of f inM. Thus f1 : U → V ′ for some V ′ in
M. The injectivity of f implies that f1 is injective as well. Let g1 : V ′ →W ′ be the
cokernel map of f1. By assumption W ′ belongs toM. Since gf2f1 = gf = 0, we can
factorize gf2 through g1. Thus we obtain g′ : W ′ → W with g′g1 = gf2. Altogether
we constructed the following commutative diagram:

0 // U
f // V

g // W // 0

0 // U
f1 // V ′

f2

OO

g1 // W ′

g′

OO

// 0

It follows that the pair (f2, g1) is the pullback of (g, g′). Our assumption implies that
for g′ there exists a homomorphism b1 : W ′ → V with gb1 = g′ or a homomorphism
b2 : V →W ′ with g′b2 = g.

If b1 exists with gb1 = g′ = g′1W ′, then the pullback property yields a homomorphism
h : W ′ → V ′ with b1 = f2h and 1W ′ = g1h. In particular we see that g1 is a split
epimorphism, and therefore f1 is a split monomorphism.

V
g

!!C
CC

CC
CC

C

W ′ h //______

b1

44iiiiiiiiiiiiiiiiiiiiii

1W ′

**TTTTTTTTTTTTTTTTTTTTT V ′

f2

=={{{{{{{{

g1

!!C
CC

CC
CC

C W

W ′

g′

=={{{{{{{{
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In the second case, if b2 exists with g1V = g = g′b2, we obtain a homomorphism
h′ : V → V ′ with 1V = f2h

′ and b2 = g1h
′. Thus f2 is a split epimorphism.

V
g

!!C
CC

CC
CC

C

V
h′ //______

1V

44jjjjjjjjjjjjjjjjjjjjjj

b2
**TTTTTTTTTTTTTTTTTTTTT V ′

f2

=={{{{{{{{

g1

!!C
CC

CC
CC

C W

W ′

g′

=={{{{{{{{

�

11.4. Dual statements. Let us formulate the corresponding dual statements:

Lemma 11.7 (Bottleneck Lemma). Let M be a module category which is closed
under cokernels of injective homomorphisms. Let

0→ U
f
−→ V

g
−→W → 0

be a short exact sequence inM, and assume that g is irreducible inM. If f ′ : U →
V ′ is any homomorphism, then there exists a homomorphism a1 : V → V ′ with
a1f = f ′, or there exists a homomorphism a2 : V ′ → V with a2f

′ = f .

0 // U
f //

f ′

��

V
g //

a1~~}
}

}
}

W // 0

V ′

or 0 // U
f //

f ′

��

V
g // W // 0

V ′

a2

>>}
}

}
}

Corollary 11.8. Let M be a module category which is closed under cokernels of
injective homomorphisms. If

0→ U
f
−→ V

g
−→W → 0

is a short exact sequence inM, and if g is irreducible inM, then U is indecompos-
able.

Corollary 11.9. Let M be a module category which is closed under cokernels of
injective homomorphisms. If

0→ U
f1
−→ V1

g1
−→ W1 → 0

0→ U
f2
−→ V2

g2
−→ W2 → 0

are two Auslander-Reiten sequences inM, then there exists a commutative diagram

0 // U
f1 // V1

g1 // W1
// 0

0 // U
f2 // V2

g2 //

b

OO

W2
//

c

OO

0

with b and c isomorphisms.
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Corollary 11.10. Let M be a module category which is closed under direct sum-
mands and under cokernels of injective homomorphisms. Let

0→ U
f
−→ V

g
−→W → 0

be an Auslander-Reiten sequence in M. If X is a module in M which can be
written as a finite direct sum of indecomposable modules, and if h : U → X is a ho-
momorphism which is not a split monomorphism, then there exists a homomorphism
h′ : V → X with h′f = h.

Lemma 11.11 (Converse Bottleneck Lemma). Let M be a module category which
is closed under kernels of surjective homomorphisms. Let

0→ U
f
−→ V

g
−→W → 0

be a non-split short exact sequence in M such that the following hold: For every
homomorphism f ′ : U → V ′ in M there exists a homomorphism a1 : V → V ′ with
a1f = f ′, or there exists a homomorphism a2 : V ′ → V with a2f

′ = f . Then it
follows that g is irreducible in M.

The proofs of these dual statements are an exercise.

11.5. Examples: Irreducible maps in N f.d.. In this section let

M := N f.d.

be the module category of all 1-modules (V, φ) with V finite-dimensional and φ
nilpotent.

Recall that we denoted the indecomposable modules in M by N(n) where n ≥ 1.
Let us also fix basis vectors e1, . . . , en of N(n) = (V, φ) such that φ(ei) = ei−1 for
2 ≤ i ≤ n and φ(e1) = 0.

By
ιn : N(n)→ N(n + 1)

we denote the canonical inclusion (defined by ιn(en) = en), and let

πn+1 : N(n+ 1)→ N(n)

be the canonical projection (defined by πn+1(en+1) = en). For n > t let

πn,t := πt+1 ◦ · · · ◦ πn+1 ◦ πn : N(n)→ N(t),

and for t < m set

ιt,m := ιm−1 ◦ · · · ◦ ιt+1 ◦ ιt : N(t)→ N(m).

Finally, let πn,n = ιn,n = 1N(n).

Lemma 11.12. For m,n ≥ 1 the following hold:

(i) Every injective homomorphism N(n)→ N(n+ 1) is irreducible (in M);
(ii) Every surjective homomorphism N(n+ 1)→ N(n) is irreducible (in M).
(iii) If f : N(n) → N(m) is irreducible (in M), then either m = n + 1 or n =

m+ 1, and f is either injective or surjective.
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Proof. Let h : N(n)→ N(n+1) be an injective homomorphism. Clearly, h is neither
a split monomorphism nor a split epimorphism. Let h = gf where f : N(n)→ N(λ)
and g : N(λ) → N(n + 1) are homomorphisms with λ = (λ1, . . . , λt) a partition.
(Recall that the isomorphism classes of objects inM are parametrized by partitions
of natural numbers.) Thus

f = t[f1, . . . , ft] : N(n)→
t⊕

i=1

N(λi)

and

g = [g1, . . . , gt] :
t⊕

i=1

N(λi)→ N(n+ 1)

with fi : N(n)→ N(λi) and gi : N(λi)→ N(n + 1) homomorphisms and

h = gf =
t∑

i=1

gifi.

Since h is injective, we have h(e1) 6= 0. Thus there exists some i with gifi(e1) 6= 0.
This implies that gifi is injective, and therefore fi is injective.

If λi > n + 1, then gi(e1) = 0, a contradiction. (Note that gifi(e1) 6= 0 implies
gi(e1) 6= 0).) Thus λi is either n or n + 1. If λi = n, then fi is an isomorphism, if
λi = n+ 1, then gi is an isomorphism. In the first case, set

f ′ = [0, . . . , 0, f−1
i , 0, . . . , 0] : N(λ)→ N(n).

We get f ′f = 1N(n), thus f is a split monomorphism.

In the second case, set

g′ = t[0, . . . , 0, g−1
i , 0, . . . , 0] : N(n + 1)→ N(λ).

It follows that gg′ = 1N(n+1), so g is a split epimorphism. This proves part (i). Part
(ii) is proved similarly.

Next, let f : N(n) → N(m) be an irreducible homomorphism. We proved already
before that every irreducible homomorphism has to be either injective or surjective.
If m ≥ n+ 2, then f factors through N(n+ 1) as f = f2f1 where f1 is injective but
not split, and f2 is not surjective, a contradiction. Similarly, if m ≤ n − 2, then f
factors through N(n − 1) as f = f2f1 where f1 is not injective, and f2 is surjective
but not split, again a contradiction. This proves (iii). �

Lemma 11.13. For m,n ≥ 1 the following hold:

• Every non-invertible homomorphism N(n) → N(m) in M is a linear com-
bination of compositions of irreducible homomorphisms;
• Every endomorphism N(n) → N(n) in M is a linear combination of 1N(n)

and of compositions of irreducible homomorphisms.
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Proof. Let f : N(n)→ N(m) be a homomorphism with

f(en) =
t∑

i=1

aiei

with at 6= 0. It follows that n ≥ t and m ≥ t, and dim Im(f) = t. Let

g = ιt,m ◦ πn,t : N(n)→ N(m).

Now it is easy to check that

dim Im(f − atg) ≤ t− 1.

We see that f − atg is not an isomorphism, thus by induction assumption it is a
linear combination of compositions of irreducible homomorphisms inM. Also, g is
either 1N(n) (in case n = m) or it is a composition of irreducible homomorphisms.
Thus f = atg + (f − atg) is of the required form. �

Thus we determined all irreducible homomorphisms between indecomposable mod-
ules inM. So we know how the 1-arrows of the Auslander-Reiten quiver ofM look
like. We still have to determine the Auslander-Reiten sequences in M in order to
get the 2-arrows as well.

11.6. Exercises. Use the Converse Bottleneck Lemma to show that for n ≥ 1 the
short exact sequence

0→ N(n)
[ ιnπn ]
−−−→ N(n+ 1)⊕N(n− 1)

[πn+1,−ιn−1]
−−−−−−−→ N(n)→ 0

is an Auslander-Reiten sequence in N f.d.. (We set N(0) = 0.)

***********************************************************************
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Part 3. Modules of finite length

This part is completely independent of Part 2, one only needs the terminology and
the results from Part 1.

12. Filtrations of modules

12.1. Schreier’s Theorem. Let V be a module and let U0, . . . , Us be submodules
of V such that

0 = U0 ⊆ U1 ⊆ · · · ⊆ Us = V.

This is called a filtration of V with factors Ui/Ui−1. The length of this filtration
is

|{1 ≤ i ≤ s | Ui/Ui−1 6= 0}|.

A filtration
0 = U ′

0 ⊆ U ′
1 ⊆ · · · ⊆ U ′

t = V

is a refinement of the filtration above if

{Ui | 0 ≤ i ≤ s} ⊆ {U ′
j | 0 ≤ j ≤ t}.

Two filtrations U0 ⊆ U1 ⊆ · · · ⊆ Us and V0 ⊆ V1 ⊆ · · · ⊆ Vt of V are called
isomorphic if s = t and there exists a bijection π : [0, s]→ [0, t] (where for integers
i and j we write [i, j] = {k ∈ Z | i ≤ k ≤ j}) such that

Ui/Ui−1
∼= Vπ(i)/Vπ(i)−1

for 1 ≤ i ≤ s.

Theorem 12.1 (Schreier). Any two given filtrations of a module V have isomorphic
refinements.

End of Lecture 14

Before we prove this theorem, we need the following lemma:

Lemma 12.2 (Butterfly Lemma). Let U1 ⊆ U2 and V1 ⊆ V2 be submodules of a
module V . Then we have

(U1 + V2 ∩ U2)/(U1 + V1 ∩ U2) ∼= (U2 ∩ V2)/((U1 ∩ V2) + (U2 ∩ V1))
∼= (V1 + U2 ∩ V2)/(V1 + U1 ∩ V2).

The name “butterfly” comes from the picture

U1 + V2 ∩ U2

TTTTTTTTTTTTTTT
V1 + U2 ∩ V2

jjjjjjjjjjjjjjj

U1 + V1 ∩ U2

TTTTTTTTTTTTTTT
U2 ∩ V2 V1 + U1 ∩ V2

kkkkkkkkkkkkkkk

(U1 ∩ V2) + (U2 ∩ V1)
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which occurs as the part marked with ⋆ of the picture
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Note that V1 + U2 ∩ V2 = (V1 + U2) ∩ V2 = V1 + (U2 ∩ V2), since V1 ⊆ V2. But we
have (V2 +U2)∩ V1 = V1 and V2 + (U2 ∩ V1) = V2. Thus the expression V2 +U2 ∩ V1

would not make any sense.

Proof of Lemma 12.2. Note that U1 ∩ V2 ⊆ U2 ∩ V2. Recall that for submodules U
and U ′ of a module V we always have

U/(U ∩ U ′) ∼= (U + U ′)/U ′.

U + U ′
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Since U1 ⊆ U2 and V1 ⊆ V2 we get

(U1 + V1 ∩ U2) + (U2 ∩ V2) = U1 + (V1 ∩ U2) + (U2 ∩ V2)

= U1 + (U2 ∩ V2)

= U1 + V2 ∩ U2

and

(U1 + V1 ∩ U2) ∩ (U2 ∩ V2) = (U1 + V1) ∩ U2 ∩ (U2 ∩ V2)

= (U1 + V1 ∩ U2) ∩ V2

= ((V1 ∩ U2) + U1) ∩ V2

= (V1 ∩ U2) + (U1 ∩ V2).

The result follows. �

Proof of Theorem 12.1. Assume we have two filtrations

0 = U0 ⊆ U1 ⊆ · · · ⊆ Us = V

and

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vt = V

of a module V . For 1 ≤ i ≤ s and 0 ≤ j ≤ t define

Uij = Ui−1 + Vj ∩ Ui.

Thus we obtain

0 = U10 ⊆ U11 ⊆ · · · ⊆ U1t = U1

U1 = U20 ⊆ U21 ⊆ · · · ⊆ U2t = U2

...
...

Us−1 = Us0 ⊆ Us1 ⊆ · · · ⊆ Ust = Us = V.

Similarly, set

Vji = Vj−1 + Ui ∩ Vj.

This yields

0 = V10 ⊆ V11 ⊆ · · · ⊆ V1s = V1

V1 = V20 ⊆ V21 ⊆ · · · ⊆ V2s = V2

...
...

Vt−1 = Vt0 ⊆ Vt1 ⊆ · · · ⊆ Vts = Vt = V.

For 1 ≤ i ≤ s and 1 ≤ j ≤ t define

Fij = Uij/Ui,j−1 and Gji = Vji/Vj,i−1.

The filtration (Uij)ij is a refinement of the filtration (Ui)i and its factors are the
modules Fij . Similarly, the filtration (Vji)ji is a refinement of (Vj)j and has factors
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Gji. Now the Butterfly Lemma 12.2 implies Fij ∼= Gji, namely

Fij = Uij/Ui,j−1

= (Ui−1 + Vj ∩ Ui)/(Ui−1 + Vj−1 ∩ Ui)
∼= (Vj−1 + Ui ∩ Vj)/(Vj−1 + Ui−1 ∩ Vj)

= Gji.

This finishes the proof. �

A filtration

0 = U0 ⊆ U1 ⊆ · · · ⊆ Us = V.

of a module V with all factors Ui/Ui−1 (1 ≤ i ≤ s) being simple is called a com-
position series of V . In this case we call s (i.e. the number of simple factors) the
length of the composition series. We call the Ui/Ui−1 the composition factors of
V .

12.2. The Jordan-Hölder Theorem. As an important corollary of Theorem 12.1
we obtain the following:

Corollary 12.3 (Jordan-Hölder Theorem). Assume that a module V has a compo-
sition series of length l. Then the following hold:

• Any filtration of V has length at most l and can be refined to a composition
series;

• All composition series of V have length l.

Proof. Let

0 = U0 ⊂ U1 ⊂ · · · ⊂ Ul = V

be a composition series, and let

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vt = V

be a filtration. By Schreier’s Theorem 12.1 there exist isomorphic refinements of
these filtrations. Let Fi = Ui/Ui−1 be the factors of the filtration (Ui)i. Thus Fi is
simple. If (U ′

i)i is a refinement of (Ui)i, then its factors are F1, . . . , Fl together with
some 0-modules. The corresponding refinement of (Vj)j has exactly l+1 submodules.
Thus (Vj)j has at most l different non-zero factors. In particular, if (Vj)j is already
a composition series, then t = l. �

If V has a composition series of length l, then we say V has length l, and we write
l(V ) = l. Otherwise, V has infinite length and we write l(V ) =∞.

Assume l(V ) < ∞ and let S be a simple module. Then [V : S] is the number
of composition factors in a (and thus in all) composition series of V which are
isomorphic to S. One calls [V : S] the Jordan-Hölder multiplicity of S in V .
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Let l(V ) < ∞. Then ([V : S])S∈S is called the dimension vector of V , where S
is a complete set of representatives of isomorphism classes of the simple modules.
Note that only finitely many entries of the dimension vector are non-zero. We get

∑

S∈S

[V : S] = l(V ).

Example: If J = ∅, then a J-module is just given by a vector space V . In this
case l(V ) = dimV if V is finite-dimensional. It also follows that V is simple if and
only if dim V = 1. If V is infinite-dimensional, then dim V is a cardinality and we
usually write l(V ) =∞.

For modules of finite length, the Jordan-Hölder multiplicities and the length are
important invariants.

12.3. Exercises. 1: Let V be a module of finite length, and let V1, . . . , Vt be sub-
modules of V . Show: If

l

(
t∑

i=1

Vi

)
= l(V ),

then V =
⊕t

i=1 Vi.

2: Let V1 and V2 be modules, and let S be a factor of a filtration of V1 ⊕ V2. Show:
If S is simple, then there exists a filtration of V1 or of V2 which contains a factor
isomorphic to S.

3: Construct indecomposable modules V1 and V2 with l(V1) = l(V2) = 2, and a
filtration of V1 ⊕ V2 containing a factor T of length 2 such that T is not isomorphic
to V1 or V2.

4: Determine all composition series of the 2-module V = (K5, φ, ψ) where

φ =





c0
c0

c1
c2

c3




and ψ =





0 0 1 0 1
0 0 1 1

0
0

0





with pairwise different elements c0, c1, c2, c3 in K.

————————————————————————————-

13. Digression: Local rings

We need some basic notations from ring theory. This might seem a bit boring but
will be of great use later on.
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13.1. Local rings. Let R be a ring. Then r ∈ R is right-invertible if there exists
some r′ ∈ R such that rr′ = 1, and r is left-invertible if there exists some r′′ ∈ R
such that r′′r = 1. We call r′ a right inverse and r′′ a left inverse of r. If r is
both right- and left-invertible, then r is invertible.

Example: Let V be a vector space with basis {ei | i ≥ 1}. Define a linear map
f : V → V by f(ei) = ei+1 for all i, and a linear map g : V → V by g(e1) = 0 and
g(ei) = ei−1 for all i ≥ 2. Then we have gf = 1V , thus f is left-invertible and g is
right-invertible. Note also that fg 6= 1V , since for example fg(e1) = 0.

Lemma 13.1. If r′ is a right inverse and r′′ a left inverse of an element r, then
r′ = r′′. In particular, there is only one right inverse and only one left inverse.

Proof. We have r′ = 1r′ = r′′rr′ = r′′1 = r′′. �

Lemma 13.2. Assume that r is right-invertible. Then the following are equivalent:

• r is left-invertible;
• There exists only one right inverse of r.

Proof. Assume that r is right-invertible, but not left-invertible. Then rr′ = 1 and
r′r 6= 1 for some r′. This implies

r(r′ + r′r − 1) = rr′ + rr′r − r = 1.

But r′ + r′r − 1 6= r′. �

An element r in a ring R is nilpotent if rn = 0 for some n ≥ 1.

Lemma 13.3. Let r be a nilpotent element in a ring R, then 1− r is invertible.

Proof. We have (1− r)(1+ r+ r2 + r3 + · · · ) = 1. (Note that this sum is finite, since
r is nilpotent.) One also easily checks that (1 + r + r2 + r3 + · · · )(1− r) = 1. Thus
(1− r) is right-invertible and left-invertible and therefore invertible. �

A ring R is local if the following hold:

• 1 6= 0;
• If r ∈ R, then r or 1− r is invertible.

(Recall that the only ring with 1 = 0 is the 0-ring, which contains just one element.
Note that we do not exclude that for some elements r ∈ R both r and 1 − r are
invertible.)

Local rings occur in many different contexts. For example, they are important in
Algebraic Geometry: One studies the local ring associated to a point x of a curve
(or more generally of a variety or a scheme) and hopes to get a “local description”,
i.e. a description of the curve in a small neighbourhood of the point x.
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Examples: K[T ] is not local (T is not invertible, and 1− T is also not invertible),
Z is not local, every field is a local ring.

Let U be an additive subgroup of a ring R. Then U is a right ideal of R if for all
u ∈ U and all r ∈ R we have ur ∈ U , and U is a left ideal if for all u ∈ U and all
r ∈ R we have ru ∈ U . One calls U an ideal if it is a right and a left ideal.

If I and J are ideals of a ring R, then the product IJ is the additive subgroup of
R generated by all (finite) sums of the form

∑
s isjs where is ∈ I and js ∈ J . It

is easy to check that IJ is again an ideal. For n ≥ 0, define I0 = R, I1 = I and
In+2 = I(In+1) = (In+1)I.

End of Lecture 15

A left ideal U is a maximal left ideal if it is maximal in the set of all proper left
ideals, i.e. if U ⊂ R and for every left ideal U ′ with U ⊆ U ′ ⊂ R we have U = U ′.
Similarly, define a maximal right ideal.

Recall that an element e ∈ R is an idempotent if e2 = e.

Lemma 13.4. Let e ∈ R be an idempotent. If e is left-invertible or right-invertible,
then e = 1

Proof. If e is left-invertible, then re = 1 for some r ∈ R. Also e = 1e = (re)e =
re = 1. The other case is done similarly. �

Lemma 13.5. Assume that R is a ring which has only 0 and 1 as idempotents.
Then all left-invertible and all right-invertible elements are invertible.

Proof. Let r be left-invertible, say r′r = 1. Then rr′ is an idempotent, which by
our assumption is either 0 or 1. If rr′ = 1, then r is right-invertible and therefore
invertible. If rr′ = 0, then 1 = r′r = r′rr′r = 0, thus R = 0. The only element
0 = 1 in R = 0 is invertible. The other case is done similarly. �

Proposition 13.6. The following properties of a ring R are equivalent:

(i) We have 0 6= 1, and if r ∈ R, then r or 1− r is invertible (i.e. R is a local
ring);

(ii) There exist non-invertible elements in R, and the set of these elements is
closed under +;

(iii) The set of non-invertible elements in R form an ideal;
(iv) R contains a proper left ideal, which contains all proper left ideals;
(v) R contains a proper right ideal which contains all proper right ideals.

Remark: Property (iv) implies that R contains exactly one maximal left ideal. Using
the Axiom of Choice, the converse is also true.
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Proof. We first show that under the assumptions (i), (ii) and (iv) the elements 0
and 1 are the only idempotents in R, and therefore every left-invertible element and
every right-invertible element will be invertible.

Let e ∈ R be an idempotent. Then 1−e is also an idempotent. It is enough to show
that e or 1−e are invertible: If e is invertible, then e = 1. If 1−e is invertible, then
1− e = 1 and therefore e = 0.

Under (i) we assume that either e or 1 − e are invertible, and we are done. Also
under (ii) we know that e or 1−e is invertible: If e and 1−e are both non-invertible,
then 1 = e + (1− e) is non-invertible, a contradiction. Finally, assume that under
(iv) we have a proper left ideal I containing all proper left ideals, and assume that
e and 1 − e are both non-invertible. We claim that both elements and therefore
also their sum have to belong to I, a contradiction, since 1 cannot be in I. Why
does e ∈ I hold? Since e is non-invertible, we know that e is not left-invertible.
Therefore Re is a proper left ideal, which must be contained in I. Since 1− e is also
non-invertible, we know that 1− e ∈ I.

(i) =⇒ (ii): 0 6= 1 implies that 0 is not invertible. Assume r1, r2 are not invertible.
Assume also that r1 + r2 is invertible. Thus x(r1 + r2) = 1 for some x ∈ R. We get
xr1 = 1 − xr2. Now (i) implies that xr2 or 1 − xr2 is invertible. Without loss of
generality let xr1 be invertible. Thus there exists some y such that 1 = yxr1. This
implies that r1 is left-invertible and therefore invertible, a contradiction.

(ii) =⇒ (i): The existence of non-invertible elements implies R 6= 0, and therefore
we have 0 6= 1. Let r ∈ R. If r and 1− r are non-invertible, then by (ii) we get that
1 = r + (1− r) is non-invertible, a contradiction.

(ii) =⇒ (iii): Let I be the set of non-invertible elements in R. Then by (ii) we
know that I is a subgroup of (R,+). Given x ∈ I and r ∈ R we have to show that
rx ∈ I and xr ∈ I. Assume rx is invertible. Then there is some y with yrx = 1,
thus x is left-invertible and therefore x is invertible, a contradiction. Thus rx ∈ I.
Similarly, we can show that xr ∈ I.

(iii) =⇒ (iv): Let I be the set of non-invertible elements in R. By (iii) we get
that I is an ideal and therefore a left ideal. Since 1 /∈ I we get I ⊂ R. Let U ⊂ R
be a proper left ideal. Claim: U ⊆ I. Let x ∈ U , and assume x /∈ I. Thus x is
invertible. So there is some y ∈ R such that yx = 1. Then for r ∈ R we have
r = r1 = (ry)x ∈ U . Thus R ⊆ U which implies U = R, a contradiction. Similarly
we prove (iii) =⇒ (v).

(iv) =⇒ (i): Let I ′ be a proper left ideal of R that contains all proper left ideals.
We show that all elements in R \ I ′ are invertible: Let r /∈ I ′. Then Rr is a left
ideal of R which is not contained in I ′, thus we get Rr = R. So there is some r′ ∈ R
such that r′r = 1, in other words, r is left-invertible and therefore invertible. Now
let r ∈ R be arbitrary. We claim that r or 1− r belong to R \ I ′: If both elements
belong to I ′, then so does 1 = r+ (1− r), a contradiction. Thus either r or 1− r is
invertible. Similarly we prove (v) =⇒ (i). �
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If R is a local ring, then

I := {r ∈ R | r non-invertible }

is called the radical (or Jacobson radical) of R.

Corollary 13.7. The Jacobson radical I of a local ring R is the only maximal left
ideal and also the only maximal right ideal of R. It contains all proper left and all
proper right ideals of R.

Proof. Part (iii) of the above proposition tells us that I is indeed an ideal in R.
Assume now I ⊂ I ′ ⊆ R with I ′ a left (resp. right) ideal. Take r ∈ I ′ \ I. Then r is
invertible. Thus there exists some r′ such that r′r = rr′ = 1. This implies I ′ = R.
So we proved that I ′ is a maximal left and also a maximal right ideal. Furthermore,
the proof of (iii) =⇒ (iv) in the above proposition shows that I contains all proper
left ideals, and similarly one shows that I contains all proper right ideals of R. �

If I is the Jacobson radical of a local ring R, then the radical factor ring R/I is
a ring without left ideals different from 0 and R/I. It is easy to check that R/I is
a skew field. (For r ∈ R/I with r 6= 0 and r ∈ R \ I there is some s ∈ R such that
sr = 1 = rs. In R/I we have s · r = sr = 1 = rs = r · s.)

Example: For c ∈ K set

R = {f/g | f, g ∈ K[T ], g(c) 6= 0},

m = {f/g ∈ R | f(c) = 0, g(c) 6= 0}.

Then m is an ideal in the ring R. In fact, m = (T − c)R: One inclusion is obtained
since

(T − c)
f

g
=

(T − c)f

g
,

and the other inclusion follows since f(c) = 0 implies f = (T−c)h for some h ∈ K[T ]
and therefore

f

g
= (T − c)

h

g
.

If r ∈ R \ m, then r = f/g with f(c) 6= 0 and g(c) 6= 0. Thus r−1 = g/f ∈ R is an
inverse of r.

If r = f/g ∈ m, then r is not invertible: For any f ′/g′ ∈ R, the product f/g ·f ′/g′ =
ff ′/gg′ always lies in m, since (ff ′)(c) = f(c)f ′(c) = 0 and thus it cannot be the
identity and therefore r is not invertible.

Thus we proved that R\m is exactly the set of invertible elements in R, and the set
m of non-invertible elements forms an ideal. So by the above theorem, R is a local
ring.
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13.2. Exercises. 1: A module V is called local if it contains a maximal submodule
U , which contains all proper submodules of V . Show: If V is local, then V con-
tains exactly one maximal submodule. Construct an example which shows that the
converse is not true.

2: Show: Every module of finite length is a sum of local submodules.

3: Let V be a module of length n. Show: V is semisimple if and only if V cannot
be written as a sum of n− 1 local submodules.

4: Let R = K[X, Y ] be the polynomial ring in two (commuting) variables. Show:

• R is not local;
• 0 and 1 are the only idempotents in R;
• The Jacobson radical of R is 0.

————————————————————————————-

14. Modules of finite length

14.1. Some length formulas for modules of finite length.

Lemma 14.1. Let U be a submodule of a module V and let W = V/U be the
corresponding factor module. Then V has finite length if and only if U and W have
finite length. In this case, we get

l(V ) = l(U) + l(W )

and for every simple module S we have

[V : S] = [U : S] + [W : S].

Proof. Assume that V has length n. Thus every chain of submodules of V has length
at most n. In particular this is true for all chains of submodules of U . This implies
l(U) ≤ n. The same holds for chains of submodules which all contain U . Such
chains correspond under the projection homomorphism V → V/U to the chains of
submodules of V/U = W . Thus we get l(W ) ≤ n. So if V has finite length, then so
do U and W .

Vice versa, assume that U and W = V/U have finite length. Let

0 = U0 ⊂ U1 ⊂ · · · ⊂ Us = U and 0 = W0 ⊂W1 ⊂ · · · ⊂Wt = W

be composition series of U and W , respectively. We can write Wj in the form
Wj = Vj/U for some submodule U ⊆ Vj ⊆ V . We obtain a chain

0 = U0 ⊂ U1 ⊂ · · · ⊂ Us = U = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V

of submodules of V such that

Vj/Vj−1
∼= Wj/Wj−1
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for all 1 ≤ j ≤ t. This chain is a composition series of V , since the factors Ui/Ui−1

with 1 ≤ i ≤ s, and the factors Vj/Vj−1 with 1 ≤ j ≤ t are simple. If S is simple,
then the number of composition factors of V which are isomorphic to S is equal
to the number of indices i with Ui/Ui−1

∼= S plus the number of indices j with
Vj/Vj−1

∼= S. In other words, [V : S] = [U : S] + [W : S]. �

Corollary 14.2. Let V be a module of finite length. If 0 = U0 ⊆ U1 ⊆ · · · ⊆ Ut = V
is a filtration of V , then

l(V ) =
t∑

i=1

l(Ui/Ui−1).

Corollary 14.3. Let U1 and U2 be modules of finite length. Then

l(U1 ⊕ U2) = l(U1) + l(U2).

Corollary 14.4. Let V be a module of finite length, and let U1 and U2 be submodules
of V . Then

l(U1) + l(U2) = l(U1 + U2) + l(U1 ∩ U2).

Proof. Set U ′ := U1 ∩ U2 and U ′′ := U1 + U2.

U ′′

||
||

||
||

BB
BB

BB
BB

U1

BB
BB

BB
BB

U2

||
||

||
||

U ′

Then

U ′′/U ′ ∼= (U1/U
′)⊕ (U2/U

′).

Thus

l(U1) = l(U ′) + l(U1/U
′),

l(U2) = l(U ′) + l(U2/U
′),

l(U ′′) = l(U ′) + l(U1/U
′) + l(U2/U

′).

This yields the result. �

Corollary 14.5. Let V and W be modules and let f : V →W be a homomorphism.
If V has finite length, then

l(V ) = l(Ker(f)) + l(Im(f)).

If W has finite length, then

l(W ) = l(Im(f)) + l(Cok(f)).

Proof. Use the isomorphisms V/Ker(f) ∼= Im(f) and W/ Im(f) ∼= Cok(f). �
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Recall that for every homomorphism f : V →W there are short exact sequences

0→ Ker(f)→ V → Im(f)→ 0

and

0→ Im(f)→W → Cok(f)→ 0.

Corollary 14.6. For every short exact sequence

0→ U → V →W → 0

of modules with l(V ) <∞, we have l(V ) = l(U) + l(W ).

Corollary 14.7. Let V be a module of finite length, and let f : V → V be an
endomorphism of V . Then the following statements are equivalent:

(i) f is injective;
(ii) f is surjective;
(iii) f is an isomorphism;
(iv) l(Im(f)) = l(V ).

End of Lecture 16

Lemma 14.8. If V is a module of finite length, then V is a finite direct sum of
indecomposable modules.

Proof. This is proved by induction on l(V ). The statement is trivial if V is inde-
composable. Otherwise, let V = V1 ⊕ V2 with V1 and V2 two non-zero submodules.
Then proceed by induction. �

Recall that in Section 6.2 we studied the radical rad(V ) of a module V . The following
lemma shows that V/ rad(V ) is well behaved if V is of finite length:

Lemma 14.9. Let V be a module of finite length. Then V/ rad(V ) is semisimple.

Proof. Assume that l(V/ rad(V )) = n. Inductively we look for maximal submodules
U1, . . . , Un of V such that for 1 ≤ t ≤ n and Vt :=

⋂t
i=1 Ui we have

V/Vt ∼=

t⊕

i=1

V/Ui

and l(V/Vt) = t. Note that V/Ui is simple for all i.

For t = 1 there is nothing to show. If U1, . . . , Ut are already constructed and if t < n,
then rad(V ) ⊂ Vt. Thus there exists a maximal submodule Ut+1 with Vt∩Ut+1 ⊂ Vt.
Since Vt 6⊆ Ut+1, we know that Ut+1 ⊂ Vt + Ut+1. The maximality of Ut+1 implies
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that Vt + Ut+1 = V . Set Vt+1 := Vt ∩ Ut+1.

V

{{
{{

{{
{{

FF
FF

FF
FF

F

Vt

BB
BB

BB
BB

Ut+1

xx
xx

xx
xx

Vt+1

Thus we obtain

V/Vt+1 = Vt/Vt+1 ⊕ Ut+1/Vt+1

∼= V/Ut+1 ⊕ V/Vt

∼= V/Ut+1 ⊕
t⊕

i=1

V/Ui.

The last of these isomorphisms comes from the induction assumption. �

14.2. The Fitting Lemma.

Lemma 14.10 (Fitting). Let V be a module of finite length, say l(V ) = n, and let
f ∈ End(V ). Then we have

V = Im(fn)⊕Ker(fn).

In particular, if V is indecomposable, then Im(fn) = 0 or Ker(fn) = 0.

Proof. We have

0 = Ker(f 0) ⊆ Ker(f 1) ⊆ Ker(f 2) ⊆ · · · .

(For x ∈ Ker(f i) we get f i(x) = 0 and therefore f i+1(x) = 0.)

Assume that Ker(f i−1) = Ker(f i) for some i. It follows that Ker(f i) = Ker(f i+1).
(Assume f i+1(x) = 0. Then f i(f(x)) = 0 and therefore f(x) ∈ Ker(f i) = Ker(f i−1).
This implies f i(x) = f i−1(f(x)) = 0. Thus Ker(f i+1) ⊆ Ker(f i).)

If

0 = Ker(f 0) ⊂ Ker(f 1) ⊂ · · · ⊂ Ker(f i),

then l(Ker(f i)) ≥ i. This implies i ≤ n, and therefore Ker(fm) = Ker(fn) for all
m ≥ n.

We have

· · · ⊆ Im(f 2) ⊆ Im(f) ⊆ Im(f 0) = V.

(For x ∈ Im(f i) we get x = f i(y) = f i−1(f(y)) for some y ∈ V . Thus x ∈ Im(f i−1).)

Assume that Im(f i−1) = Im(f i). Then Im(f i) = Im(f i+1). (For every y ∈ V
there exists some z with f i−1(y) = f i(z). This implies f i(y) = f i+1(z). Thus
Im(f i) ⊆ Im(f i+1).)
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If
Im(f i) ⊂ · · · ⊂ Im(f 1) ⊂ Im(f 0) = V,

then l(Im(f i)) ≤ n− i, which implies i ≤ n. Thus Im(fm) = Im(fn) for all m ≥ n.

So we proved that

Ker(fn) = Ker(f 2n) and Im(fn) = Im(f 2n).

We claim that Im(fn)∩Ker(fn) = 0: Let x ∈ Im(fn)∩Ker(fn). Then x = fn(y) for
some y and also fn(x) = 0, which implies f 2n(y) = 0. Thus we get y ∈ Ker(f 2n) =
Ker(fn) and x = fn(y) = 0.

Next, we show that Im(fn) + Ker(fn) = V : Let v ∈ V . Then there is some w with
fn(v) = f 2n(w). This is equivalent to fn(v−fn(w)) = 0. Thus v−fn(w) ∈ Ker(fn).
Now v = fn(w) + (v − fn(w)). This finishes the proof. �

Corollary 14.11. Let V be an indecomposable module of finite length n, and let
f ∈ End(V ). Then either f is an isomorphism, or f is nilpotent (i.e. fn = 0).

Proof. If Im(fn) = 0, then fn = 0, in particular f is nilpotent. Now assume that
Ker(fn) = 0. Then fn is injective, which implies that f is injective (f(x) = 0 =⇒
fn(x) = 0 =⇒ x = 0). Thus f is an isomorphism. �

Combining the above with Lemma 13.3 we obtain the following important result:

Corollary 14.12. Let V be an indecomposable module of finite length. Then End(V )
is a local ring.

Let V be a module, and let R = End(V ) be the endomorphism ring of V . Assume
that V = V1 ⊕ V2 be a direct decomposition of V . Then the map e : V → V defined
by e(v1, v2) = (v1, 0) is an idempotent in End(V ). Now e = 1 if and only if V2 = 0,
and e = 0 if and only if V1 = 0.

It follows that the endomorphism ring of any decomposable module contains idem-
potent which are not 0 or 1.

Example: The 1-module V = (K[T ], T ·) is indecomposable, but its endomorphism
ring End(V ) ∼= K[T ] is not local.

Lemma 14.13. Let V be a module. If End(V ) is a local ring, then V is indecom-
posable.

Proof. If a ring R is local, then its only idempotents are 0 and 1. Then the result
follows from the discussion above. �

14.3. The Harada-Sai Lemma.

Lemma 14.14 (Harada-Sai). Let Vi be indecomposable modules of length at most n
where 1 ≤ i ≤ m = 2n, and let fi : Vi → Vi+1 where 1 ≤ i < m be homomorphisms.
If fm−1 · · · f2f1 6= 0, then at least one of the homomorphisms fi is an isomorphism.
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Proof. We show this by induction on a: Let a ≤ n. Let Vi, 1 ≤ i ≤ m = 2a be
modules of length at most n, and fi : Vi → Vi+1, 1 ≤ i < m homomorphisms. If

l(Im(fm−1 · · · f2f1)) > n− a,

then at least one of the homomorphisms is an isomorphism.

If a = 1, then there is just one homomorphism, namely f1 : V1 → V2. If l(Im(f1)) >
n− 1, then f1 is an isomorphism. Remember that by our assumption both modules
V1 and V2 have length at most n.

Assume the statement holds for a < n. Define m = 2a. Let Vi be indecomposable
modules with 1 ≤ i ≤ 2m, and for 1 ≤ i < 2m let fi : Vi → Vi+1 be homomorphisms.
Let f = fm−1 · · · f1, g = fm and h = f2m−1 · · · fm+1. Thus

V1
f
−→ Vm

g
−→ Vm+1

h
−→ V2m.

Assume l(Im(hgf)) > n − (a + 1). We can assume that l(Im(f)) ≤ n − a and
l(Im(h)) ≤ n− a, otherwise we know by induction that one of the homomorphisms
fi is an isomorphism.

Since
l(Im(f)) ≥ l(Im(gf)) ≥ l(Im(hgf)) > n− (a + 1)

and
l(Im(h)) ≥ l(Im(hgf)),

it follows that l(Im(f)) = n− a = l(Im(h)) and therefore l(Im(hgf)) = n− a.

Since Im(f) and Im(hgf) have the same length, we get Im(f) ∩Ker(hg) = 0. Now
Im(f) has length n − a, and Ker(hg) has length l(Vm) − l(Im(hg)). This implies
l(Im(hg)) = n− a, because

l(Im(hgf)) ≤ l(Im(hg)) ≤ l(Im(h)).

So we see that Im(f) + Ker(hg) = Vm. In this way, we obtained a direct decompo-
sition

Vm = Im(f)⊕Ker(hg).

But Vm is indecomposable, and Im(f) 6= 0. It follows that Ker(hg) = 0. In other
words, hg is injective, and so g is injective.

In a similar way, we can show that g is also surjective: Namely

Vm+1 = Im(gf)⊕Ker(h) :

Since Im(gf) and Im(hgf) have the same length, we get

Im(gf) ∩Ker(h) = 0.

On the other hand, the length of Ker(h) is

l(Vm+1)− l(Im(h)) = l(Vm+1)− (n− a).

Since Vm+1 is indecomposable, Im(gf) 6= 0 implies Vm+1 = Im(gf). Thus gf is
surjective, which yields that g is surjective as well.

Thus we have shown that g = fm is an isomorphism. �
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Corollary 14.15. If V is an indecomposable module of finite length n, and if I
denotes the radical of End(V ), then In = 0.

End of Lecture 17

Proof. Let S be a subset of End(V ), and let SV be the set of all (finite) sums of
the form

∑
i fi(vi) with fi ∈ S and vi ∈ V . This is a submodule of V . (It follows

from the definition, that SV is closed under addition. Since all fi are linear maps,
SV is also closed under scalar multiplication. Finally, for V = (V, φj)j we have
φj(SV ) ⊆ SV , since

φj

(
∑

i

fi(vi)

)

=
∑

i

fi(φj(vi)),

because all the fi are homomorphisms.)

For i ≥ 0 we can look at the submodule I iV of V . Thus

· · · ⊆ I2V ⊆ IV ⊆ I0V = V.

If I i−1V = I iV , then I iV = I i+1V .

The Harada-Sai Lemma implies Im = 0 for m = 2n − 1, thus also ImV = 0. Thus
there exists some t with

0 = I tV ⊂ · · · ⊂ I2V ⊂ IV ⊂ I0V = V.

This is a filtration of the module V , and since V has length n, we conclude t ≤ n.
This implies InV = 0 and therefore In = 0. �
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14.4. Exercises. 1: Find the original references for Schreier’s Theorem, the Jordan-
Hölder Theorem, the Fitting Lemma and the Harada-Sai Lemma.

2: Let V be a module with a simple submodule S, such that S is contained in every
non-zero submodule of V . Assume that every endomorphism of S occurs as the
restriction of an endomorphism of V . Show: The endomorphism ring of V is local,
and its radical factor ring is isomorphic to the endomorphism ring of S.

In particular: The endomorphism ring of N(∞) is a local ring with radical factor
ring isomorphic to the ground field K.
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3: Let V = (K[T ], T ·). Show that V is indecomposable and that End(V ) is not a
local ring.

————————————————————————————-

15. Direct summands of finite direct sums

15.1. The Exchange Theorem. If the endomorphism ring of a module V is local,
then V is indecomposable. In representation theory we are often interested in the
indecomposable direct summands of a module. Then one can ask if these direct
summands are in some sense uniquely determined (at least up to isomorphism).

Lemma 15.1. For i = 1, 2 let hi : V → Yi be homomorphisms. Let Y = Y1⊕Y2 and

f = t[h1, h2] : V → Y.

If h1 is an isomorphism, then

Y = Im(f)⊕ Y2.

Proof. For y ∈ Y , write y = y1 + y2 with y1 ∈ Y1 and y2 ∈ Y2. Since h1 is surjective,
there is some v ∈ V with h1(v) = y1. We get

y = y1 + y2 = h1(v) + y2 = h1(v) + h2(v)− h2(v) + y2 = f(v) + (−h2(v) + y2).

Now f(v) ∈ Im(f) and −h2(v) + y2 ∈ Y2. So we proved that Im(f) + Y2 = Y .

For y ∈ Im(f) ∩ Y2, there is some v ∈ V with y = f(v). Furthermore, y = f(v) =
h1(v) + h2(v). Since y ∈ Y2, we get h1(v) = y − h2(v) ∈ Y1 ∩ Y2 = 0. Since h1 is
injective, h1(v) = 0 implies v = 0. Thus y = f(v) = f(0) = 0. �

Theorem 15.2 (Exchange Theorem). Let V,W1, . . . ,Wm be modules, and define

W =
m⊕

j=1

Wj .

Let f : V → W be a split monomorphism. If the endomorphism ring of V is local,
then there exists some t with 1 ≤ t ≤ m and a direct decomposition of Wt of the
form Wt = V ′ ⊕W ′

t such that

W = Im(f)⊕W ′
t ⊕

⊕

j 6=t

Wj and V ′ ∼= V.

If we know additionally that W = Im(f) ⊕W1 ⊕ C for some submodule C of W ,
then we can assume 2 ≤ t ≤ m.

Proof. Since f is a split monomorphism, there is a homomorphism g : W → V
with gf = 1V . Write f = t[f1, . . . , fm] and g = [g1, . . . , gm] with homomorphisms
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fj : V →Wj and gj : Wj → V . Thus we have

gf =
m∑

j=1

gjfj = 1V .

Since End(V ) is a local ring, there is some t with 1 ≤ t ≤ m such that gtft is
invertible. Without loss of generality assume that g1f1 is invertible.

Since g1f1 is invertible, f1 is a split monomorphism, thus f1 : V → W1 is injective
and Im(f1) ⊕ W ′

1 = W1 for some submodule W ′
1 of W1. Let h : V → Im(f1) be

defined by h(v) = f1(v) for all v ∈ V . Thus we can write

f1 : V → W1 = Im(f1)⊕W
′
1

in the form f1 = t[h, 0]. Thus

f = t[h, 0, f2, . . . , fm] : V → Im(f1)⊕W
′
1 ⊕W2 ⊕ · · · ⊕Wm.

Since h is an isomorphism, the result follows from Lemma 15.1. (Choose h1 = h,
Y1 = Im(f1), h2 = [0, f1, . . . , fm] and Y2 = W ′

1 ⊕W2 ⊕ · · · ⊕Wm.)

Finally, we assume that W = Im(f) ⊕W1 ⊕ C for some submodule C of W . Let
g : W → Im(f) be the projection from W onto Im(f) with kernel W1 ⊕ C followed
by the isomorphism f−1 : Im(f) → V defined by f−1(f(v)) = v. It follows that
gf = 1V .

We can write g = [g1, . . . , gm] with homomorphisms gj : Wj → V , thus gj is just the
restriction of g to Wj . By assumption g1 = 0 since W1 lies in the kernel of g. In the
first part of the proof we have chosen some 1 ≤ t ≤ m such that gtft is invertible in
End(V ). Since g1 = 0, we see that t > 1. �

15.2. Consequences of the Exchange Theorem.

Corollary 15.3. Let V,X,W1, . . . ,Wm be modules, and let

V ⊕X ∼= W :=

m⊕

j=1

Wj .

If End(V ) is a local ring, then there exists some t with 1 ≤ t ≤ m and a direct
decomposition Wt = V ′ ⊕W ′

t with V ′ ∼= V and

X ∼= W ′
t ⊕

⊕

j 6=t

Wj .

Proof. The composition of the inclusion ι : V → V ⊕ X and of an isomorphism
i : V ⊕X →

⊕m
j=1Wj is a split monomorphism

f : V →
m⊕

j=1

Wj,
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and the cokernel Cok(f) is isomorphic to X.

0 // V
ι // V ⊕X //

i

��

X

���
�
�

// 0

0 // V
f // W // Cok(f) // 0

The Exchange Theorem provides a t with 1 ≤ t ≤ m and a direct decomposition
Wt = V ′ ⊕W ′

t with V ′ ∼= V such that

W = Im(f)⊕W ′
t ⊕

⊕

j 6=t

Wj .

This direct decomposition of W shows that the cokernel of f is also isomorphic to
Z = W ′

t ⊕
⊕

j 6=tWj . This implies X ∼= Z. In particular, we have Wt = V ′ ⊕W ′
t
∼=

V ⊕W ′
t . �

Corollary 15.4 (Cancellation Theorem). Let V,X1, X2 be modules with V ⊕X1
∼=

V ⊕X2. If End(V ) is a local ring, then X1
∼= X2.

Proof. We apply Corollary 15.3 with X = X1, W1 = V and W2 = X2. There are
two cases: In the first case there is a direct decomposition V = W1 = V ′ ⊕W ′

1 with
V ′ ∼= V andX1

∼= W ′
1⊕W2. Since V is indecomposable, V ∼= V ′⊕W ′

1 impliesW ′
1 = 0.

Therefore X1
∼= W2 = X2. In the second case, there is a direct decomposition

X2 = W2 = V ′ ⊕W ′
2 with V ′ ∼= V and X1

∼= V ⊕W ′
2, thus X2

∼= V ⊕W ′
2
∼= X1. �

Corollary 15.5 (Krull-Remak-Schmidt Theorem). Let V1, . . . , Vn be modules with
local endomorphism rings, and let W1, . . . ,Wm be indecomposable modules. If

n⊕

i=1

Vi ∼=

m⊕

j=1

Wj

then n = m and there exists a permutation π such that Vi ∼= Wπ(i) for all 1 ≤ i ≤ n.

Proof. We proof this via induction on n: For n = 0 there is nothing to show. Thus
let n ≥ 1. Set V = V1 and X =

⊕n
i=2 Vi. By Corollary 15.3 there is some 1 ≤ t ≤ m

and a direct decomposition Wt = V ′
1 ⊕W

′
t with V ′

1
∼= V1 and X ∼= W ′

t ⊕
⊕

j 6=tWj .
The indecomposability of Wt implies W ′

t = 0. This implies

n⊕

i=2

Vi ∼=
⊕

j 6=t

Wj.

By induction n− 1 = m− 1, and there exists a bijection

π : {2, . . . , n} → {1, . . . , m} \ {t}

such that Vi ∼= Wπ(i) for all 2 ≤ i ≤ n. Now just set π(1) = t. �

End of Lecture 18
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Rema(r)k: In the literature the Krull-Remak-Schmidt Theorem is often called
Krull-Schmidt Theorem. But in fact Remak was the first to prove such a result in
the context of finite groups, which Krull then generalized to modules. The result
was part of Robert Remaks Doctoral Dissertation which he published in 1911. He
was born in 1888 and murdered in Auschwitz in 1942.
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Corollary 15.6. Let V1, . . . , Vn be modules with local endomorphism ring, and let
U be a direct summand of

⊕n
i=1 Vi. Then there exists a subset I ⊆ {1, . . . , n} such

that

U ∼=
⊕

i∈I

Vi.

Proof. We prove this via induction on n: For n = 0 there is nothing to show. Thus
let n ≥ 1. Set V = V1, X =

⊕n
i=2 Vi and W1 = U . Let W2 be a direct complement

of U in
⊕n

i=1 Vi. Thus

V ⊕X = W1 ⊕W2.

There are two cases: In the first case there is a direct decomposition W1 = U =
V ′⊕U ′ with V ′ ∼= V and X ∼= U ′⊕W2. Since U ′ is isomorphic to a direct summand
of X, induction yields a subset I ′ ⊆ {2, . . . , n} such that U ′ ∼=

⊕
i∈I′ Vi. Thus with

I := I ′ ∪ {1} we get

U = V ′ ⊕ U ′ ∼= V1 ⊕ U
′ ∼=
⊕

i∈I

Vi.

In the second case there is a direct decomposition W2 = V ′ ⊕W ′
2 with V ′ ∼= V and

X ∼= U ⊕W ′
2. Thus U is also isomorphic to a direct summand of X. Therefore there

is a subset I ⊆ {2, . . . , n} with U ∼=
⊕

i∈I Vi. �

15.3. Examples. We present some examples which show what happens if we work
with indecomposable direct summands, whose endomorphism ring is not local.

Assume |J | = 2, thus M = (K[T1, T2], T1·, T2·) is a J-module. Let U1 and U2 be
non-zero submodules of M . We claim that U1 ∩ U2 6= 0: Let u1 ∈ U1 and u2 ∈ U2

be non-zero elements. Then we get u1u2 ∈ U1 ∩ U2, and we have u1u2 6= 0.

In other words, the moduleM is uniform. (Recall that a module V is called uniform
if for all non-zero submodules U1 and U2 of V we have U1 ∩ U2 6= 0.) This implies
that every submodule of M is indecomposable.
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The submodules U of M are the ideals of K[T1, T2]. If U is generated by elements
p1, . . . , pt, we write U = I(p1, . . . , pt). (One can show that every ideal in K[T1, T2]
is finitely generated, but we do not need this here.)

Now let U1, U2 be ideals with U1 + U2 = K[T1, T2]. This yields an exact sequence

0→ U1 ∩ U2
f
−→ U1 ⊕ U2

g
−→M → 0,

where f = t[ι,−ι] and g = [ι, ι]. Here we denote all inclusion homomorphisms just
by ι.

This sequence splits: Since g is surjective, there is some u1 ∈ U1 and u2 ∈ U2 with
g(u1, u2) = 1. If we define

h : M → U1 ⊕ U2

by h(p) = (pu1, pu2) for p ∈ K[T1, T2], then this is a homomorphism, and we have
gh = 1M . This implies

M ⊕ (U1 ∩ U2) ∼= U1 ⊕ U2.

This setup allows us to construct some interesting examples:

Example 1: Let U1 = I(T1, T2) and U2 = I(T1 − 1, T2). We obtain

M ⊕ (U1 ∩ U2) ∼= I(T1, T2)⊕ I(T1 − 1, T2).

Now M is a cyclic module, but I(T1, T2) and I(T1− 1, T2) are not. Thus I(T1, T2)⊕
I(T1−1, T2) contains a cyclic direct summand, but none of the indecomposable direct
summands I(T1, T2) and I(T1−1, T2) is cyclic. (We have U1∩U2 = I(T1(T1−1), T2),
but this fact is not used here.)

Example 2: Let U1 = I(T1) and U2 = I(T 2
1 − 1, T1T2). We obtain U1 ∩ U2 =

I(T 3
1 − T1, T1T2) and

M ⊕ I(T 3
1 − T1, T1T2) ∼= I(T1)⊕ I(T

2
1 − 1, T1T2).

The map f 7→ T1f yields an isomorphism M → I(T1), but the modules I(T 3
1 −

T1, T1T2) and I(T 2
1 − 1, T1T2) are not isomorphic. Thus in this situation there is no

cancellation rule.

Example 3: Here is another (trivial) example for the failure of the cancellation
rule: Let J = ∅, and let V be an infinite dimensional K-vector space. Then we have

V ⊕K ∼= V ∼= V ⊕ 0.

Thus we cannot cancel V . On the other hand, in contrast to Example 2, V is not
an indecomposable module.

15.4. Exercises. 1: Let V = (K[T ], T ·). Show:

(a): The direct summands of V ⊕ V are 0, V ⊕ V and all the submodules of the
form

Uf,g := {(hf, hg) | h ∈ K[T ]}

where f and g are polynomials with greatest common divisor 1.
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(b): There exist direct summands U of V ⊕ V such that none of the modules 0,
V ⊕ V , U1,0 = V ⊕ 0 and U0,1 = 0⊕ V are a direct complement of U in V ⊕ V .

2: Let M1, . . . ,Mt be pairwise non-isomorphic modules of finite length, and let
mi ≥ 1 for 1 ≤ i ≤ t. Define

V =
t⊕

i=1

Mmi

i ,

and let R = End(V ) be the endomorphism ring of V . Show: There exists an
idempotent e in R such that e(V ) is isomorphic to

⊕t
i=1Mi, and we have R = ReR.

***********************************************************************
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Part 4. Modules II: A-Modules

16. Modules over algebras

16.1. Representations of an algebra. Let A and B be K-algebras. A map
η : A→ B is a K-algebra homomorphism if η is a ring homomorphism which is
also K-linear. In other words, for all a1, a2 ∈ A and all λ ∈ K the map η satisfies
the following:

η(a1 + a2) = η(a1) + η(a2),

η(λa) = λη(a),

η(a1a2) = η(a1)η(a2),

η(1A) = 1B.

An example of an algebra is the endomorphism ring EndK(V ) of a K-vector space
V . The underlying set of EndK(V ) is the set of K-linear maps f : V → V . Addition
and scalar multiplication are defined pointwise, and the multiplication is given by
the composition of maps. Thus we have

(f1 + f2)(v) = f1(v) + f2(v),

(λf)(v) = λ(f(v)) = f(λv),

(f1f2)(v) = f1(f2(v))

for all f, f1, f2 ∈ EndK(V ), λ ∈ K and v ∈ V .

Similarly, the set Mn(K) of n × n-matrices with entries in K forms naturally a
K-algebra.

From the point of view of representation theory, these algebras are very boring (they
are “semisimple”). We will meet more interesting algebras later on.

A representation of a K-algebra A is a K-algebra homomorphism

η : A→ EndK(V )

where V is a K-vector space. We want to write down explicitely what this means:
To every a ∈ A we associate a map η(a) : V → V such that the following hold:

η(a)(v1 + v2) = η(a)(v1) + η(a)(v2),(R1)

η(a)(λv) = λ(η(a)(v)),(R2)

η(a1 + a2)(v) = η(a1)(v) + η(a2)(v),(R3)

η(λa)(v) = λ(η(a)(v)),(R4)

η(a1a2)(v) = η(a1)(η(a2)(v)),(R5)

η(1A)(v) = v(R6)

for all a, a1, a2 ∈ A, v, v1, v2 ∈ V and λ ∈ K. The conditions (R1) and (R2) just
mean that for every a ∈ A the map η(a) : V → V is K-linear. The other rules show
that η is an algebra homomorphism: (R3) and (R4) say that η is K-linear, (R5)
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means that η is compatible with the multiplication, and (R6) shows that the unit
element of A is mapped to the unit element of EndK(V ).

16.2. Modules over an algebra. An A-module structure on V (or more pre-
cisely, a left A-module structure on V ) is a map

σ : A× V → V

(where we write a·v or av instead of σ(a, v)) such that for all a, a1, a2 ∈ A, v, v1, v2 ∈
V and λ ∈ K the following hold:

a(v1 + v2) = av1 + av2,(M1)

a(λv) = λ(av),(M2)

(a1 + a2)v = a1v + a2v,(M3)

(λa)v = λ(av),(M4)

(a1a2)v = a1(a2v),(M5)

1Av = v.(M6)

The conditions (M1) and (M2) are the K-linearity in the second variable, and (M3)
and (M4) are the K-linearity in the first variable. Condition (M5) gives the com-
patibility with the multiplication, and (M6) ensures that 1A acts as the identity on
V . The map σ is sometimes called scalar multiplication. An A-module (left
A-module) is a vector space V together with an A-module structure on V .

Thus an A-module V has two scalar multiplications: the one coming from V as a
vector space over our ground fieldK, and the other one from the A-module structure.
In the latter case, the scalars are elements of A. The scalar multiplication with
elements of K is just a special case of the scalar multiplication with elements of the
algebra, because λ · v = (λ · 1A) · v for all λ ∈ K and v ∈ V .

16.3. Modules and representations. Let Abb(V, V ) be the set of all (set theo-
retic) maps V → V . If we have any (set theoretic) map η : A → Abb(V, V ), then
we can define a map η : A× V → V by

η(a, v) = η(a)(v).

This defines a bijection between the set of all maps A → Abb(V, V ) and the set of
maps A× V → V .

Lemma 16.1. Let A be a K-algebra, and let V be a K-vector space. If η : A →
EndK(V ) is a map, then η is a representation of A if and only if η : A× V → V is
an A-module structure on V .

Proof. If η : A→ EndK(V ) is a representation, we obtain a map

η : A× V → V

which is defined by η((a, v)) := η(a)(v). Then η defines an A-module structure on
V .
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Vice versa, let σ : A × V → V be an A-module structure. Then the map σ : A →
EndK(V ) which is defined by σ(a)(v) := σ(a, v) is a representation of A.

Now it is easy to match the conditions (Ri) and (Mi) for 1 ≤ i ≤ 6. �

Let V be an A-module. We often write V = AV and say “V is a left A-module”.
Often we are a bit sloppy and just say: “V is an A-module”, “V is a module over A”,
“V is a module” (if it is clear which A is meant), or “V is a representation” without
distinguishing between the two concepts of a “module” and a “representation”.

16.4. A-modules and |A|-modules. Let η : A→ EndK(V ) be a representation of
A. Since we associated to every a ∈ A an endomorphism η(a) of a vector space V ,
we see immediately that each representation of A gives us an |A|-module, namely

(V, η(a))a∈|A|.

By |A| we just mean the underlying set of the algebra A. (Of course |A| is just A
itself, but we can forget about the extra structure (like multiplication etc.) which
turns the set A into an algebra.) But note that the endomorphisms η(a) are not
just arbitrary and cannot be chosen independently of each other: They satisfy very
strong extra conditions which are given by (R3), . . . , (R6).

So we see that every A-module is an |A|-module.

This means that we can use the terminology and theory of modules which we de-
veloped in the previous chapters in the context of A-modules. (We just interpret
them as |A|-modules.) The |A|-modules are the maps A × V → V which satisfy
the axioms (M1) and (M2), and the A-modules are exactly the |A|-modules which
additionally satisfy (M3), . . . , (M6).

If AV is an A-module, then every submodule and every factor module (in the sense
of the general module definition) is again an A-module. If AVi, i ∈ I are A-modules,
then the direct sum

⊕
i∈I AVi and the product

∏
i∈I AVi are again A-modules.

As suggested in the considerations above, if AV and AW are A-modules, then a
map f : V → W is an A-module homomorphism if it is a homomorphism of
|A|-modules. In other words, for all v, v1, v2 ∈ V and a ∈ A we have

f(v1 + v2) = f(v1) + f(v2),

f(av) = af(v).

We write HomA(V,W ) or just Hom(V,W ) for the set of homomorphisms AV → AW .
Recall that HomA(V,W ) is a K-vector space (with respect to addition and scalar
multiplication). Similarly, let EndA(V ) or End(V ) be the endomorphism ring of V .

By Mod(A) we denote the K-linear category with all A-modules as objects, and
with A-module homomorphisms as morphisms. We call Mod(A) the category of
(left) A-modules. By mod(A) we denote the category of all finite-dimensional
A-modules. This is a full subcategory of Mod(A).
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16.5. Free modules. Let V be an A-module. A subset U of V is a submodule if
and only if U is closed under addition and scalar multiplication with scalars from
A.

If X is a subset of V , then the submodule U(X) generated by X is the set of
all (finite) linear combinations

∑n
i=1 aixi with x1, . . . , xn ∈ X and a1, . . . , an ∈ A:

Clearly the elements of the form
∑n

i=1 aixi have to belong to U(X). On the other
hand, the set of all elements, which can be written in such a way, is closed under
addition and scalar multiplication. Thus they form a submodule and this submodule
contains X.

For x ∈ V let Ax = {ax | a ∈ A}. Thus Ax is the submodule of V generated by x.
Similarly, for all subsets X ⊆ V we have

U(X) =
∑

x∈X

Ax.

If A is an algebra, then the multiplication map µ : A×A→ A satisfies all properties
of an A-module structure, where V = A as a vector space. Thus by our convention
we denote this A-module by AA. The corresponding representation

A→ EndK(A)

with a 7→ λa is the regular representation. Here for a ∈ A the map λa : A → A
is defined by λa(x) = ax, thus λa is the left multiplication map with a.

A free A-module is by definition a module V which is isomorphic to a (possibly
infinite) direct sum of copies of AA.

If V is an A-module, then a subset X of V is a free generating set if the following
two conditions are satisfied:

• X is a generating set of V , i.e. V =
∑

x∈X Ax;
• If x1, . . . , xn are pairwise different elements in X and a1, . . . , an are arbitrary

elements in A with
n∑

i=1

aixi = 0,

then ai = 0 for all 1 ≤ i ≤ n.

(Compare the definition of a free generating set with the definition of a basis of a
vector space, and with the definition of a linearly independent set of vectors.)

Lemma 16.2. An A-module is free if and only if it has a free generating set.

End of Lecture 19

Proof. Let W be a direct sum of copies of AA, say W =
⊕

i∈IWi with Wi = AA
for all i ∈ I. By ei we denote the 1-element of Wi. (In coordinate notation: All
coefficients of ei are 0, except the ith coefficient is the element 1A ∈ AA = Wi.)
Thus the set {ei | i ∈ I} is a free generating set of W .
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If f : W → V is an isomorphism of A-modules, and if X is a free generating set of
W , then f(X) is a free generating set of V .

Vice versa, we want to show that every A-module V with a free generating set X
is isomorphic to a free module. We take a direct sum of copies of AA, which are
indexed by the elements in X. Thus W =

⊕
x∈XWx where Wx = AA for all x.

As before, let ex be the 1-element of Wx = AA. Then every element in W can be
written as a (finite) sum

∑
x∈X axex with ax ∈ A for all x ∈ X, and ax = 0 for

almost all (i.e. all but finitely many) x ∈ X. We define a map f : W → V by

f

(
∑

x∈X

axex

)
=
∑

x∈X

axx.

It is easy to check that f is an A-module homomorphism which is surjective and
injective, thus it is an isomorphism of A-modules. �

If F is a free A-module with free generating set X, then the cardinality of X is
called the rank of F . Thus F has finite rank, if X is a finite set.

Let F be a free A-module, and let W be an arbitrary A-module. If X is a free
generating set of F , and if we choose for every x ∈ X an element wx ∈ W , then
there exists exactly one A-module homomorphism f : F → W such that f(x) = wx
for all x ∈ X. Namely,

f

(
∑

x∈X

axx

)

=
∑

x∈X

axwx

for all x ∈ X and all ax ∈ A. If the set {wx | x ∈ X} is a generating set of
the A-module W , then the homomorphism f is surjective. Thus in this case W is
isomorphic to a factor module of F . So we proved the following result:

Theorem 16.3. Every A-module is isomorphic to a factor module of a free A-
module.

Inside the category of all |A|-modules, we can now characterize the A-modules as
follows: They are exactly the modules which are isomorphic to some factor module of
some free A-module. Thus up to isomorphism one obtains all A-modules by starting
with AA, taking direct sums of copies of AA and then taking all factor modules of
these direct sums.

Every finitely generated A-module is isomorphic to a factor module of a free module
of finite rank. In particular, each simple A-module is isomorphic to a factor module
of a free module of rank one. Thus, we get the following:

Lemma 16.4. Let A be a finite-dimensional K-algebra. For an A-module M the
following are equivalent:

(i) M is finitely generated;
(ii) M is finite-dimensional as a K-vector space;
(iii) l(M) <∞.
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16.6. The opposite algebra. If A is a K-algebra, then we denote the opposite
algebra of A by Aop. Here we work with the same underlying vector space, but the
multiplication map is changed: To avoid confusion, we denote the multiplication of
Aop by ⋆, which is defined as

a1 ⋆ a2 = a2 · a1 = a2a1

for all a1, a2 ∈ A (where · is the multiplication of A). This defines again an algebra.
Of course we have (Aop)op = A.

Lemma 16.5. If A is an algebra, then EndA(AA) ∼= Aop.

Proof. As before let λa : A→ A be the left multiplication with a ∈ A, i.e. λa(x) = ax
for all x ∈ A. Similarly, let ρa : A → A be the right multiplication with a ∈ A, i.e.
ρa(x) = xa for all x ∈ A. It is straightforward to check that the map

ρ : Aop → EndA(AA)

defined by ρ(a) = ρa is an algebra homomorphism. In particular we have

ρ(a1 ⋆ a2)(x) = ρ(a2a1)(x)

= x(a2a1) = (xa2)a1

= (ρ(a2)(x)) · a1

= ρ(a1)ρ(a2)(x)

for all a1, a2, x ∈ A. The map ρ is injective: If a ∈ |A|, then ρ(a)(1) = 1 · a = a.
Thus ρ(a) = 0 implies a = ρ(a)(1) = 0.

We know that

λaρb = ρbλa

for all a, b ∈ A. (This follows directly from the associativity of the multiplication in
A.) In other words, the vector space endomorphisms ρb are endomorphisms of the
A-module AA, and ρ yields an embedding of Aop into EndA(AA).

It remains to show that every endomorphism f of AA is a right multiplication: Let
f(1) = b. We claim that f = ρb: For a ∈ A we have

f(a) = f(a · 1) = a · f(1) = a · b = ρb(a).

This finishes the proof. �

16.7. Right A-modules. A right A-module structure on V is a map

ρ : V × A→ V
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(where we write v ·a or va instead of ρ(v, a)) such that for all a, a1, a2 ∈ A, v, v1, v2 ∈
V and λ ∈ K the following hold:

(v1 + v2)a = v1a+ v2a,(M ′
1)

(λv)a = λ(va),(M ′
2)

v(a1 + a2) = va1 + va2,(M ′
3)

v(λa) = λ(va),(M ′
4)

v(a1a2) = (va1)a2,(M ′
5)

v1A = v.(M ′
6)

A right A-module is a vector space V together with a right A-module structure
on V . We often write V = VA and say “V is a right A-module”.

16.8. Examples. For A-modules V and W the homomorphism space HomA(V,W )
carries a (left) EndA(W )-module structure defined by

EndA(W )×HomA(V,W )→ HomA(V,W ), (f, g) 7→ fg,

and HomA(V,W ) has a right EndA(V )-module structure given by

HomA(V,W )× EndA(V )→ HomA(V,W ), (g, f) 7→ gf.

One can also turn AV into a module over EndA(V ) by

EndA(V )× V → V, (f, v) 7→ f(v).

16.9. Direct decompositions of the regular representation. Let A be a K-
algebra, and let

AA =
⊕

i∈I

Pi

be a direct decomposition of the regular module AA with modules Pi 6= 0 for all
i ∈ I. Thus every element a ∈ A is of the form a =

∑
i∈I ai with ai ∈ Pi. (Only

finitely many of the ai are allowed to be non-zero.) In particular let

1 = 1A =
∑

i∈I

ei

with ei ∈ Pi.

Lemma 16.6. For all i ∈ I we have Pi = Aei.

Proof. Since Pj is a submodule of AA and ej ∈ Pj, we know that Aej ⊆ Pj . Vice
versa, let x ∈ Pj. We have

x = x · 1 =
∑

i∈I

xei.

Since x belongs to Pj , and since AA is the direct sum of the submodules Pi, we get
x = xej (and xei = 0 for all i 6= j). In particular, x ∈ Aej . �

Lemma 16.7. The index set I is finite.
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Proof. Only finitely many of the ei are different from 0. If ei = 0, then Pi = Aei = 0,
a contradiction to our assumption. �

A set {fi | i ∈ I} ⊆ R of idempotents in a ring R is a set of pairwise orthogonal
idempotents if fifj = 0 for all i 6= j. Such a set of pairwise orthogonal idempotents
is complete if 1 =

∑
i∈I fi.

Lemma 16.8. The set {ei | i ∈ I} defined above is a complete set of pairwise
orthogonal idempotents.

Proof. We have

ej = ej · 1 =
∑

i∈I

ejei.

As in the proof of Lemma 16.6, the unicity of the decomposition of an element in a
direct sum yields that ej = ejej and ejei = 0 for all i 6= j. �

Warning: Given a direct decomposition AA =
⊕

i∈I Pi. If we choose idempotents
ei ∈ Pi with Pi = Aei, then these idempotents do not have to be orthogonal to each
other. For example, let A = M2(K) be the algebra of 2× 2-matrices with entries in
K. Take

e1 =

(
1 0
1 0

)
and e2 =

(
0 0
0 1

)
,

and define Pi = Aei. We obtain AA = P1 ⊕ P2. The elements e1 and e2 are
idempotents, but they are not orthogonal.

Lemma 16.8 shows that any direct decomposition of AA yields a complete set of
orthogonal idempotents in A. Vice versa, assume that fi, i ∈ I is a complete set of
orthogonal idempotents in an algebra A, then

AA =
⊕

Afi

is a direct decomposition of AA.

Example: Let B be an algebra, and let A = Mn(B) be the algebra of n×n-matrices
with entries in B for some n ∈ N1. Let eij be the n× n-matrix with entry 1 at the
position (i, j) and all other entries 0. For brevity write ei = eii. The diagonal
matrices ei, 1 ≤ i ≤ n form a complete set of orthogonal idempotents in A. Note
that Aei contains exactly the matrices whose only non-zero entries are in the ith
column. It follows immediately that

AA =
n⊕

i=1

Aei.

Note also that the modules Aei are isomorphic to each other: We get an isomorphism
Aei → Aej via right multiplication with eij .

Instead of working with this isomorphism, we could also argue like this: Let X = Bn

be the vector space of n-tupels with coefficients in B. We interpret these n-tupels
as n× 1-matrices. So matrix multiplication yields an A-module structure on X. It
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is clear that X and Aei have to be isomorphic: X and Aei only differ by the fact
that Aei contains some additional 0-columns.

Warning: The above direct decomposition of Mn(B) is for n ≥ 2 of course not the
only possible decomposition. For example for n = 2 and any x ∈ B the matrices

(
1 x
0 0

)
and

(
0 −x
0 1

)

form also a complete set of orthogonal idempotents in M2(B). In this case

M2(B) = M2(B)

(
1 x
0 0

)
⊕M2(B)

(
0 −x
0 1

)
,

where

M2(B)

(
1 x
0 0

)

consists of the matrices of the form (
b1 b1x
b2 b2x

)

with b1, b2 ∈ B, and

M2(B)

(
0 −x
0 1

)

consists of the matrices whose only non-zero entries are in the second column.

End of Lecture 20

16.10. Modules over factor algebras. Let A be a K-algebra, and let I be an
ideal in A. Define B = A/I. If M = BM is a B-module, then we can turn M
into an A-module by defining a · m := am for all a ∈ A and m ∈ M . We write
ιAB(M) or AM for this A-module. (But often we just write M .) For this A-module
M = ιAB(M) we obviously have I ·M = 0. We say that M is annihilated by I.

Vice versa, if X is an A-module with I · X = 0, then we can interpret X as a
B-module: For b ∈ B and x ∈ X, we write b = a + I and then define b · x := ax.
This is well defined since I · X = 0. It is easy to check that this turns X into an
B-module.

These two constructions are inverse to each other. Thus we can identify the B-
modules with the A-modules, which are annihilated by I.

The following is obviously also true: If M1 and M2 are A-modules, which are anni-
hilated by I, then a map M1 →M2 is A-linear if and only if it is B-linear. Thus we
get HomA(M1,M2) = HomB(M1,M2).

Proposition 16.9. Let I be an ideal in a K-algebra A, and let B = A/I. If we
associate to each B-module M the A-module ιAB(M), then we obtain an embedding of
the category of B-modules into the category of A-modules. The image of the functor
consists of all A-modules, which are annihilated by I.
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16.11. Modules over products of algebras. Let R and S be rings. Recall that
the product R × S of R and S is again a ring with componentwise addition and
multiplication. Thus (r, s) + (r′, s′) = (r + r′, s+ s′) and (r, s) · (r′, s′) = (rr′, ss′).

Similarly, if A and B are algebras, then A×B is again an algebra. In this case, define
eA = (1, 0) and eB = (0, 1). These form a complete set of orthogonal idempotents.
We have (A×B)eA = A×0 and (A×B)eB = 0×B. These are ideals in A×B, and
we can identify the factor algebra (A × B)/(A × 0) with B, and (A × B)/(0 × B)
with A.

Let C = A × B, and let M be a C-module. We get M = eAM ⊕ eBM as a direct
sum of vector spaces, and the subspaces eAM and eBM are in fact submodules of
M . The submodule eAM is annihilated by 0 × B = (A × B)eB, thus eAM can be
seen as a module over (A×B)/(0×B) and therefore as a module over A: For a ∈ A
and m ∈ M define a · eAm = (a, 0)eAm = (a, 0)m. Similarly, eBM is a B-module.
Thus we wrote M as a direct sum of an A-module and a B-module.

Vice versa, if M1 is an A-module andM2 is a B-module, then the direct sumM1⊕M2

of vector spaces becomes an (A×B)-module by defining (a, b)·(m1, m2) = (am1, bm2)
for a ∈ A, b ∈ B, m1 ∈ M1 and m2 ∈ M2. In particular, we can interpret all A-
modules and all B-modules as (A × B)-modules: If M is an A-module, just define
(a, b)m = am for a ∈ A, b ∈ B and m ∈ M . (This is the same as applying ιA×BA to
M .) We call an (A×B)-modules, which is annihilated by 0×B just an A-module,
and an (A× B)-modules, which is annihilated by A× 0 is just a B-module.

Thus we proved the following result:

Proposition 16.10. Let A and B be algebras. Then each (A × B)-module is the
direct sum of an A-module and a B-module.

In particular, indecomposable modules over A × B are either A-modules or B-
modules.

Warning: If A = B, we have to be careful. If we say that an A-module M can be
seen as a (A×B)-module, we have to make clear which copy of A we mean, thus if
we regard M as a module over A× 0 or 0× A.

16.12. Bimodules. Let A and B be K-algebras. An A-B-bimodule V is a K-
vector space V together with two module structures

µA : A× V → V and µB : B × V → V

such that for all a ∈ A, b ∈ B and v ∈ V we have

µA(a, µB(b, v)) = µB(b, µA(a, v)).

Using our short notation av for µA(a, v) and bv instead of µB(b, v), we can write
this as

a(bv) = b(av).
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Note that for all λ ∈ K and v ∈ V we have

µA(λ · 1A, v) = λv = µB(λ · 1B, v).

Warning: In many books, our A-B-bimodules are called A-Bop-bimodules.

Assume that M is an A-B-bimodule. We get a canonical map c : B → EndA(M)
which sends b ∈ B to the scalar multiplication b· : M → M which maps m to bm.
It is easy to check that the image of c lies in EndA(M): We have

c(b)(am) = b(am) = a(bm) = a(c(b)(m))

for all a ∈ A, b ∈ B and m ∈ M .

Example: Let M be an A-module, and let B := EndA(M) be its endomorphism
algebra. Then M is an A-B-bimodule. Namely, M becomes a B-module by

µB(f,m) = f(m)

for all f ∈ EndA(M) and m ∈M . But we also have f(am) = af(m).

The next result shows that bimodule structures allow us to see homomorphism
spaces again as modules.

Lemma 16.11. Let M be an A-B-bimodule, and let N an A-C-bimodule. Then
HomA(M,N) is an Bop-C-bimodule via

b(c(f(m))) = c(f(bm))

for all b ∈ B, c ∈ C, f ∈ HomA(M,N) and m ∈M .

Proof. Let ⋆ be the multiplication in Bop, and set H := HomA(M,N). It is clear
that the two maps Bop × H → H , (b, f) 7→ (bf : m 7→ f(bm)) and C × H → H ,
(c, f) 7→ (cf : m 7→ cf(m)) are bilinear. We also have 1B · f = f and 1C · f = f for
all f ∈ H .

For b1, b2 ∈ B and f ∈ H we have

((b1 ⋆ b2)f)(m) = f((b1 ⋆ b2)m)

= f((b2b1)m)

= f(b2(b1m))

= (b2f)(b1m)

= (b1(b2f))(m).

This shows that

(b1 ⋆ b2)f = b1(b2(f)).
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Similarly,

((c1c2)f)(m) = (c1c2)(f(m))

= c1(c2(f(m)))

= c1((c2f)(m))

= (c1(c2f))(m).

shows that (c1c2)f = c1(c2f) for all c1, c2 ∈ C and f ∈ H . �

Let M be an A-B-bimodule. This gives a covariant functor

HomA(M,−) : Mod(A)→ Mod(Bop).

Similarly, if N is an A-C-bimodule we get a contravariant functor

HomA(−, N) : Mod(A)→ Mod(C).

16.13. Modules over tensor products of algebras. Let A and B be K-algebras.
Then A⊗K B is again a K-algebra with multiplication

(a1 ⊗ b1) · (a2 ⊗ b2) := (a1a2 ⊗ b1b2).

(One has to check that this is well defined and that one gets indeed a K-algebra.)

Proposition 16.12. The category of A-B-bimodules is equivalent to the category of
A⊗K B-modules.

Sketch of proof. Let M be an A-B-bimodule. This becomes an A⊗K B-module via

(a⊗ b)m := abm

for all a ∈ A, b ∈ B and m ∈M . The same rule applied the other way round turns
an A⊗K B-module into an A-B-bimodule. �

16.14. Exercises. 1: Let A = K〈X1, . . . , Xn〉 be the K-algebra of polynomials in n
non-commuting variables X1, . . . , Xn, and let J = {1, . . . , n}. Show: The category
of J-modules is equivalent to Mod(A).

In particular, Mod(K[T ]) is equivalent to the category of 1-modules.

2: Let A be a K-algebra. Show that the category of left A-modules is equivalent to
the category of right Aop-modules.

————————————————————————————-
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17. Semisimple algebras

17.1. Semisimple algebras and their modules.

Theorem 17.1. Let A be an algebra. Then the following are equivalent:

(i) The module AA is semisimple;
(ii) Every A-module is semisimple;
(iii) There exist K-skew fields Di and natural numbers ni where 1 ≤ i ≤ s such

that

A ∼=

s∏

i=1

Mni
(Di).

An algebra A is called semisimple if one of the equivalent conditions in the above
theorem is satisfied.

The opposite algebra Aop of a semisimple algebra A is again semisimple. This follows
directly from Condition (iii): If D is a skew field, then Dop is also a skew field. For
an arbitrary ring R there is an isomorphism

Mn(R)op → Mn(R
op)

which maps a matrix Φ to its transpose tΦ.

Proof of Theorem 17.1. The implication (ii) =⇒ (i) is trivial.

(i) =⇒ (ii): Let AA be a semisimple module. Since direct sums of semisimple
modules are again semisimple, we know that all free A-modules are semisimple.
But each A-modules is a factor module of a free module, and factor modules of
semisimple modules are semisimple. Thus all A-modules are semisimple.

(i) =⇒ (iii): Since AA is semisimple, we know that AA is a direct sum of simple
modules. By the results in Section 16.9 this direct sum has to be finite. Thus
EndA(AA) is a finite product of matrix rings over K-skew fields. We know that
EndA(AA) ∼= Aop, thus Aop is a finite product of matrix rings over K-skew fields.
Thus the same holds for A.

(iii) =⇒ (i): Let A be a product of s matrix rings over K-skew fields. We want to
show that AA is semisimple. It is enough to study the case s = 1: If A = B × C,
then the modules BB and CC are semisimple, and therefore AA is also semisimple.

Let A = Mn(D) for some K-skew field D and some n ∈ N1. Let S = Dn be the set
of column vectors of length n with entries in D. It is easy to show that S is a simple
Mn(D)-module. (One only has to show that if x 6= 0 is some non-zero column vector
in S, then Mn(D)x = S.) On the other hand, we can write AA as a direct sum of n
copies of S. Thus AA is semisimple. �

Let A = Mn(D) for some K-skew field D and some n ∈ N1. We have shown that AA
is a direct sum of n copies of the simple module S consisting of column vectors of
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length n with entries in D. It follows that every A-module is a direct sum of copies
of S. (Each free module is a direct sum of copies of S, and each module is a factor
module of a free module. If a simple A-module T is isomorphic to a factor module
of a free A-module, we obtain a non-zero homomorphism S → T . Thus T ∼= S by
Schur’s Lemma.) If

A ∼=

s∏

i=1

Mni
(Di),

then there are exactly s isomorphism classes of simple A-modules.

Proposition 17.2. Let K be an algebraically closed field. If A is a finite-dimensional
semisimple K-algebra, then

A ∼=

s∏

i=1

Mni
(K)

for some natural numbers ni, 1 ≤ i ≤ s.

Proof. First, we look at the special case A = D, where D is a K-skew field: Let
d ∈ D. Since D is finite-dimensional, the powers di with i ∈ N0 cannot be linearly
independent. Thus there exists a non-zero polynomial p in K[T ] such that p(d) = 0.
We can assume that p is monic. Since K is algebraically closed, we can write it as
a product of linear factors, say p = (T − c1) · · · (T − cn) with ci ∈ K. Thus in D we
have (d − c1) · · · (d − cn) = 0. Since D has no zero divisors, we get d − ci = 0 for
some i, and therefore d = ci ∈ K.

Now we investigate the general case: We know that A is isomorphic to a product
of matrix rings of the form Mni

(Di) with K-skew fields Di and ni ∈ N1. Since A
is finite-dimensional, every K-skew field Di must be finite-dimensional over K. But
since K is algebraically closed, and the Di are finite-dimensional K-skew fields we
get Di = K. �

The centre of a ring R is by definition the set of elements c ∈ R such that cr = rc
for all r ∈ R. We denote the centre of R by C(R). If R and S are rings, then
C(R× S) = C(R)× C(S).

Lemma 17.3. If A ∼=
∏s

i=1Mni
(K), then the centre of A is s-dimensional.

Proof. It is easy to show that the centre of a matrix ring Mn(K) is just the set of
scalar matrices. Thus we get

C

(
s∏

i=1

Mni
(K)

)

=

s∏

i=1

C(Mni
(K)) ∼=

s∏

i=1

K.

�

End of Lecture 21
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17.2. Examples: Group algebras. Let G be a group, and let K[G] be a K-vector
space with basis {eg | g ∈ G}. Define

egeh := egh.

Extending this linearly turns the vector space K[G] into a K-algebra. One calls
K[G] the group algebra of G over K. Clearly, K[G] is finite-dimensional if and
only if G is a finite group.

A representation of G over K is a group homomorphism

ρ : G→ GL(V )

where V is a K-vector space. In the obvious way one can define homomorphisms
of representations. It turns out that the category of representations of G over K is
equivalent to the category Mod(K[G]) of modules over the group algebra K[G]. If
V is a K[G]-module, then for g ∈ G and v ∈ V we often write gv instead of egv.

The representation theory of G depends very much on the field K, in particular, the
characteristic of K plays an important role.

Theorem 17.4 (Maschke). Let G be a finite group, and let K be a field such that
the characteristic of K does not divide the order of G. Then every K[G]-module is
semisimple.

Proof. It is enough to show that every finite-dimensional K[G]-module is semisimple.
Let U be a submodule of a finite-dimensional K[G]-module V . Write

V = U ⊕W

with W a subspace of V . But note that W is not necessarily a submodule.

Let θ : V → V be the projection onto U . So θ(u) = u and θ(w) = 0 for all u ∈ U
and w ∈ W . Define f : V → V by

f(v) =
1

|G|

∑

g∈G

g−1θ(gv).

Here we use our assumption on the characteristic of K, otherwise we would divide
by 0, which is forbidden in mathematics.

We claim that f ∈ EndK[G](V ): Clearly, f is a linear map. For h ∈ G we have

f(hv) =
1

|G|

∑

g∈G

g−1θ(ghv).

Set xg := gh. Thus g−1 = hx−1
g . So we get

f(hv) =
1

|G|

∑

g∈G

hx−1
g θ(xgv) = hf(v).

Thus f is an endomorphism of V .
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We have Im(f) = U : Namely, Im(f) ⊆ U since each term in the sum is in U . If
u ∈ U , then

f(u) =
1

|G|

∑

g∈G

g−1θ(gu) =
1

|G|

∑

g∈G

g−1gu =
1

|G|

∑

g∈G

u = u.

Clearly, this implies U ∩ Ker(f) = 0: Namely, if 0 6= u ∈ U ∩ Ker(f), then f(u) =
u = 0, a contradiction.

We have dim Ker(f) + dim Im(f) = dimV . This implies

V = Im(f)⊕Ker(f) = U ⊕Ker(f),

and Ker(f) is a submodule of V . Now let U be a simple submodule of V . We
get V = U ⊕ Ker(f). By induction on dimV , Ker(f) is semisimple, thus V is
semisimple. �

17.3. Remarks. Let G be a finite group, and let K be a field. If char(K) does not
divide the order of G, then K[G] is semisimple. In this case, from our point of view,
the representation theory of K[G] is very boring. (But be careful: If you say this at
the wrong place and wrong time, you will be crucified.)

More interesting is the modular representation theory of G, i.e. the study of
representations of G over K where char(K) does divide |G|.

For example, if G = Sn is the symmetric group of bijective maps {1, . . . , n} →
{1, . . . , n}, then one can parametrize the simple K[G]-modules by certain partitions.
But in the modular case, it is not even known which dimensions these simple modules
have.

Another interesting question is the following: Given two finite groups G and H ,
and let K be a field. When are the module categories mod(K[G]) and mod(K[H ])
derived equivalent? (We will learn about derived categories and derived equivalences
later on.)

Again let G be a finite group, let K be a field such that char(K) divides |G|,
and let S1, . . . , Sn be a set of representatives of the isomorphism classes of simple
K[G]-modules. We define a quiver Γ associated to K[G] as follows: Its vertices are
S1, . . . , Sn. There is an arrow Si → Sj if and only if there exists a non-split short
exact sequence

0→ Sj → E → Si → 0

of K[G]-modules. (In fact, one should work with multiple arrows here, namely the
number of arrows Si → Sj should be equal to dim Ext1

K[G](Si, Sj), but we did not
introduce Ext-groups yet...)

The connected components of Γ parametrize the “blocks ofK[G]”: A K-algebra A is
connected if it cannot be written as a product A = A1×A2 of non-zero K-algebras
A1 and A2. Now write K[G] as a product

K[G] = B1 × · · · ×Bt
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of connected algebras Bi. It turns out that the Bi are uniquely determined up
to isomorphism and reordering. They are called the blocks of K[G]. The simple
representations of a block Bi correspond to the vertices of a connected component
Γi of Γ. To understand the representation theory of K[G] is now the same as
understanding the representation theory of each of the blocks. Such blocks are in
general not any longer group algebras. Thus to understand group algebras, one
is forced to study larger classes of finite-dimensional algebras. Each block is a
“selfinjective algebra”.

17.4. Exercises. Let G = Z2 be the group with two elements, and let K be a field.

1: Assume char(K) 6= 2. Show: Up to isomorphism there are exactly two simple
K[G]-modules.

2: Assume char(K) = 2. Show: Up to isomorphism there are exactly two indecom-
posable K[G]-modules, and one of them is not simple.

3: Assume that K is an infinite field with char(K) = 2. Construct an infinite
number of 2-dimensional pairwise non-isomorphic representations of K[G×G].

————————————————————————————-

18. Modules defined by idempotents

In this section let A be a K-algebra.

Lemma 18.1. Let e be an idempotent in A. The endomorphism ring EndA(Ae) of
the A-module Ae is isomorphic to (eAe)op. In particular, EndA(AA) is isomorphic
to Aop. We obtain an isomorphism

η : EndA(Ae)→ (eAe)op

which maps f ∈ EndA(Ae) to f(e). Vice versa, for each a ∈ A, the inverse η−1(eae)
is the right multiplication with eae.

Proof. Let f ∈ EndA(Ae), and let a = f(e) ∈ Ae. Then a = ae because a belongs
to Ae. Since f is a homomorphism, and e is an idempotent we have a = f(e) =
f(e2) = ef(e) = ea. Thus a = eae ∈ eAe. Clearly, the map defined by η(f) = f(e)
is K-linear.

Let f1, f2 ∈ EndA(Ae), and let η(fi) = fi(e) = ai for i = 1, 2. We get

η(f1f2) = (f1f2)(e) = f1(f2(e)) = f1(a2) = f1(a2e) = a2f1(e) = a2a1.

Thus η yields an algebra homomorphism η : EndA(Ae) → (eAe)op. (Note that the
unit element of (eAe)op is e.)

The algebra homomorphism η is injective: If η(f) = 0, then f(e) = 0 and therefore
f(ae) = af(e) = 0 for all a ∈ A. Thus f = 0.
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The map η is also surjective: For every a ∈ A let ρeae : Ae → Ae be the right
multiplication with eae defined by ρeae(be) = beae where b ∈ A. This map is
obviously an endomorphism of the A-module Ae, and we have η(ρeae) = ρeae(e) =
eae.

Thus we have shown that η is bijective. In particular, the inverse η−1(eae) is the
right multiplication with eae. �

Lemma 18.2. If X is an A-module, then HomA(Ae,X) ∼= eX as vector spaces.

Proof. Let η : HomA(Ae,X) → eX be the map defined by η(f) = f(e). Since
f(e) = f(e2) = ef(e), we have f(e) ∈ eX, thus this is well defined. It is also clear
that η is K-linear.

If f1, f2 ∈ HomA(Ae,X), then η(f1) = η(f2) implies f1(e) = f2(e), and therefore

f1(ae) = af1(e) = af2(e) = f2(ae)

for all a ∈ A. So f1 = f2. This proves that η is injective.

Next, let ex ∈ eX. Define fx : Ae→ X by fx(ae) = aex. It follows that fx(a1a2e) =
a1fx(a2e) for all a1, a2 ∈ A. Thus fx ∈ HomA(Ae,X) and η(fx) = fx(e) = ex. So η
is surjective. �

An idempotent e 6= 0 in a ring R is called primitive if e is the only non-zero
idempotent in eRe.

Lemma 18.3. A non-zero idempotent e in a ring R is primitive if and only if the
following hold: Let e = e1 + e2 with e1 and e2 orthogonal idempotents, then e1 = 0
or e2 = 0.

Proof. Let e1 and e2 be orthogonal idempotents with e = e1 + e2. Then ee1e = e1
and ee2e = e2. Thus e1 and e2 belong to eRe.

Vice versa, if e′ is an idempotent in eRe, then e′ and e− e′ is a pair of orthogonal
idempotents with sum equal to e. �

Lemma 18.4. Let e, e′ be idempotents in A. Then the following are equivalent:

(i) The modules Ae and Ae′ are isomorphic;
(ii) There exist some x ∈ eAe′ and y ∈ e′Ae such that xy = e and yx = e′.

Proof. We can identify HomA(Ae,M) with eM : We just map f : Ae→ M to f(e).
Since e = e2 we get f(e) = f(e2) = ef(e), thus f(e) ∈ eM . Thus the homomor-
phisms f ∈ HomA(Ae,Ae′) correspond to the elements in eAe′.

(i) =⇒ (ii): If Ae and Ae′ are isomorphic, there exist homomorphisms f : Ae→ Ae′

and g : Ae′ → Ae such that gf = 1Ae. Set x = f(e) and y = g(e′). Thus x ∈ eAe′,
y ∈ e′Ae, xy = e and yx = e′.
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(ii) =⇒ (i): Assume there exist elements x ∈ eAe′ and y ∈ e′Ae with xy = e and
yx = e′. Let f : Ae→ Ae′ be the right multiplication with x, and let g : Ae′ → Ae be
the right multiplication with y. Then f and g are A-module homomorphisms, and we
have gf = 1Ae and fg = 1Ae′. Thus the A-modules Ae and Ae′ are isomorphic. �

The statement (ii) in the above lemma is left-right symmetric. Thus (i) and (ii) are
also equivalent to

(iii) The Aop-modules eA and e′A are isomorphic.

We want to compare A-modules and eAe-modules. If M is an A-module, then eM
is an eAe-module.

Lemma 18.5. Let e be an idempotent in A. If S is a simple A-module with eS 6= 0,
then eS is a simple eAe-module.

Proof. We have to show that every element x 6= 0 in eS generates the eAe-module
eS. Since x ∈ S, we get Ax = S. Thus eAex = eAx = eS. Here we used that
x = ex for every element x ∈ eS. �

————————————————————————————-

19. Quivers and path algebras

Path algebras are an extremely important class of algebras. In fact, one of our main
aims is to obtain a better understanding of their beautiful representation theory and
also of the numerous links between representation theory of path algebras and other
areas of mathematics.

Several parts of this section are taken from Crawley-Boevey’s excellent lecture notes
on representation theory of quivers.

19.1. Quivers and path algebras. Recall: A quiver is a quadruple

Q = (Q0, Q1, s, t)

where Q0 and Q1 are finite sets, and s, t : Q1 → Q0 are maps. The elements in Q0

are the vertices of Q, and the elements in Q1 the arrows. For an arrow a ∈ Q1

we call s(a) the starting vertex and t(a) the terminal vertex of a.

Thus we can think of Q as a finite directed graph. But note that multiple arrows
and loops (a loop is an arrow a with s(a) = t(a)) are allowed.

Let Q = (Q0, Q1, s, t) be a quiver. A sequence

a = (a1, a2, . . . , am)
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of arrows ai ∈ Q1 is a path in Q if s(ai) = t(ai+1) for all 1 ≤ i ≤ m−1. Such a path
has length m, we write l(a) = m. Furthermore set s(a) = s(am) and t(a) = t(a1).
Instead of (a1, a2, . . . , am) we often just write a1a2 · · ·am.

Additionally there is a path ei of length 0 for each vertex i ∈ Q0, and we set
s(ei) = t(ei) = i.

The path algebra KQ of Q over K is the K-algebra with basis the set of all paths
in Q. The multiplication of paths a and b is defined as follows:

If a = ei is of length 0, then

ab := a · b :=

{
b if t(b) = i,

0 otherwise.

If b = ei, then

ab := a · b :=

{
a if s(a) = i,

0 otherwise.

Finally, assume that a = (a1, . . . , al) and b = (b1, . . . , bm) are paths of length l,m ≥
1. Then

ab := a · b :=

{
(a1, . . . , al, b1, . . . , bm) if s(al) = t(b1),

0 else.

19.2. Examples. 1: Let Q be the following quiver:

2

d
��

c

��

4
aoo b //

e

��

5

1
f // 3

Then the paths in Q are

e1, e2, e3, e4, e5, a, b, c, d, e, f, ca, da, fc, fd, fda, fca.

Thus, KQ is a 17-dimensional K-algebra. Here are some examples of multiplications
of paths:

e3 · e4 = 0,

fc · a = fca,

a · fc = 0,

b · e4 = b,

e4 · b = 0,

e5 · b = b.

The algebra KQ has a unit element, namely 1 := e1 + e2 + e3 + e4 + e5.

2: Let Q be the quiver

Q : 188
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Then KQ is isomorphic to the polynomial ring K[T ] in one variable T .

3: Let Q be the quiver

Q : 188 ff

Then KQ is isomorphic to the free algebra K〈X, Y 〉 in two non-commuting variables
X and Y .

19.3. Idempotents in path algebras. Let A = KQ for some quiver Q, and
assume that Q0 = {1, . . . , n}.

Then the ei are orthogonal idempotents, in other words e2i = ei and eiej = 0 for all
i 6= j. Clearly,

1 =
n∑

i=1

ei

is the identity of A. The vector spaces Aei and ejA have as bases the set of paths
starting in i and the set of paths ending in j, respectively. Furthermore, ejAei has
as a basis the set of paths starting in i and ending in j. We have

A =
n⊕

i=1

Aei.

Clearly, each Aei is a left A-module. So this is a direct decomposition of the regular
representation AA.

Lemma 19.1. If 0 6= x ∈ Aei and 0 6= y ∈ eiA, then xy 6= 0.

Proof. Look at the longest paths p and q involved in x and y, respectively. In the
product xy the coefficient of pq cannot be zero. �

Lemma 19.2. The ei are primitive idempotents.

Proof. If EndA(Aei) ∼= (eiAei)
op contains an idempotent f , then f 2 = f = fei. This

implies f(ei − f) = 0. Now use Lemma 19.1. �

Corollary 19.3. The A-modules Aei are indecomposable.

Proof. The only idempotents in EndA(Aei) are 0 and 1. �

Lemma 19.4. If ei ∈ AejA, then i = j.

Proof. The vector space AejA has as a basis the paths passing through the vertex
j. �

Lemma 19.5. If i 6= j, then Aei 6∼= Aej.

Proof. Assume i 6= j and that there exists an isomorphism f : Aei → Aej . Set
y = f(ei). It follows from Lemma 18.2 that y ∈ eiAej. Let g = f−1, and let
x = g(ej). This implies

(gf)(ei) = g(y) = g(yej) = yg(ej) = yx = ei.
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A similar calculation shows that xy = ej . But y ∈ eiAej and x ∈ Aei. Thus
y = eiyej and x = xei. This implies ej = xy = xeiyej ∈ AeiA, a contradiction to
Lemma 19.4. �

End of Lecture 22

19.4. Representations of quivers. A representation (or more precisely a K-
representation) of a quiver Q = (Q0, Q1, s, t) is given by a K-vector space Vi for
each vertex i ∈ Q0 and a linear map

Va : Vs(a) → Vt(a)

for each arrow a ∈ Q1. Such a representation is called finite-dimensional if Vi is
finite-dimensional for all i. In this case,

dimV :=
∑

i∈Q0

dimVi

is the dimension of the representation V .

For a path p = (a1, . . . , am) of length m ≥ 1 in Q, define

Vp := Va1 ◦ Va2 ◦ · · · ◦ Vam
: Vs(p) → Vt(p).

A morphism
θ : V →W

between representations V = (Vi, Va)i,a and W = (Wi,Wa)i,a is given by linear maps
θi : Vi → Wi, i ∈ Q0 such that the diagram

Vs(a)
θs(a) //

Va

��

Ws(a)

Wa

��
Vt(a)

θt(a) // Wt(a)

commutes for each a ∈ Q1. The vector space of homomorphisms from V to W is
denoted by Hom(V,W ), or more precisely by HomQ(V,W ).

A morphism θ = (θi)i : V → W is an isomorphism if each θi is an isomorphism.
In this case, we write V ∼= W .

The composition ψ ◦ θ of two morphisms θ : V → W and ψ : W → X is given by
(ψ ◦ θ)i = ψi ◦ θi.

The K-representations form a K-category denoted by Rep(Q) = RepK(Q). The full
subcategory of finite-dimensional representations is denoted by rep(Q) = repK(Q).

A subrepresentation of a representation (Vi, Va)i,a is given by a tuple (Ui)i of
subspaces Ui of Vi such that

Va(Us(a)) ⊆ Ut(a)

for all a ∈ Q1. In this case, we obtain a representation (Ui, Ua)i,a where Ua : Us(a) →
Ut(a) is defined by Ua(u) = Va(u) for all u ∈ Us(a).
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The direct sum of representations V = (Vi, Va)i,a and W = (Wi,Wa)i,a is defined
in the obvious way, just take V ⊕W := (Vi ⊕Wi, Va ⊕Wa)i,a.

Now we can speak about simple representations and indecomposable repre-
sentations. (As for modules, it is part of the definition of a simple and of an
indecomposable representation V that V 6= 0.)

19.5. Examples. 1: For i ∈ Q0 let Si be the representation with

(Si)j =

{
K if i = j,

0 else.

for all j ∈ Q0, and set (Si)a = 0 for all a ∈ Q1. Obviously, Si is a simple represen-
tation.

2: For λ ∈ K let Vλ be the representation

K
λ // K

of the quiver 1 // 2 . Then Vλ ∼= Vµ if and only if λ = 0 = µ or λ 6= 0 6= µ. We
have

dim Hom(Vλ, Vµ) =






0 if λ 6= 0 and µ = 0,

1 if µ 6= 0,

2 if λ = 0 = µ.

3: For λ1, λ2 let Vλ1,λ2 be the representation

K
λ1 //

λ2

// K

of the quiver 1
//
// 2 . Then Vλ1,λ2

∼= Vµ1,µ2 if and only if there exists some c 6= 0
with c(λ1, λ2) = (µ1, µ2): Assume there exists an isomorphism

θ = (θ1, θ2) : Vλ1,λ2 → Vµ1,µ2 .

Thus θ = (a, b) for some a, b ∈ K∗. We obtain a diagram

K

λ2

��
λ1

��

a // K

µ2

��
µ1

��
K

b // K

satisfying bλ1 = µ1a and bλ2 = µ2a. Set c = a−1b. It follows that c(λ1, λ2) =
(µ1, µ2).

4: For λ ∈ K let Vλ be the representation

Kλ 55

of the 1-loop quiver. Then Vλ ∼= Vµ if and only if λ = µ.
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5: Let V be the representation

K
[ 1
0 ]

//

[ 0
1 ]

// K2

of the quiver 1
//
// 2 . The subrepresentations of V are (K,K2) and (0, U) where

U runs through all subspaces of K2. It is easy to check that none of these subrepre-
sentations is a direct summand of V . Thus V is an indecomposable representation.

19.6. Representations of quivers and modules over path algebras. Let V =
(Vi, Va)i,a be a representation. Let

η : KQ×
⊕

i∈Q0

Vi →
⊕

i∈Q0

Vi

be the map defined by

η(ej , vi) =

{
vi if i = j,

0 otherwise
and η(p, vi) =

{
Vp(vi) if i = s(p),

0 otherwise

where the ej are the paths of length 0, p runs through the set of paths of length at
least one and vi ∈ Vi. Then we extend these rules linearly.

Vice versa, let V be a KQ-module, i.e. there is a KQ-module structure

η : KQ× V → V

on the K-vector space V . For each path ei of length 0 define Vi := eiV , which is
clearly a K-vectorspace. It follows that

V =
⊕

i∈Q0

Vi.

For each arrow a ∈ Q1 define a linear map

Va : Vs(a) → Vt(a)

by Va(v) := η(a, v) for all v ∈ Vs(a). Then (Vi, Va)i,a is obviously a representation of
Q.

We leave it as an exercise to show that these constructions yield equivalences of
K-categories between RepK(Q) and Mod(KQ).

So from now on we can use all the terminology and the results we obtained for
modules over algebras also for representations of quivers. In particular, we get a
Jordan-Hölder and a Krull-Remak-Schmidt Theorem, we can ask for Auslander-
Reiten sequences of quiver representations, etc. We will often not distinguish any
longer between a representation of Q and a module over KQ.

If V = (Vi, Va)i,a is a representation of Q let

d = dim(V ) = (dimVi)i∈Q0

be its dimension vector. If V is a finite-dimensional indecomposable representa-
tion, then dim(V ) ∈ NQ0 is called a root of Q. A root d is a Schur root if there
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exists a representation V with EndQ(V ) ∼= K and dim(V ) = d. Assume that d is
a root. If there exists a unique (up to isomorphism) indecomposable representation
V with dim(V ) = d, then d is called a real root. Otherwise, d is an imaginary
root.

A representation V of Q is rigid (or exceptional) if each short exact sequence

0→ V →W → V → 0

splits, i.e. if W ∼= V ⊕ V .

Here are some typical problems appearing in representation theory of quivers:

(i) Classify all indecomposable representations of Q. (This is usually very hard
and can only be achieved for very few quivers.)

(ii) Determine all roots of Q. Determine the real roots and the Schur roots of
Q.

(iii) Classify all rigid representations of Q.
(iv) Compute the Auslander-Reiten quiver of mod(KQ), or at least try to de-

scribe the shape of its connected components.
(v) How does the representation theory of a quiver Q change, if we change the

orientation of an arrow of Q?

19.7. Exercises. 1: Let Q be a quiver. Show that KQ is finite-dimensional if and
only if Q has no oriented cycles.

2: Let V = (K
1
←− K

1
−→ K) andW = (K

1
←− K −→ 0) be representations of the quiver

1←− 2 −→ 3. Show that HomQ(V,W ) is one-dimensional, and that HomQ(W,V ) = 0.

3: Let Q be the quiver
1 −→ 2 −→ · · · −→ n.

Show that KQ is isomorphic to the subalgebra

A := {M ∈Mn(K) | mij = 0 if there is no path from j to i}

of Mn(K).

4: Let Q be any quiver. Determine the centre of KQ. (Reminder: The centre
C(A) of an algebra A is defined as C(A) = {a ∈ A | ab = ba for all b ∈ A}.)

5: Let Q be a quiver with n vertices. Show that there are n isomorphism classes of
simple KQ-modules if and only if Q has no oriented cycles.

6: Let Q be a quiver. Show that the categories RepK(Q) and Mod(KQ) are equiv-
alent.

7: Construct an indecomposable representation of the quiver

◦

��
◦ // ◦ // ◦ ◦oo ◦oo
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with dimension vector
1

1 2 3 2 1

8: Show: If V = (Vi, Va)i∈Q0,a∈Q1 is an indecomposable representation of the quiver

Q : ◦ // ◦ // ◦ // ◦ // ◦

then dimVi ≤ 1 for all i ∈ Q0.

Construct the Auslander-Reiten quiver of Q.

9: Let Q be the following quiver:

◦

��
◦ // ◦ // ◦ // ◦ // ◦ // ◦

Let A = KQ. Write AA as a direct sum of indecomposable representations and
compute the dimension of the indecomposable direct summands.

10: Let

A =

[
K[T ]/(T 2) 0
K[T ]/(T 2) K

]
.

This gives a K-algebra via the usual matrix multiplication. (The elements of A are
of the form [

a 0
b c

]

where a, b ∈ K[T ]/(T 2) and c ∈ K.) Show that A is isomorphic to KQ/I where Q
is the quiver

◦α 99
// ◦

and I is the ideal in KQ generated by the path α2 := (α, α).

————————————————————————————

20. Digression: Classification problems in Linear Algebra

Many problems in Linear Algebra can be reformulated using quivers. In this section,
we give some examples of this kind.

20.1. Classification of endomorphisms.

Q : 188

Let K be an algebraically closed field, and let V be a finite-dimensional K-vector
space of dimension n. By EndK(V ) we denote the set of K-linear maps V → V ,
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and by G = GL(V ) the set of invertible K-linear maps V → V . For f ∈ EndK(V )
let

Gf = {g−1fg | g ∈ G} ⊆ EndK(V )

be the G-orbit of f . One easily checks that for f1, f2 ∈ EndK(V ) we have either
Gf1 = Gf2 or Gf1 ∩Gf2 = ∅.

Question 20.1. Can we classify all G-orbits?

Answer: Of course we can, since we paid attention in our Linear Algebra lectures.

For n = 0 everything is trivial, there is just one orbit containing only the zero
map. Thus assume n ≥ 1. Fix a basis B of V . Now each map f ∈ EndK(V ) is
(with respect to B) given by a particular matrix, which (via conjugation) can be
transformed to a Jordan normal form. It follows that each orbit Gf is uniquely
determined by a set

{(n1, λ1), (n2, λ2), . . . , (nt, λt)}

where the ni are positive integers with n1 + · · ·+ nt = n, and the λi are elements in
K. Here (ni, λi) stands for a Jordan block of size ni with Eigenvalue λi.

20.2. Classification of homomorphisms.

Q : 1 // 2

Let K be any field, and let V1 and V2 be finite-dimensional K-vector spaces of
dimension n1 and n2, respectively. By HomK(V1, V2) we denote the set of K-linear
maps V1 → V2, and let G = GL(V1)×GL(V2). For f ∈ HomK(V1, V2) let

Gf = {h−1fg | (g, h) ∈ G} ⊆ HomK(V1, V2)

be the G-orbit of f .

Question 20.2. Can we classify all G-orbits?

Answer: Of course we can. This is even easier than the previous problem: Fix
bases B1 and B2 of V1 and V2, respectively. Then each f ∈ HomK(V1, V2) is given
by a matrix with respect to B1 and B2. Now using row and column transformations
(which can be expressed in terms of matrix multiplication from the left and right)
we can transform the matrix of f to a matrix of the form

(
Er 0
0 0

)

where Er is the r× r-unit matrix and the zeros are matrices with only zero entries.
Here r is the rank of the matrix of f .

It turns out that there are 1+min{n1, n2} differentG-orbits where ni is the dimension
of Vi.
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20.3. The Kronecker problem.

Q : 1 //// 2

Let K be an algebraically closed field, and let V1 and V2 be finite-dimensional
K-vector spaces. Let G = GL(V1) × GL(V2). For (f1, f2) ∈ HomK(V1, V2) ×
HomK(V1, V2) let

G(f1, f2) = {(h−1f1g, h
−1f2g) | (g, h) ∈ G} ⊆ HomK(V1, V2)× HomK(V1, V2)

be the G-orbit of (f1, f2).

Question 20.3. Can we classify all G-orbits?

Answer: Yes, we can do that, by we will need a bit of theory here. As you can
see, the problem became more complicated, because we simultaneously transform
the matrices of f1 and f2 with respect to some fixed bases of V1 and V2.

Example: The orbits G(K
1
−→ K,K

λ
−→ K) and G(K

1
−→ K,K

µ
−→ K) are equal if

and only if λ = µ.

20.4. The n-subspace problem.

Q : 1

##F
FFFFFFFFF 2 · · ·

��

n

{{xxxxxxxxxx

0

An n-subspace configuration is just an n+1-tuple (V, V1, . . . , Vn) where V is a vector
space and the Vi are subspaces of V . We call

dim(V, V1, . . . , Vn) = (dim V, dimV1, . . . , dimVn)

the dimension vector of the n-subspace configuration (V, V1, . . . , Vn).

We say that two n-subspace configurations (V, V1, . . . , Vn) and (W,W1, . . . ,Wn) are
isomorphic if there exists an isomorphism (= bijective linear map) f : V → W such
that the following hold:

• f(Vi) ⊆Wi;
• The linear maps fi : Vi → Wi defined by fi(vi) = f(vi) where 1 ≤ i ≤ n and
vi ∈ Vi are isomorphisms.

In particular, two isomorphic n-subspace configurations have the same dimension
vector.

Problem 20.4. Classify all n-subspace configurations up to isomorphism.

We can reformulate this problem as follows: Let V, V1, . . . , Vn be vector spaces such
that dimVi ≤ dimV for all i. Set

Z = Inj(V1, V )× · · · × Inj(Vn, V )
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where Inj(Vi, V ) denotes the set of injective linear maps from Vi → V . Let G =
GL(V )×GL(V1)× · · ·×GL(Vn). Each element (f1, . . . , fn) can be thought of as an
n-subspace configuration given by (V, Im(f1), . . . , Im(fn)).

Then G acts on Z as follows: For (f1, . . . , fn) and g = (g0, g1, . . . , gn) ∈ G define

g · (f1, . . . , fn) = (g−1
0 f1g1, . . . , g

−1
0 fngn)

and let
G(f1, . . . , fn) = {g · (f1, . . . , fn) | g ∈ G}

be the G-orbit of (f1, . . . , fn). Classifying all n-subspace configurations with dimen-
sion vector (dimV, dim V1, . . . , dimVn) up to isomorphism corresponds to classifying
the G-orbits in Z.

It turns out that Problem 20.4 is much too hard for large n. But for small n one
can solve it.

Given two n-subspace configurations (V, V1, . . . , Vn) and (W,W1, . . . ,Wn), we define
their direct sum by

(V, V1, . . . , Vn)⊕ (W,W1, . . . ,Wn) = (V ⊕W,V1 ⊕W1, . . . , Vn ⊕Wn).

It follows that (V, V1, . . . , Vn)⊕(W,W1, . . . ,Wn) is again an n-subspace configuration.

An n-subspace configuration (V, V1, . . . , Vn) is indecomposable if it is not isomor-
phic to the direct sum of two non-zero n-subspace configurations. (We say that an
n-subspace configuration (V, V1, . . . , Vn) is zero, if V = 0.)

One can prove that any n-subspace configuration can be written (in a “unique way”)
as a direct sum of indecomposable n-subspace configurations. Thus to classify all
n-subspace configurations, it is enough to classify the indecomposable ones.

We will see for which n there are only finitely many indecomposable n-subspace
configurations.

Instead of asking for the classification of all n-subspace configurations, we might ask
the following easier question:

Problem 20.5. Classify the dimension vectors of the indecomposable n-subspace
configurations.

It turns out that there is a complete answer to Problem 20.5.

20.5. Exercises. 1: Classify all indecomposable 3-subspace configurations. Does
the result depend on the field K?

2: Solve the Kronecker problem as described above for V1 = V2 = K2 where K is
an algebraically closed field.

3: Find the publication of Kronecker where he solves the Kronecker problem.
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————————————————————————————-

21. Large and small submodules

21.1. Large and small submodules. Let V be a module, and let U be a sub-
module of V . The module U is called large in V if U ∩ U ′ 6= 0 for all non-zero
submodules U ′ of V . The module U is small in V if U + U ′ ⊂ V for all proper
submodules U ′ of V .

Lemma 21.1. Let U1 and U2 be submodules of a module V . If U1 and U2 are large
in V , then U1∩U2 is large in V . If U1 and U2 are small in V , then U1 +U2 is small
in V .

Proof. Let U1 and U2 be large submodules of V . If U is an arbitrary non-zero
submodule of V , then U2∩U 6= 0, since U2 is large. But we also get U1∩ (U2∩U) =
U1 ∩ U2 ∩ U 6= 0, since U1 is large. This implies (U1 ∩ U2) ∩ U 6= 0. Thus U1 ∩ U2 is
large as well.

If U1 and U2 are small submodule of V , and if U is an arbitrary submodule of V
with U1 +U2 +U = V , then U2 +U = V , since U1 is small. But this implies U = V ,
since U2 is small as well. �

Lemma 21.2. For 1 ≤ i ≤ n let Ui be a submodule of a module Vi. Set U =
U1 ⊕ · · · ⊕ Un and V = V1 ⊕ · · · ⊕ Vn. Then the following hold:

• U is large in V if and only if Ui is large in Vi for all i;
• U is small in V if and only if Ui is small in Vi for all i.

Proof. Let U be large in V . For some j let Wj 6= 0 be a submodule of Vj . Now we
consider Wj as a submodule of V . Since U is large in V , we get that Wj ∩ U 6= 0.
But we have

Wj ∩ U = (Wj ∩ Vj) ∩ U = Wj ∩ (Vj ∩ U) = Wj ∩ Uj .

This shows that Wj ∩ Uj 6= 0. So we get that Uj is large in Wj .

To show the converse, it is enough to consider the case n = 2. Let Ui be large in
Vi for i = 1, 2. Set V = V1 ⊕ V2. We first show that U1 ⊕ V2 is large in V : Let
W 6= 0 be a submodule of V . If W ⊆ V2, then 0 6= W ⊆ U1 ⊕ V2. If W 6⊆ V2, then
V2 ⊂ W + V2 and therefore V1 ∩ (W + V2) 6= 0. This is a submodule of V1, thus
U1 ∩ V1 ∩ (W + V2) 6= 0 because U1 is large in V1. Since U1 ∩ (W + V2) 6= 0, there
exists a non-zero element u1 ∈ U1 with u1 = w+ v2 where w ∈W and v2 ∈ V2. This
implies w = u1 − v2 ∈ W ∩ (U1 ⊕ V2). Since 0 6= u1 ∈ V1 and v2 ∈ V2 we get w 6= 0.
Thus we have shown that U1 ⊕ V2 is large in V . In the same way one shows that
V1 ⊕ U2 is large in V . The intersection of these two modules is U1 ⊕ U2. But the
intersection of two large modules is again large. Thus U1 ⊕ U2 is large in V .
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Next, assume that U is small in V . For some j let Wj be a submodule of Vj with
Uj +Wj = Vj . Set

W := Wj ⊕
⊕

i6=j

Vi.

This is a submodule of V with U +W = V . Since U is small in V , we get W = V ,
and therefore Wj = Vj .

To show the converse, it is enough to consider the case n = 2. For i = 1, 2 let Ui be
small in Vi, and set V = V1 ⊕ V2. We show that U1 = U1 ⊕ 0 is small in V : Let W
be a submodule of V with U1 +W = V . Since U1 ⊆ V1 we get

U1 + (W ∩ V1) = (U1 +W ) ∩ V1 = V ∩ V1 = V1.

Now U1 is small in V1, which implies W ∩V1 = V1. Therefore V1 ⊆W . In particular,
U1 ⊆ W and W = U1 + W = V . In the same way one shows that U2 = 0 ⊕ U2 is
small in V . Since the sum of two small modules is again small, we conclude that
U1 ⊕ U2 is small in V . �

End of Lecture 23

Let V be a module, and let U be a submodule of V . A submodule U ′ of V is called
a maximal complement of U in V if the following hold:

• U ∩ U ′ = 0;
• If U ′′ is a submodule with U ′ ⊂ U ′′, then U ∩ U ′′ 6= 0.

If U ′ is a maximal complement of U , then U + U ′ = U ⊕ U ′.

Lemma 21.3. Let V be a module. Every submodule U of V has a maximal comple-
ment. If U ′ is a maximal complement of U , then U ⊕ U ′ is large in V .

Proof. We show the existence by using Zorn’s Lemma: Let U be a submodule of V ,
and let W be the set of all submodules W of V with U ∩W = 0. Clearly, this set
is non-empty, and if Wi, i ∈ I form a chain in W, then also

⋃

i∈I

Wi

is in W. Thus W contains maximal elements. But if U ′ is maximal in W, then U ′

is a maximal complement of U .

If U ′ is a maximal complement of U in V , and if W is a submodule of V with
(U ⊕ U ′) ∩W = 0, then U + U ′ +W = U ⊕ U ′ ⊕W . Thus U ∩ (U ′ ⊕W ) = 0. The
maximality of U ′ yields U ′ ⊕W = U ′. This implies W = 0. It follows that U ⊕ U ′

is large in V . �

Recall that a module V is called uniform if U1∩U2 6= 0 for all non-zero submodules
U1 and U2 of V . It is easy to show that V is uniform if and only if all non-zero
submodules of V are large. It follows that a module V is uniform and has a simple
socle if and only if V contains a large simple submodule.
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Lemma 21.4. Let U 6= 0 be a cyclic submodule of a module V , and let W be a
submodule of V with U 6⊆ W . Then there exists a submodule W ′ of V with W ⊆W ′

such that U 6⊆ W ′ and W ′ is maximal with these properties. Furthermore, for each
such W ′, the module V/W ′ is uniform and has a simple socle, and we have

soc(V/W ′) = (U +W ′)/W ′.

Proof. Assume U is generated by x. Let V be the set of all submodules V ′ of V with
W ⊆ V ′ and x /∈ V ′.

Since W belongs to V, we known that V is non-empty. If Vi, i ∈ I is a chain of
submodules in V, then

⋃
i∈I Vi also belongs to V. (For each y ∈

⋃
i∈I Vi we have

y ∈ Vi for some i.) Now Zorn’s Lemma yields a maximal element in V.

Let W ′ be maximal in V. Thus we have W ⊆ W ′, x /∈ W ′ and U 6⊆ W ′. If now
W ′′ is a submodule of V with W ′ ⊂W ′′, then W ′′ does not belong to V. Therefore
x ∈W ′′ and also U ⊆W ′′.

Since W ′ ⊂ U +W ′, we know that (U +W ′)/W ′ 6= 0. Every non-zero submodule of
V/W ′ is of the form W ′′/W ′ for some submodule W ′′ of V with W ′ ⊂W ′′. It follows
that U ⊆ W ′′ and that (U +W ′)/W ′ ⊆ W ′′/W ′. This shows that (U +W ′)/W ′ is
simple. We also get that (U +W ′)/W ′ is large in V/W ′. This implies soc(V/W ′) =
(U +W ′)/W ′. �

Corollary 21.5. Let U 6= 0 be a cyclic submodule of a module V , and let W be a
submodule of V with U 6⊆W . If U+W = V , then there exists a maximal submodule
W ′ of V with W ⊆ W ′.

Proof. Let W ′ be a submodule of V with W ⊆ W ′ and U 6⊆ W ′ such that W ′ is
maximal with these properties. Assume U +W = V . This implies U +W ′ = V . By
Lemma 21.4 we know that

V/W ′ = (U +W ′)/W ′ = soc(V/W ′)

is simple. Thus W ′ is a maximal submodule of V . �

Corollary 21.6. For a finitely generated module V the following hold:

(i) rad(V ) is small in V ;
(ii) If V 6= 0, then rad(V ) ⊂ V ;
(iii) If V 6= 0, then V has maximal submodules.

Proof. Clearly, (i) implies (ii) and (iii). Let us prove (i): Assume V is a finitely
generated module, and let x1, . . . , xn be a generating set of V . Furthermore, let W
be a proper submodule of V . We show that W +rad(V ) is a proper submodule: For
0 ≤ t ≤ n let Wt be the submodule of V which is generated by W and the elements
x1, . . . , xt. Thus we obtain a chain of submodules

W = W0 ⊆W1 ⊆ · · · ⊆Wn = V.
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Since W ⊂ V , there exists some t with Wt−1 ⊂ Wt = V . Let U be the (cyclic)
submodule generated by xt. We get

U +Wt−1 = Wt = V,

and U 6⊆Wt−1. By Corollary 21.5 this implies that there exists a maximal submodule
W ′ of V with Wt−1 ⊆W ′. Since W ′ is a maximal submodule of V , we get rad(V ) ⊆
W ′. Thus

W + rad(V ) ⊆W +W ′ = W ′ ⊂ V.

This shows that rad(V ) is small in V . �

Corollary 21.7. Every proper submodule of a finitely generated module V is con-
tained in a maximal submodule of V .

Proof. This follows from the proof of Corollary 21.6. �

Proposition 21.8. Let V be a module. The intersection of all large submodules of
V is equal to soc(V ).

Proof. Let U0 be the intersection of all large submodules of V . We want to show that
soc(V ) is contained in every large submodule of V . This implies then soc(V ) ⊆ U0.

Let U be a large submodule of V . Assume soc(V ) is not contained in U . Then
U ∩ soc(V ) is a proper submodule of soc(V ). Since soc(V ) is generated by simple
submodules, there exists a simple submodule S of V which is not contained in U .
Now S is simple and therefore U ∩S = 0. Since S 6= 0, this is a contradiction. This
implies soc(V ) ⊆ U0.

Vice versa, we claim that U0 is semisimple: Let W be a submodule of U0. We have to
show that W is a direct summand of U0. Let W ′ be a maximal complement of W in
V . Since W ∩W ′ = 0, we get W ∩(W ′∩U0) = 0. It follows that W+(W ′∩U0) = U0:
Since W +W ′ is large in V , we have U0 ⊆W +W ′. Thus

W + (W ′ ∩ U0) = (W +W ′) ∩ U0 = U0.

Here we used modularity. Summarizing, we see that W ′∩U0 is a direct complement
of W in U0. Thus W is a direct summand of U0. This shows that U0 is semisimple,
which implies U0 ⊆ soc(V ). �

Proposition 21.9. Let V be a module. The sum of all small submodules of V is
equal to rad(V ). A cyclic submodule U of V is small in V if and only if U ⊆ rad(V ).

Proof. Let W be a maximal submodule of V . If U is a small submodule of V , we
get U ⊆ W . (Otherwise W ⊂ U +W = V by the maximality of W , and therefore
W = V since U is small in V .) Thus every small submodule of V is contained in
rad(V ). The same is true, if there are no maximal submodules in V , since in this
case we have rad(V ) = V .

Let U be a cyclic submodule contained in rad(V ). We want to show that U is small
in V . Let U ′ be a proper submodule of V . Assume that U + U ′ = V . Since U ′ is
a proper submodule, U cannot be a submodule of U ′. Thus there exists a maximal
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submodule W ′ with U ′ ⊆ W ′. Since U + U ′ = V , we obtain U + W ′ = V . In
particular, U is not contained in W ′. But U lies in the radical of V , and is therefore
a submodule of any maximal submodule of V , a contradiction. This proves that
U + U ′ ⊂ V , thus U is small in V .

Let U0 be the sum of all small submodule of V . We have shown already that
U0 ⊆ rad(V ). Vive versa, we show that rad(V ) ⊆ U0: Let x ∈ rad(V ). The cyclic
submodule U(x) generated by x is small, thus it is contained in U0. In particular,
x ∈ U0. Thus we proved that U0 = rad(V ). �

21.2. Local modules defined by idempotents. Recall that a module V is called
local if it contains a maximal submodule U , which contains all proper submodules
of V .

Lemma 21.10. Let e be an idempotent in A. Then Ae is a local module if and only
if eAe is a local ring.

End of Lecture 24

Proof. Let Ae be a local module, and let M be the maximal submodule of Ae. For
every element x ∈ Ae we have x = xe, thus M = Me. We have eM = eAe ∩M .
(Clearly, eM ⊆ eAe ∩M . The other inclusion follows from the fact that e is an
idempotent: If a ∈ A and eae ∈M , then eae = e(eae) ∈ eM .)

In particular we have eM = eMe ⊆ eAe. We have e ∈ eAe, but e does not belong
to M or eM . Thus eMe ⊂ eAe.

We claim that eMe is an ideal in eAe: Clearly, eAe · eMe ⊆ eMe. Since the right
multiplications with the elements from eAe are the endomorphisms of Ae, we have
Me · eAe ⊆Me. (Me is the radical of the module Ae.) Thus eMe · eAe ⊆ eMe.

If x ∈ eAe \ eMe, then x ∈ Ae and x /∈ M . (Note that exe = x.) Thus x generates
the local module Ae. It follows that there exists some y ∈ A with yx = e. Because
x = ex, we have

eye · x = eyx = e2 = e.

Thus x is left-invertible in eAe, and eye is right-invertible in eAe.

The element eye does not belong to eM , since eM is closed under right multiplication
with elements from eAe, and e /∈ eM . So we get eye ∈ eAe \ eMe.

Thus also the element eye has a left inverse in eAe. This proves that eye is invertible
in eAe. It follows that exe is invertible in eAe: Namely, we have

(eye)−1 · eye · x = (eye)−1e.

Multiplying both sides of this equation from the right with eye yields x · eye = e.

We have shown that all elements in eAe \ eMe are invertible, thus eAe is a local
ring.
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Vice versa, assume that eAe is a local ring. Then Ae is a non-zero cyclic module,
thus it has maximal submodules. Let M1 be a maximal submodule, and let M2 be
any proper submodule of Ae. Suppose M2 is not contained in M1. This implies
Ae = M1 + M2, thus e = x1 + x2 with xi ∈ Mi. We have e = ee = ex1 + ex2.
Since eAe is a local ring, one of the elements exi = exie, i = 1, 2 is invertible in
eAe. If e = yexi, then e belongs to Axi ⊆ Mi, thus Ae = Mi. By assumption both
modules M1 and M2 are proper submodules of Ae. This contradiction shows that
M1 contains all proper submodules of Ae, thus Ae is a local module. �

21.3. Exercises. 1: Are small submodules really “small”, and are large submodules
really “large”?

2: Classify the small submodules of (K[T ], T ·) and N(∞).

Are (K[T ], T ·) and N(∞) uniform modules?

3: Find an example of a module V and a submodule U of V such that U is large
and small in V .

4: When is 0 large (resp. small) in a module V ?

————————————————————————————-

22. The Jacobson radical of an algebra

In this section let A be a K-algebra.

22.1. The radical of an algebra. The radical of A is defined as

J(A) := rad(AA).

In other words, J(A) is the intersection of all maximal left ideals of A. Often one
calls J(A) the Jacobson radical of A.

Since the A-module AA is finitely generated (it is cyclic), we know that AA contains
maximal submodules, provided A 6= 0. In particular, J(A) = A if and only if A = 0.

Lemma 22.1. The radical J(A) is a two-sided ideal.

Proof. As an intersection of left ideals, J(A) is a left ideal. It remains to show that
J(A) is closed with respect to right multiplication. Let a ∈ A, then the right multi-
plication with a is a homomorphism AA→ AA, and it maps rad(AA) to rad(AA). �

Lemma 22.2. If A is semisimple, then J(A) = 0.

Proof. Obvious. (Why?) �

Lemma 22.3. Let x ∈ A. The following statements are equivalent:
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(i) x ∈ J(A);
(ii) For all a1, a2 ∈ A, the element 1 + a1xa2 has an inverse;
(iii) For all a ∈ A, the element 1 + ax has a left inverse;
(iv) For all a ∈ A, the element 1 + xa has a right inverse.

Proof. (i) =⇒ (ii): Let x ∈ J(A). We have to show that 1 + x is invertible. Since
x ∈ J(A), we know that x belongs to all maximal left ideals. This implies that 1+x
does not belong to any maximal left ideal (because 1 is not contained in any proper
ideal).

We claim that A(1 + x) = A: The module AA is finitely generated. Assume that
A(1 + x) is a proper submodule of AA. Then Corollary 21.7 implies that A(1 + x)
must be contained in a maximal submodule of AA, a contradiction.

Therefore there exists some a ∈ A with a(1 + x) = 1. Let y = a − 1. We have
a = 1 + y, thus (1 + y)(1 + x) = 1, which implies y + x + yx = 0. This implies
y = (−1− y)x ∈ Ax ⊆ J(A). Thus also 1 + y has a left inverse. We see that 1 + y
is left invertible and also right invertible. Thus its right inverse 1 + x is also its left
inverse. Since J(A) is an ideal, also a1xa2 belongs to J(A) for all a1, a2 ∈ A. Thus
all elements of the form 1 + a1xa2 are invertible.

(ii) =⇒ (iii): Obvious.

(iii) =⇒ (i): If x /∈ J(A), then there exists a maximal left ideal M , which does not
contain x. This implies A = M + Ax, thus 1 = y − ax for some y ∈ M and a ∈ A.
We get 1 + ax = y, and since y belongs to the maximal left ideal M , y cannot have
a left inverse.

(iii) ⇐⇒ (iv): Condition (ii) is left-right symmetric. �

Corollary 22.4. The radical J(A) of A is the intersection of all maximal right
ideals.

Proof. Condition (ii) in Lemma 22.3 is left-right symmetric. �

Lemma 22.5. If I is a left ideal or a right ideal of A, which consists only of nilpotent
elements, then I is contained in J(A).

Proof. Let I be a left ideal of A, and assume all elements in I are nilpotent. It is
enough to show that for all x ∈ I the element 1+x is left-invertible. (If a ∈ A, then
ax ∈ I.) Since x is nilpotent, we can define

z =
∑

i≥0

(−1)ixi = 1− x+ x2 − x3 + · · · .

We get (1 + x)z = 1 = z(1 + x). The left-right symmetry shows that every right
ideal, which consists only of nilpotent elements is contained in the radical. �

Warning: Nilpotent elements do not have to belong to the radical, as the following
example shows: Let A = M2(K). Then A is a semisimple algebra, thus J(A) = 0.
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But of course A contains many nilpotent elements, for example

x =

(
0 1
0 0

)
.

But observe that there are elements y in Ax which are not nilpotent. In other words
1 + y is not invertible. For example

e =

(
0 0
0 −1

)

is in Ax and 1 + e is not invertible. We can also construct maximal left ideals of A
which do not contain x.

Proposition 22.6. Let a ∈ A. Then a ∈ J(A) if and only if aS = 0 for all simple
A-modules S.

Proof. Let T be a simple A-module, and let x be a non-zero element in T . The map
f : AA → T defined by f(b) = bx is an A-module homomorphism. Since x 6= 0, we
have f 6= 0. Since T is simple, f is surjective and the kernel of f is a maximal left
ideal. It follows from the definition of J(A) that J(A) is contained in the kernel of
f . Thus J(A)x = 0, and therefore J(A)T = 0.

Vice versa, assume aS = 0 for all simple A-modules S. We assume that a does not
belong to J(A). Since J(A) is the intersection of all maximal left ideals, there exists
a maximal left ideal I with a /∈ I. We know that SI := AA/I is a simple A-module.
For b ∈ A set b = b+ I. It follows that a 6= 0. Since

a · 1 = a · 1 = a 6= 0

we have aSI 6= 0. This contradiction shows that a ∈ J(A). �

In other words, the radical J(A) is the intersection of the annihilators of the simple
A-modules. (Given an A-module M , the annihilator of M in A is the set of all
a ∈ A such that aM = 0.)

End of Lecture 25

Corollary 22.7. For every A-module M we have J(A)M ⊆ rad(M).

Proof. If M ′ is a maximal submodule of M , then M/M ′ is a simple A-module, thus
J(A)(M/M ′) = 0. This implies J(A)M ⊆ M ′. Since J(A)M is contained in all
maximal submodules of M , it is also contained in the intersection of all maximal
submodules of M . �

Warning: In general, we do not have an equality J(A)M = rad(M): Let A = K[T ].
Then J(K[T ]) = 0, and therefore J(K[T ])M = 0 for all K[T ]-modules M . But for
the K[T ]-module N(2) we have rad(N(2)) ∼= N(1) 6= 0.

Corollary 22.8. If M is a finitely generated A-module, M ′ is a submodule of M
and M ′ + J(A)M = M , then M ′ = M .
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Proof. Assume M is finitely generated and M ′ is a submodule of M with M ′ +
J(A)M = M . By Corollary 22.7 we know that J(A)M ⊆ rad(M). Thus M ′ +
rad(M) = M . Since M is finitely generated Corollary 21.6 implies that rad(M) is
small in M . Thus we get M ′ = M . �

Corollary 22.9 (Nakayama Lemma). If M is a finitely generated A-module such
that J(A)M = M , then M = 0.

Proof. In Corollary 22.8 take M ′ = 0. �

Lemma 22.10. The algebra A is a local ring if and only if A/J(A) is a skew field.

Proof. If A is a local ring, then J(A) is a maximal left ideal. Thus A/J(A) is a ring
which contains only one proper left ideal, namely the zero ideal. Thus A/J(A) is a
skew field.

Vice versa, if A/J(A) is a skew field, then J(A) is a maximal left ideal. We have to
show that J(A) contains every proper left ideal: Let L be a left ideal, which is not
contained in J(A). Thus J(A)+L = A. Now J(A) = rad(AA) is a small submodule
of AA, since AA is finitely generated. Thus L = A. �

Theorem 22.11. If A/J(A) is semisimple, then for all A-modules M we have

J(A)M = rad(M).

Proof. We have seen that J(A)M ⊆ rad(M). On the other hand, M/J(A)M is
annihilated by J(A), thus it is an A/J(A)-module. Since A/J(A) is semisimple, each
A/J(A)-module is a semisimple A/J(A)-module, thus also a semisimple A-module.
But if M/J(A)M is semisimple, then rad(M) has to be contained in J(A)M . �

Examples: If A = K[T ], then A/J(A) = A/0 = A. So A/J(A) is not semisimple.
If A is an algebra with l(AA) < ∞ (for example if A is finite-dimensional), then
A/J(A) = AA/ rad(AA) is semisimple.

Lemma 22.12. If e is an idempotent in A, then J(eAe) = eJ(A)e = J(A) ∩ eAe.

Proof. We have J(A) ∩ eAe ⊆ eJ(A)e, since x ∈ eAe implies x = exe. Thus, if
additionally x ∈ J(A), then x = exe belongs to eJ(A)e.

Next we show that eJ(A)e ⊆ J(eAe): Let x ∈ J(A). If a ∈ A, then 1 + eae · x · e
is invertible, thus there exists some y ∈ A with y(1 + eaexe) = 1. This implies
eye(e + eaexe) = ey(1 + eaexe)e = e. Thus all elements in e + eAe(exe) are left-
invertible. This shows that exe belongs to J(eAe).

Finally, we show that J(eAe) ⊆ J(A) ∩ eAe: Clearly, J(eAe) ⊆ eAe, thus we have
to show J(eAe) ⊆ J(A). Let S be a simple A-module. Then eS = 0, or eS is a
simple eAe-module. Thus J(eAe)eS = 0, and therefore J(eAe)S = 0, which implies
J(eAe) ⊆ J(A). �
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22.2. Exercises. 1: Let Q be a quiver. Show that the radical J(KQ) has as a basis
the set of all paths from i to j such that there is no path from j to i, where i and j
run through the set of vertices of Q.

***********************************************************************
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Part 5. Projective modules

23. Projective modules

In this section let A be a K-algebra. As before, let Mod(A) be the category of left
A-modules, and let mod(A) be the full subcategory of finitely generated A-modules.

23.1. Definition of a projective module. An A-module P is called projective
if for any epimorphism g : M → N and any homomorphism h : P → N there exists
a homomorphism h′ : P → M such that g ◦ h′ = h. This is called the “lifting
property”.

M

g

��
P

h′
>>}

}
}

}
h // N

An A-module P is projective if and only if for every epimorphism g : M → N of
A-modules the induced map

HomA(P, g) : HomA(P,M)→ HomA(P,N)

is surjective. For every A-module X, the functor HomA(X,−) is left exact. Thus a
module P is projective if and only if HomA(P,−) is exact.

(A functor F : Mod(A) → Mod(B) is exact if for every short exact sequence 0 →
U → V → W → 0 in Mod(A) the sequence 0 → F (U) → F (V ) → F (W ) → 0 is
exact in Mod(B).)

Recall that an A-module F is free if F is isomorphic to a direct sum of copies of
the regular representation AA.

Lemma 23.1. Free modules are projective.

Proof. Let F be a free A-module with free generating set X. Let g : M → N be an
epimorphism of A-modules, and let h : F → N be any homomorphism of A-modules.
For every x ∈ X we look at the image h(x). Since g is surjective there exists some
mx ∈ M with g(mx) = h(x). Define a homomorphism h′ : F → M by h′(x) = mx.
Since X is a free generating set of X, there exists exactly one such homomorphism
h′. For every x ∈ X we have (g ◦ h′)(x) = h(x), and this implies gh′ = h, since X is
a generating set of F . �

The map h′ constructed in the proof of the above lemma is in general not uniquely
determined. There can be many different maps h′ with the property gh′ = h:

For example, for F = AA the set {1A} is a free generating set. Let M be an
A-module and let U be a submodule of M . By g : M → M/U we denote the
corresponding projection map. This is a typical epimorphism. For x ∈ M let x =
x+U be the corresponding residue class inM/U . Let h : AA→M/U be an arbitrary
homomorphism. Then h(1A) = x for some x ∈ M . Now the homomorphisms
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h′ : AA→ M such that gh′ = h correspond to the elements in x = x+ U = {x+ u |
u ∈ U}, namely we can take any x + u ∈ x + U and then define h′(1A) = x + u.
Thus if U 6= 0, then there are many such homomorphisms h′.

Lemma 23.2. A direct sum of modules is projective if and only if each direct sum-
mand is projective.

Proof. Let g : M → N be an epimorphism. First let P =
⊕

i∈I Pi with Pi projective
for all I. For a homomorphism h : P → N let hi : Pi → N be its restriction to Pi.
For every hi there exists a lifting, i.e. there exists a homomorphism h′i : Pi → M
with gh′i = hi. Define h′ :

⊕
i∈I Pi → M such that the restriction of h′ to Pi is just

h′i. This implies gh′ = h.

Vice versa, let P be a projective module, and let P = P1⊕P2 be a direct decompo-
sition of P . For a homomorphism h1 : P1 → N let h = [h1, 0] : P1 ⊕ P2 → N . Since
P is projective, there exists a homomorphism h′ : P → M with gh′ = h. We can
write h′ = [h′1, h

′
2] with h′i : Pi →M . It follows gh′1 = h1. �

End of Lecture 26

Lemma 23.3. For a module P the following are equivalent:

(i) P is projective;
(ii) Every epimorphism M → P splits;
(iii) P is isomorphic to a direct summand of a free module.

Furthermore, a projective module P is a direct summand of a free module of rank c
if and only if P has a generating set of cardinality c.

Proof. (i) =⇒ (ii): Let M be an A-module, and let g : M → P be an epimorphism.
For the identity map 1P : P → P the lifting property gives a homomorphism h′ : P →
M with g ◦ h′ = 1P . Thus g is a split epimorphism.

(ii) =⇒ (iii): There exists an epimorphism f : F → P where F is a free A-module.
Since f splits, P is isomorphic to a direct summand of a free module.

(iii) =⇒ (i): The class of projective modules contains all free modules and is closed
under direct summands.

Now we proof the last statement of the Lemma: If P has a generating set X of
cardinality c, then let F be a free module of rank c. Thus F has a generating set of
cardinality c. We get an epimorphism F → P which has to split.

Vice versa, if P is a direct summand of a free module F of rank c, then P has a
generating set of cardinality c: We choose an epimorphism f : F → P , and if X is
a generating set of F , then f(X) is a generating set of P . �

Thus an A-module P is finitely generated and projective if and only if P is a direct
summand of a free module of finite rank.
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Let Proj(A) be the full subcategory of Mod(A) of all projective A-modules, and set
proj(A) := Proj(A) ∩mod(A).

Warning: There exist algebras A such that AA is isomorphic to AA ⊕ AA. Thus
the free module AA has rank n for any positive integer n. For example, take as A
the endomorphism algebra of an infinite dimensional vector space.

Corollary 23.4. If P and Q are indecomposable projective modules, and if p : P →
Q an epimorphism, then p is an isomorphism.

Proof. Since Q is projective, p is a split epimorphism. But P is indecomposable and
Q 6= 0. Thus p has to be an isomorphism. �

Recall that a submodule U of a module M is small in M if U + U ′ ⊂ M for all
proper submodules U ′ of M .

As before, by J(A) we denote the radical of an algebra A.

Lemma 23.5. If P is a projective A-module, then

J(EndA(P )) = {f ∈ EndA(P ) | Im(f) is small in P}.

Proof. Let J := J(EndA(P )). Let f : P → P be an endomorphism such that the
image Im(f) is small in P . If g ∈ EndA(P ) is an arbitrary endomorphism, then
Im(fg) ⊆ Im(f), thus Im(fg) is also small in P . Clearly, we have

P = Im(1P ) = Im(1P + fg) + Im(fg).

Since Im(fg) is small, we get that 1P + fg is surjective. But P is projective,
therefore 1P + fg is a split epimorphism. Thus there exists some h ∈ EndA(P ) with
(1P + fg)h = 1P . We have shown that the element 1P + fg has a right inverse for
all g ∈ EndA(P ). Thus f belongs to J .

Vice versa, assume f ∈ J . Let U be a submodule of P with P = Im(f)+U , and let
p : P → P/U be the projection. Since P = Im(f)+U , we know that pf is surjective.
But P is projective, therefore there exists some p′ : P → P with p = pfp′. Now
1P − fp′ is invertible, because f ∈ J . Since p(1P − fp′) = 0 we get p = 0. This
implies U = P . It follows that Im(f) is small in P . �

Corollary 23.6. Let P be a projective A-module. If rad(P ) is small in P , then

J(EndA(P )) = {f ∈ EndA(P ) | Im(f) ⊆ rad(P )}.

Proof. Each small submodule of a module M is contained in rad(M). If rad(M)
is small in M , then the small submodules of M are exactly the submodules of
rad(M). �

23.2. The radical of a projective module.

Lemma 23.7. If P is a projective A-module, then rad(P ) = J(A)P .
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Proof. By definition J(A) = rad(AA) and J(A)A = J(A). This shows that the
statement is true for P = AA. Now let Mi, i ∈ I be a family of modules. We have

J(A)

(
⊕

i∈I

Mi

)
=
⊕

i∈I

J(A)Mi and rad

(
⊕

i∈I

Mi

)
=
⊕

i∈I

rad(Mi).

We know that J(A)M ⊆ rad(M) for all modules M . Thus we get

J(A)

(
⊕

i∈I

Mi

)

=
⊕

i∈I

J(A)Mi ⊆
⊕

i∈I

rad(Mi) = rad

(
⊕

i∈I

Mi

)

.

This is a proper inclusion only if there exists some i with J(A)Mi ⊂ rad(Mi). Thus,
if J(A)Mi = rad(Mi) for all i, then J(A)

(⊕
i∈IMi

)
= rad

(⊕
i∈IMi

)
. This shows

that the statement is true for free modules.

Vice versa, if J(A)
(⊕

i∈IMi

)
= rad

(⊕
i∈IMi

)
, then J(A)Mi = rad(Mi) for all i.

Since projective modules are direct summands of free modules, and since we proved
the statement already for free modules, we obtain it for all projective modules. �

23.3. Cyclic projective modules.

Lemma 23.8. Let P be an A-module. Then the following are equivalent:

(i) P is cyclic and projective;
(ii) P is isomorphic to a direct summand of AA;
(iii) P is isomorphic to a module of the form Ae for some idempotent e ∈ A.

Proof. We have shown before that a submodule U of AA is a direct summand of AA
if and only if there exists an idempotent e ∈ A such that U = Ae.

If e is any idempotent in A, then AA = Ae ⊕ A(1 − e) is a direct decomposition.
Thus Ae is a direct summand of AA, and Ae is projective and cyclic.

Vice versa, let U be a direct summand of AA, say AA = U ⊕ U ′. Write 1 = e + e′

with e ∈ U and e′ ∈ U ′. This implies U = Ae and U ′ = Ae′, and one checks easily
that e, e′ form a complete set of orthogonal idempotents. �

Lemma 23.9. Let P be a projective A-module. If P is local, then EndA(P ) is a
local ring.

Proof. If P is local, then P is obviously cyclic. A cyclic projective module is of the
form Ae for some idempotent e ∈ A, and its endomorphism ring is (eAe)op. We
have seen that Ae is a local module if and only if eAe is a local ring. Furthermore,
we know that eAe is a local ring if and only if (eAe)op is a local ring. �

The converse of Lemma 23.9 is also true. We will not use this result, so we skip the
proof.

End of Lecture 27



REPRESENTATION THEORY OF ALGEBRAS I: MODULES 139

23.4. Submodules of projective modules. Let A be an algebra, and let

0→ M ′ → P →M → 0

be a short exact sequence of A-modules. If M is an arbitrary module, then such a
sequence exists, because every module is factor module of a projective module. If
we fix M and look at all possible sequence of the above form, then the modules M ′

are similar to each other, in fact they are “stably equivalent”.

Every module can be written as a factor module of a projective module, but the
submodules of projective modules are in general a very special class of modules.

For example there are algebras, where submodules of projective modules are always
projective.

An A-module M is called torsion free if M is isomorphic to a submodule of a
projective module.

Lemma 23.10 (Schanuel). Let P and Q be projective modules, let U be a submodule
of P and V a submodule of Q. If P/U ∼= Q/V , then U ⊕Q ∼= V ⊕ P .

Proof. Let M := P/U , and let p : P → M be the projection map. Similarly, let
q : Q→ M be the epimorphism with kernel V (since Q/V is isomorphic to M such
a q exists).

We construct the pullback of (p, q) and obtain a commutative diagram

E
p′ //

q′

��

Q

q

��
P

p // M

where p′ is an epimorphism with kernel isomorphic to U = Ker(p), and q′ is an
epimorphism with kernel isomorphic to V = Ker(q): Set U ′ := Ker(p′) and V ′ :=
Ker(q′). We get a diagram

0

��

0

��
V ′

��

iV //___ V

��
0 // U ′ //

iU
���
�
� E

p′ //

q′

��

Q

q

��

// 0

0 // U // P

��

p // M //

��

0

0 0
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We can assume E = {(v, w) ∈ P ⊕Q | p(v) = q(w)}, q′(v, w) = v and p′(v, w) = w
for all (v, w) ∈ E. Now it is easy to define homomorphisms iU and iV such that
everything commutes, and then ones shows that iU and iV are in fact isomorphisms.

Since Q is projective, p′ is a split epimorphism, which implies E ∼= U ⊕Q. Since P
is projective as well, q′ is a split epimorphism, thus E ∼= V ⊕ P . �

Lemma 23.11. Let

0→ U
u
−→ P

p
−→W → 0

be a short exact sequence of A-modules with P a projective module. Then this se-
quence induces every short exact sequence which ends in W .

Proof. Let

0→ U ′ f
−→ V ′ g

−→W → 0

be an arbitrary short exact sequence of A-modules. Since g is an epimorphism, the
lifting property of the projective module P yields a homomorphism p′ : P → V ′ such
that gp′ = p. This implies gp′u = pu = 0. Thus p′u can be factorized through the
kernel of g. So there exists some h : U → U ′ such that p′u = fh. Thus we obtain
the following commutative diagram with exact rows:

0 // U
u //

h
��

P
p //

p′

��

W // 0

0 // U ′
f // V ′

g // W // 0

This shows that (f, g) is the short exact sequence induced by h. �

Lemma 23.12. Let U be a submodule of a projective module P such that for every
endomorphism f of P we have f(U) ⊆ U . Define

f∗ : P/U → P/U

by f∗(x+ U) := f(x) + U . Then the following hold:

(i) f∗ is an endomorphism of P/U ;
(ii) The map f 7→ f∗ defines a surjective algebra homomorphism

EndA(P )→ EndA(P/U)

with kernel {f ∈ EndA(P ) | Im(f) ⊆ U}.

Proof. Let p : P → P/U be the projection. Thus f∗ is defined via p ◦ f = f∗ ◦ p. It
is easy to show that this is really an A-module homomorphism, and that f 7→ f∗
defines an algebra homomorphism. The description of the kernel is also obvious.

It remains to show the surjectivity: Here we use that P is projective. If g is an
endomorphism of P/U , there exists a lifting of g ◦ p : P → P/U . In other words
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there exists a homomorphism g′ : P → P such that p ◦ g′ = g ◦ p.

P

p

��

P p
//

g′
55llllllllll

P/U g
// P/U

Thus we get g′∗ = g. �

Let M be an A-module. For all f ∈ EndA(M) we have f(rad(M)) ⊆ rad(M). Thus
the above lemma implies that for any projective module P there is a surjective
algebra homomorphism EndA(P ) → EndA(P/ rad(P )), and the kernel is the set of
all endomorphisms of P whose image is contained in rad(P ).

We have shown already: If rad(P ) is a small submodule of P , then the set of all
endomorphisms of P whose image is contained in rad(P ) is exactly the radical of
EndA(P ). Thus, we proved the following:

Corollary 23.13. Let P be a projective A-module. If rad(P ) is small in P , then

EndA(P )/J(EndA(P )) ∼= EndA(P/ rad(P )).

23.5. Projective covers. Let M be an A-module. A homomorphism p : P → M
is a projective cover of M if the following hold:

• P is projective;
• p is an epimorphism;
• Ker(p) is a small submodule of P .

In this situation one often calls the module P itself a projective cover of M and
writes P = P (M).

Lemma 23.14. Let P be a finitely generated projective module. Then the projection
map P → P/ rad(P ) is a projective cover.

Proof. The projection map is surjective and its kernel is rad(P ). By assumption P
is projective. For every finitely generated module M the radical rad(M) is a small
submodule of M . Thus rad(P ) is small in P . �

Warning: If P is an arbitrary projective A-module, then rad(P ) is not necessarily
small in P : For example, let A be the subring of K(T ) consisting of all fractions
of the form f/g such that g is not divisible by T . This is a local ring. Now let
P be a free A-module of countable rank, for example the module of all sequences
(a0, a1, . . .) with ai ∈ A for all i such that only finitely many of the ai are non-zero.
The radical U = rad(P ) consists of all such sequences with ai divisible by T for all
i. We define a homomorphism f : P → AK(T ) by

f(a0, a1, . . .) =
∑

i≥0

T−iai = a0 +
a1

T
+
a2

T 2
+ · · · .
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Let W be the kernel of f . Since f 6= 0, W is a proper submodule of P . On the
other hand we will show that U +W = P . Thus U = rad(P ) is not small in P . Let
a = (a0, a1, . . .) be a sequence in P and choose n such that aj = 0 for all j > n.
Define b = (b0, b1, . . .) by

bn+1 =
n∑

i=0

T n−i+1ai = a0T
n+1 + a1T

n + · · ·+ anT

and bj = 0 for all j 6= n+ 1. Since b belongs to TA, we know that b is in U . On the
other hand f(b − a) = 0, thus b − a ∈ W . We see that a = b − (b − a) belongs to
U +W .

Given two projective covers pi : Pi →Mi, i = 1, 2, then the direct sum

p1 ⊕ p2 : P1 ⊕ P2 →M1 ⊕M2

is a projective cover. Here

p1 ⊕ p2 =

(
p1 0
0 p2

)
.

The map p1 ⊕ p2 is obviously an epimorphism and its kernel is Ker(p1) ⊕ Ker(p2).
By assumption Ker(pi) is small in Pi, thus Ker(p1)⊕Ker(p2) is small in P1 ⊕ P2.

Warning: Given infinitely many projective modules Pi with small submodules Ui,
then

⊕
i∈I Ui is not necessarily small in

⊕
i∈I Pi.

Lemma 23.15 (Projective covers are unique). Let p1 : P1 →M be a projective cover,
and let p2 : P2 →M be an epimorphism with P2 projective. Then the following hold:

• There exists a homomorphism f : P2 → P1 such that p1 ◦ f = p2;
• Each homomorphism f : P2 → P1 with p1 ◦ f = p2 is a split epimorphism;
• If p2 is also a projective cover, then every homomorphism f : P2 → P1 with
p1 ◦ f = p2 is an isomorphism.

Proof. Since p1 is an epimorphism, and since P2 is projective, there exists a homo-
morphism f with p1f = p2.

P1

p1

��
P2

f
>>}

}
}

} p2 // M

We have to show that each such f is a split epimorphism: We show that

Ker(p1) + Im(f) = P1.

For x ∈ P1 we have p1(x) ∈ M . Since p2 is surjective, there exists some x′ ∈ P2

such that p1(x) = p2(x
′) = (p1f)(x′). Thus p1(x− f(x′)) = 0. We see that x− f(x′)

belongs to Ker(p1), thus x = (x−f(x′))+f(x′) lies in Ker(p1)+Im(f). Now Ker(p1)
is small in P1, which implies Im(f) = P1. We have shown that f is surjective. But
each epimorphism to a projective module is a split epimorphism.
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Now we assume that p2 is also a projective cover. Again let f : P2 → P1 be a homo-
morphism with p1f = p2. Since f is a split epimorphism, there exists a submodule
U of P2 with Ker(f)⊕ U = P2. We show that

Ker(p2) + U = P2.

If y ∈ P2, then there exists some y′ ∈ P1 with p2(y) = p1(y
′). We know that

f : P2 → P1 is surjective, thus y′ has a preimage in P2. Since P2 = Ker(f)⊕ U , we
can find this preimage in U . Thus there is some u ∈ U with f(u) = y′. Summarizing,
we get p2(y) = p1(y

′) = (p1f)(u) = p2(u). We see that y − u belongs to Ker(p2),
thus y = (y−u)+u ∈ Ker(p2) +U . Since Ker(p2) is small in P2 we get U = P2 and
therefore Ker(f) = 0. Thus f is also injective.

So projective covers are (up to isomorphism) uniquely determined. Also, if p : P →
M is a projective cover, and f : P → P is a homomorphism with p ◦ f = p, then f
is an isomorphism. �

Corollary 23.16. Let P and Q be finitely generated projective modules. Then P ∼=
Q if and only if P/ rad(P ) ∼= Q/ rad(Q).

Proof. Since P and Q are finitely generated projective modules, the projections
p : P → P/ rad(P ) and q : Q→ Q/ rad(Q) are projective covers. If f : P/ rad(P )→
Q/ rad(Q) is an isomorphism, then f ◦ p : P → Q/ rad(Q) is a projective cover. The
uniqueness of projective covers yields P ∼= Q. The other direction is obvious. �

Corollary 23.17. Let P be a direct sum of local projective modules. If U is a
submodule of P which is not contained in rad(P ), then there exists an indecomposable
direct summand P ′ of P which is contained in U .

Proof. Let P =
⊕

i∈I Pi with local projective modules Pi. Let U be a submodule of
P which is not contained in rad(P ). We have rad(P ) =

⊕
i∈I rad(Pi) and therefore

P/ rad(P ) =
⊕

i∈I

Pi/ rad(Pi).

Let u : U → P be the inclusion map, and let p : P → P/ rad(P ) be the projection.
Finally, for every i ∈ I let πi : P/ rad(P )→ Pi/ rad(Pi) also be the projection. The
composition pu is not the zero map. Thus there exists some i ∈ I with πipu 6= 0.
Since Pi/ rad(Pi) is a simple module, πipu is surjective. Let pi : Pi → Pi/ rad(Pi)
be the projection. Since Pi is a local projective module, pi is a projective cover.
By the surjectivity of πipu the lifting property of Pi yields an f : Pi → U such that
πipuf = pi. Now we use that pi is an epimorphism: The lifting property of P gives
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us a homomorphism g : P → Pi with pig = πip.

U

u

��
P

p

��

g

}}{
{

{
{

{
{

{
{

{
{

{

P/ rad(P )

πi

��
Pi

pi //

f

CC�
�

�
�

�
�

�
�

�
�

�
�

�
�

Pi/ rad(Pi)

Thus we have
piguf = πipuf = pi.

Since pi is a projective cover, guf must be an isomorphism. Thus we see that uf is
a split monomorphism whose image P ′ := Im(uf) is a direct summand of P which
is isomorphic to Pi. Clearly, P ′ as the image of uf is contained in U = Im(f). �

Lemma 23.18. Let P be a finitely generated projective A-module, and let M be
a finitely generated module. For a homomorphism p : P → M the following are
equivalent:

(i) p is a projective cover;
(ii) p is surjective and Ker(p) ⊆ rad(P );
(iii) p induces an isomorphism P/ rad(P )→M/ rad(M).

Proof. (i) =⇒ (ii): Small submodules of a module are always contained in the
radical.

(ii) =⇒ (iii): Since Ker(p) ⊆ rad(P ) we have rad(P/Ker(p)) = rad(P )/Ker(p).
Now p induces an isomorphism P/Ker(p) → M which maps rad(P/Ker(p)) onto
rad(M) and induces an isomorphism P/ rad(P )→M/ rad(M).

(iii) =⇒ (i): We assume that p : P →M induces an isomorphism p∗ : P/ rad(P )→
M/ rad(M). This implies rad(M) + Im(p) = M . Since M is a finitely generated
module, its radical is a small submodule. Thus Im(p) = M . We see that p is an
epimorphism. Since p∗ is injective, the kernel of p must be contained in rad(P ). The
radical rad(P ) is small in P because P is finitely generated. Now Ker(p) ⊆ rad(P )
implies that Ker(p) is small in P . �

————————————————————————————-

24. Digression: The stable module category

Let C be a K-linear category. An ideal I in C is defined as follows: To each
pair (C,C ′) of objects C,C ′ ∈ C there is a subspace I(C,C ′) of HomC(C,C

′) such
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that for arbitrary morphisms f : D → C, h : C ′ → D′ and g ∈ I(C,C ′) we have
h ◦ g ◦ f ∈ I(D,D′).

If I is an ideal in C we can define the factor category C/I as follows: The objects
are the same as in C and

HomC/I(C,C
′) := HomC(C,C

′)/I(C,C ′).

The composition of morphisms is defined in the obvious way.

If X is a class of objects in C which is closed under finite direct sums, then we say
that f : C → C ′ factors through X , if f = f2 ◦ f1 with f1 : C → X, f2 : X → C ′

and X ∈ X . Let I(X )(C,C ′) be the set of morphisms C → C ′ which factor through
X . In this way we obtain an ideal I(X ) in C.

Now let A be an arbitrary K-algebra, and as before let Proj(A) be the full subcate-
gory of projective A-modules. The stable module category of Mod(A) is defined
as

Mod(A) = Mod(A)/I(Proj(A)).

Define

Hom(M,N) := HomMod(A)/Proj(A)(M,N) = HomA(M,N)/I(Proj(A))(M,N).

Similarly, we define mod(A) = mod(A)/I(proj(A)).

Thus the objects of Mod(A) are the same ones as in Mod(A), namely just the
A-modules. But it follows that all projective A-modules become zero objects in
Mod(A): If P is a projective A-module, then 1P lies in I(Proj(A))(P, P ). Thus 1P
becomes zero in Mod(A). Vice versa, if a module M is a zero object in Mod(A),
then M is a projective A-module: If 1M factors through a projective A-module, then
M is a direct summand of a projective module and therefore also projective.

Now Schanuel’s Lemma implies the following: If M is an arbitrary module, and if
p : P → M and p′ : P ′ → M are epimorphisms with P and P ′ projective, then the
kernels Ker(p) and Ker(p′) are isomorphic in the category Mod(A).

If we now choose for every module M an epimorphism p : P →M with P projective,
then M 7→ Ker(p) yields a functor Mod(A) → Mod(A). If we change the choice of
P and p, then the isomorphism class of Ker(p) in Mod(A) does not change.

So it makes sense to work with an explicit construction of a projective module P
and an epimorphism p : P → M . Let M be a module, and let F (M) be the free
module with free generating set |M | (the underlying set of the vector space M).
Define

p(M) : F (M)→ M

by m 7→ m. In this way we obtain a functor F : Mod(A)→ Mod(A)

Let Ω(M) be the kernel of p(M), and let

u(M) : Ω(M)→ F (M)
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be the corresponding inclusion. Then Ω: Mod(A) → Mod(A) is a functor and
u : Ω→ F is a natural transformation. We obtain a short exact sequence

0→ Ω(M)→ F (M)→M → 0

with F (M) a free (and thus projective) module. One calls Ω the loop functor or
syzygy functor. This is a functor but it is not at all additive.

For example, if M = 0, then F (M) = AA and Ω(M) = AA.

Future: Let A be a finite-dimensional K-algebra. We will meet stable homomor-
phism spaces in Auslander-Reiten theory, for example the Auslander-Reiten formula
reads

Ext1
A(N, τ(M)) ∼= DHomA(M,N),

for all finite-dimensional A-modules M and N . If A has finite global dimension, we
have

mod(Â) ∼= Db(A)

where Â is the repetitive algebra of A and Db(A) is the derived category of bounded
complexes of A-modules.

————————————————————————————-

25. Projective modules over finite-dimensional algebras

There is a beautiful general theory on projective modules, however one can cut
this short and concentrate on finite-dimensional projective modules over finite-
dimensional algebras. The results in this section can be generalized considerably.
The general theory is developed in Sections 27 and 28.

Theorem 25.1 (Special case of Theorem 28.1). Let A be a finite-dimensional alge-
bra. Then A/J(A) is semisimple.

Proof. The module AA is a finite direct sum of local modules, thus AA/ rad(AA) is
a finite sum of simple modules and therefore semisimple. �

Theorem 25.2 (Special case of Theorem 28.2). Let A be a finite-dimensional alge-
bra. If

AA = P1 ⊕ · · · ⊕ Pn

is a direct decomposition of the regular representation into indecomposable modules
Pi, then each finite-dimensional indecomposable projective A-module is isomorphic
to one of the Pi.

Proof. For each finite-dimensional indecomposable projective A-module P there ex-
ists an epimorphism F → P with F a free A-module of finite rank. In particular F
is finite-dimensional. Since P is projective, this epimorphism splits. Then we use
the Krull-Remak-Schmidt Theorem. �
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Theorem 25.3 (Special case of Theorem 28.3). Let A be a finite-dimensional alge-
bra. The map P 7→ P/ rad(P ) yields a bijection between the isomorphism classes of
finite-dimensional indecomposable projective A-modules and the isomorphism classes
of simple A-modules.

End of Lecture 29

Proof. If P and Q are isomorphic modules, then P/ rad(P ) and Q/ rad(Q) are also
isomorphic. Therefore P 7→ P/ rad(P ) yields a well defined map.

The map is surjective: Let S be a simple module. We write AA =
⊕n

i=1 Pi with
indecomposable modules Pi. Since Pi is of finite length and indecomposable, we
know that EndA(Pi) is a local ring. Furthermore, Pi = Aei for some idempotent ei ∈
A. Since EndA(Pi) ∼= (eiAei)

op we know that eiAei is also a local ring. Therefore,
Lemma 21.10 implies that Aei is a local module.

There exists a non-zero homomorphism AA→ S, and therefore for at least one index
i we get a non-zero map f : Pi → S. Since S is simple, we know that f is surjective.
Furthermore, the kernel of f is rad(Pi) because Pi is local. Thus S is isomorphic to
Pi/ rad(Pi).

The map is injective: Let P and Q be finite-dimensional indecomposable projective
modules such that P/ rad(P ) ∼= Q/ rad(Q). Then Corollary 23.16 implies that
P ∼= Q. �

If P is a local projective module, then S := P/ rad(P ) is a simple module and
P (S) := P is the projective cover of S.

Theorem 25.4 (Special case of Theorem 28.4). Let A be a finite-dimensional al-
gebra, and let P be a finite-dimensional indecomposable projective A-module. Set
S := P/ rad(P ). Then the following hold:

(i) P is local;
(i) EndA(P ) is a local ring;

(iii) J(EndA(P )) = {f ∈ EndA(P ) | Im(f) ⊆ rad(P )};
(iv) Each endomorphism of P induces an endomorphism of S, and we obtain an

algebra isomorphism EndA(P )/J(EndA(P ))→ EndA(S);
(v) The multiplicity of P in a direct sum decomposition AA =

⊕m
i=1 Pi with

indecomposable modules Pi is exactly the dimension of S as an EndA(S)-
module.

Proof. We have shown already that each finite-dimensional indecomposable module
is local and has a local endomorphism ring. Since P is finitely generated, rad(P )
is small in P . Now (iii) and (iv) follow from Lemma 23.12 and Corollary 23.13. It
remains to prove (v): We write AA =

⊕m
i=1 Pi with indecomposable modules Pi.
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Then

J(A) = rad(AA) =

m⊕

i=1

rad(Pi) and AA/J(A) =

m⊕

i=1

Pi/ rad(Pi).

The multiplicity of P in this decomposition (in other words, the number of direct
summands Pi which are isomorphic to P ) is equal to the multiplicity of S in the
direct decomposition AA/J(A) =

⊕m
i=1 Pi/ rad(Pi). But this multiplicity of S is

the dimension of S as an EndA(S)-module. (Recall that A/J(A) is a semisimple
algebra, and that EndA(S) is a skew field.) �

Theorem 25.5. Let A be a finite-dimensional algebra. Then every finitely generated
module has a projective cover.

Proof. Let M be a finitely generated A-module. There exists a finitely generated
projective module P and an epimorphism p : P → M . We write P =

⊕n
i=1 Pi with

indecomposable modules Pi. We can assume that P is chosen such that n is minimal.
We want to show that Ker(p) ⊆ rad(P ):

Assume Ker(p) is not a submodule of rad(P ). Then there exists an indecomposable
direct summand P ′ of P which is contained in Ker(p), see Corollary 23.17. But then
we can factorize p through P/P ′ and obtain an epimorphism P/P ′ → M . Since
P ′ is an indecomposable direct summand of P , the Krull-Remak-Schmidt Theorem
implies that P/P ′ is a direct sum of n − 1 indecomposable modules, which is a
contradiction to the minimality of n. Thus we have shown that Ker(p) ⊆ rad(P ).

Since M is finitely generated, rad(M) is small in M , and therefore every submodule
U ⊆ rad(M) is small in M . �

Let A be a finite-dimensional algebra, and let M be a finitely generated A-module.
How do we “construct” a projective cover of M?

Let ε : M → M/ rad(M) be the canonical projection. The module M/ rad(M) is a
finitely generated A/J(A)-module. Since A/J(A) is semisimple, also M/ rad(M) is
semisimple. So M/ rad(M) can be written as a direct sum of finitely many simple
modules Si, say

M/ rad(M) =

n⊕

i=1

Si.

For each module Si we choose a projective cover qi : P (Si)→ Si. Set P =
⊕n

i=1 P (Si)
and

q =
n⊕

i=1

qi : P →M/ rad(M).
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Since P is projective there exists a lifting p : P →M of q, i.e. p is a homomorphism
with ε ◦ p = q. Thus we get a commutative diagram

M

ε
��

P

p
99s

s
s

s
s

s

q
// M/ rad(M)

Since P and M are finitely generated we see that p is a projective cover.

————————————————————————————-

26. Projective modules over basic algebras

A K-algebra A is a basic algebra if the following hold:

• A is finite-dimensional;
• A/J(A) ∼= K ×K × · · · ×K︸ ︷︷ ︸

n times

.

In this case, there are n isomorphism classes of simple A-modules, and each simple
A-module is 1-dimensional.

Let Q = (Q0, Q1, s, t) be a quiver. ByKQ+ we denote the subspace ofKQ generated
by all paths of length at least one. Clearly, KQ+ is an ideal in KQ.

An ideal I in KQ is an admissible ideal if there exists some m ≥ 2 such that

(KQ+)m ⊆ I ⊆ (KQ+)2.

It follows that A := KQ/I is a finite-dimensional K-algebra.

Theorem 26.1 (Gabriel). A K-algebra A is basic if and only if A ∼= KQ/I where
Q is a quiver and I is an admissible ideal.

Proof. Later. �

Theorem 26.2 (Gabriel). Let A be a finite-dimensional K-algebra with K alge-
braically closed. Then there exists a uniquely determined quiver Q and an admissible
ideal I in KQ such that the categories mod(A) and mod(KQ/I) are equivalent.

Proof. Later. �

We will actually not use Theorems 26.1 and 26.2 very often. But of course these
results are still of central importance, because they tell us that path algebras and
their quotients by admissible ideals are not at all exotic. They are hidden behind
every finite-dimensional algebra over an algebraically closed field.

Assume now that I is an admissible ideal in a path algebra KQ and set A := KQ/I.
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For each i ∈ Q0 let Si be a 1-dimensional K-vector space, and let

η : A× Si → Si

be the A-module structure defined by

η(a, s) =

{
s if a = ei,

0 otherwise

for all s ∈ Si and all paths a in Q. It is clear that the modules Si, i ∈ Q0 are
pairwise non-isomorphic 1-dimensional (and therefore simple) A-modules.

Define A+ = KQ+/I. This is an ideal in A. The algebra A is (as a vector space)
generated by the residue classes p = p+ I of all paths p in Q.

Lemma 26.3. A+ is an ideal in KQ, and all elements in A+ are nilpotent.

Proof. Clearly, A+ is (as a vector space) generated by the residue classes p = p+ I
of all paths p in Q with l(p) ≥ 1. Now it is obvious that A+ is an ideal.

Since A is finite-dimensional, we get that every element in A+ is nilpotent. (When
we take powers of a linear combination of residue classes of paths of length at least
one, we get linear combinations of residue classes of strictly longer paths, which
eventually have to be zero for dimension reasons.) �

Corollary 26.4. A+ ⊆ J(A).

Proof. By Lemma 22.5 an ideal consisting just of nilpotent elements is contained in
the radical J(A). �

Lemma 26.5. {ei + I | i ∈ Q0} is a linearly independent subset of A.

Proof. This follows because I ⊆ (KQ+)2 ⊆ KQ+. �

Corollary 26.6. dimA+ = dimKQ− |Q0|.

By abuse of notation we denote the residue class ei + I also just by ei.

Lemma 26.7. dim J(A) ≤ dimKQ− |Q0|.

Proof. We know that J(A) consists of all elements x ∈ A such that xS = 0 for all
simple A-modules S, see Proposition 22.6. By definition eiSi 6= 0 for all i ∈ Q0.
Thus none of the ei belongs to J(A). �

Thus for dimension reasons, we obtain the following result:

Lemma 26.8. We have A+ = J(A) and dim J(A) = dimKQ− |Q0|.

Lemma 26.9. eiAei is a local ring for all i ∈ Q0.
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Proof. As a vector space, eiAei is generated by all residue classes of paths p in Q
with s(p) = t(p) = i. By Lemma 22.12 we know that J(eiAei) = eiJ(A)ei. We
proved already that A+ = J(A). It follows that J(eiAei) is (as a vector space)
generated by all paths p with s(p) = t(p) = i and l(p) ≥ 1. Thus

dim eiAei/J(eiAei) = 1.

Therefore eiAei is a local ring. �

Theorem 26.10. Let A = KQ/I where I is an admissible ideal in a path algebra
KQ. Then the following hold:

(i) AA =
⊕

i∈Q0
Aei is a direct decomposition of the regular representation into

indecomposables;
(ii) Each finite-dimensional indecomposable projective A-module is isomorphic to

one of the Aei;
(iii) Aei is a local module with top(Aei) := Aei/ rad(Aei) ∼= Si;
(iv) The Si are the only simple A-modules;
(v) A/J(A) ∼=

⊕
i∈Q0

Si;

(vi) A is a basic algebra.

Proof. There exists a non-zero homomorphism πi : Aei → Si defined by πi(aei) =
aei · 1. (Recall that the underlying vector space of Si is just our field K.) It follows
that πi is an epimorphism.

Since eiAei is a local ring, we know that the modules Aei are local (and indecom-
posable). This implies

Aei/ rad(Aei) ∼= Si.

The rest of the theorem follows from results we proved before for arbitrary finite-
dimensional algebras. �

End of Lecture 30

End of Semester 1 of this series of lecture courses

————————————————————————————-

27. Direct summands of infinite direct sums

27.1. The General Exchange Theorem.

Theorem 27.1 (General Exchange Theorem). Let M be a module with direct de-
compositions

M = U ⊕
m⊕

i=1

Mi = U ⊕N ⊕ V.
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We assume that N =
⊕n

j=1Nj such that the endomorphism rings of the Nj are local.
Then for 1 ≤ i ≤ m there exist direct decompositions Mi = M ′

i ⊕M
′′
i such that

M = U ⊕N ⊕
m⊕

i=1

M ′
i and N ∼=

m⊕

i=1

M ′′
i .

Proof. We prove the theorem by induction on n. For n = 0 there is nothing to show:
We can choose M ′

i = Mi for all i.

Let

M = U ⊕
m⊕

i=1

Mi = U ⊕
n⊕

j=1

Nj ⊕ V

be direct decompositions of M , and assume that the endomorphism rings of the
modules Nj are local. Take

M = U ⊕N ′ ⊕ (Nn ⊕ V )

where N ′ =
⊕n−1

j=1 Nj . By the induction assumption there are direct decompositions
Mi = Xi ⊕ Yi such that

M = U ⊕N ′ ⊕
m⊕

i=1

Xi and N ′ ∼=

m⊕

i=1

Yi.

Now we look at the direct decomposition

M = (U ⊕N ′)⊕
m⊕

i=1

Xi

and the inclusion homomorphism from Nn into M . Then we apply the Exchange
Theorem (see Skript 1) to this situation: We use that Nn ⊕ (U ⊕ N ′) is a direct
summand of M . For 1 ≤ i ≤ m we obtain a direct decomposition Xi = M ′

i ⊕ X
′
i

such that

M = (U ⊕N ′)⊕Nn ⊕
m⊕

i=1

M ′
i

with
⊕m

i=1X
′
i
∼= Nn. Note that only one of the modules X ′

i is non-zero. Define
M ′′

i = X ′
i ⊕ Yi. This implies

Mi = Xi ⊕ Yi = M ′
i ⊕X

′
i ⊕ Yi = M ′

i ⊕M
′′
i

and
m⊕

i=1

M ′′
i =

m⊕

i=1

X ′
i ⊕

m⊕

i=1

Yi ∼= N ′ ⊕Nn = N.

This finishes the proof. �

If M =
⊕

i∈IMi is a direct sum of modules Mi, and J is a subset of the index set
I, we define

MJ :=
⊕

i∈J

Mi.
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We want to study modules which can be written as direct sums of modules with
local endomorphism ring. The key result in this situation is the following:

Theorem 27.2. Let M =
⊕

i∈IMi be a direct sum of modules Mi with local endo-
morphism rings, and let U be a direct summand of M . Then the following hold:

(a) For every element u ∈ U there exists a direct decomposition U = U ′ ⊕ U ′′

and a finite subset J ⊆ I such that u ∈ U ′ and U ′ ∼= MJ ;
(b) If M/U is indecomposable, then there exists some i ∈ I with M = U ⊕Mi.

Proof. For u ∈ U there exists a finite subset I ′ of I such that u ∈MI′. Since U is a
direct summand of M , we can choose a direct decomposition M = U ⊕ C. By the
General Exchange Theorem 27.1 there exist submodules U ′′ ⊆ U and C ′′ ⊆ C such
that M = MI′ ⊕ U ′′ ⊕ C ′′. Define

U ′ = (MI′ ⊕ C
′′) ∩ U and C ′ = (MI′ ⊕ U

′′) ∩ C.

We claim that

U = U ′ ⊕ U ′′ and C = C ′ ⊕ C ′′.

It is enough to show the first equality: Of course we have U ′ ∩ U ′′ = 0, since
(MI′ ⊕ C ′′) ∩ U ′′ = 0. Since U ′′ ⊂ U , we get by modularity

U = M ∩ U = (U ′′ ⊕MI′ ⊕ C
′′) ∩ U

= U ′′ + ((MI′ ⊕ C
′′) ∩ U)

= U ′′ + U ′.

We see that

(1) U ′ ⊕ U ′′ ⊕ C ′ ⊕ C ′′ = U ⊕ C = M = MI′ ⊕ U
′′ ⊕ C ′′

and therefore

U ′ ⊕ C ′ ∼= M/(U ′′ ⊕ C ′′) ∼= MI′ .

By the Krull-Remak-Schmidt Theorem there exists a subset J ⊆ I ′ with U ′ ∼=
MJ . Of course u belongs to U ′ = (MI′ ⊕ C ′′) ∩ U . Thus we constructed a direct
decomposition U = U ′ ⊕ U ′′ with u ∈ U ′ and U ′ ∼= MJ with J a finite subset of I.
This proves part (a) of the theorem.

We started with an arbitrary direct decomposition M = U ⊕ C, and now we want
to prove (b) for the direct summand C (and not for U). Thus we assume that M/C
is indecomposable. Since U ∼= M/C, we know that U is indecomposable. Let u be
a non-zero element in U . As before we obtain a direct decomposition U = U ′ ⊕ U ′′

with u ∈ U ′. We see that U ′′ = 0. Thus Equation 1 reduces to

U ′ ⊕ C ′ ⊕ C ′′ = M =
⊕

i∈I′

Mi ⊕ C
′′.

Now C ′ is isomorphic to a direct summand ofMI′ , thus by the Krull-Remak-Schmidt
Theorem it is a finite direct sum of modules with local endomorphism rings. Thus
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we can apply the General Exchange Theorem 27.1 and obtain direct decompositions
Mi = M ′

i ⊕M
′′
i for i ∈ I ′ such that

M = C ′ ⊕
⊕

i∈I′

M ′
i ⊕ C

′′ = C ⊕
⊕

i∈I′

M ′
i .

Since M/C is indecomposable, we know that exactly one of the modules M ′
i , say

M ′
i0
, is non-zero. On the other hand, Mi0 = M ′

i0
⊕ M ′′

i0
is indecomposable, and

therefore M ′
i0

= Mi0 . Thus M = C ⊕ Mi0 . This proves part (b) for the direct
summand C of M . �

Corollary 27.3. Let M =
⊕

i∈IMi be a direct sum of modules Mi with local endo-
morphism rings. Then every non-zero direct summand of M has a direct summand
which is isomorphic to one of the Mi’s.

Proof. If U is a non-zero direct summand of M , then choose some 0 6= u ∈ U . Then
part (a) of Theorem 27.2 yields a direct decomposition U = U ′ ⊕ U ′′ with u ∈ U ′

and U ′ ∼= MJ for some finite index set J ⊆ I. Since 0 6= u ∈ U ′, we know that J is
non-empty. If i ∈ J , then U has a direct summand isomorphic to Mi. �

Corollary 27.4. Let M =
⊕

i∈IMi be a direct sum of modules Mi with local endo-
morphism rings. If U is an indecomposable direct summand of M , then U ∼= Mi for
some i ∈ I.

Proof. Choose 0 6= u ∈ U . We get a direct decomposition U = U ′ ⊕ U ′′ and a finite
non-empty index set J ⊆ I with u ∈ U ′ and U ′ ∼= MJ . Since U is indecomposable,
U = U ′ ∼= Mi with i ∈ J . �

27.2. The Krull-Remak-Schmidt-Azumaya Theorem.

Theorem 27.5 (Azumaya). Let M =
⊕

i∈IMi be a direct sum of modules Mi with
local endomorphism rings. Let U =

⊕
j∈J Uj be a direct summand of M . For every

indecomposable module N let I(N) be the set of indices i ∈ I with Mi
∼= N , and let

J(N) be the set of indices j ∈ J with Uj ∼= N . Then we have

|J(N)| ≤ |I(N)|.

Proof. First, let J(N) be finite and non-empty, and let j0 ∈ J(N). Corollary 27.4
yields that there exists some i0 ∈ I with Mi0

∼= Uj0. The Cancellation Theorem
implies that ⊕

i∈I\{i0}

Mi
∼=

⊕

j∈J\{j0}

Uj .

By induction we obtain |J(N)| ≤ |I(N)|.

Next, assume that J(N) is infinite. For t ∈ J define U ′
t =

⊕
j 6=tUj . Let i ∈ I(N),

and let Ji be the set of all t ∈ J with M = Mi ⊕ U ′
t . Obviously, Ji is a subset of

J(N), because Mi ⊕ U ′
t = Ut ⊕ U ′

t implies Ut ∼= Mi
∼= N .
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On the other hand, if t ∈ J(N), then U ′
t is a maximal direct summand of M . Thus

there exists some i ∈ I with U ′
t ⊕Mi = M , and we see that t ∈ Ji. We proved that

⋃

i∈I(N)

Ji = J(N).

We claim that every set of the form Ji is finite: Let x 6= 0 be an element in Mi.
There exists a finite subset J(x) ⊆ J such that x ∈

⊕
j∈J(x)Uj . If t /∈ J(x), then⊕

j∈J(x) Uj ⊆ U ′
t , and therefore x ∈ Mi ∩ U ′

t which implies t /∈ Ji. We see that Ji is

a subset of the finite set J(x).

Since J(N) is infinite, I(N) has to be infinite as well. The cardinality of
⋃
i∈I(N) Ji

is at most |I(N)|, thus |J(N)| ≤ |I(N)|. �

Corollary 27.6. Let M =
⊕

i∈IMi be a direct sum of modules Mi with local en-
domorphism rings. Let U be a direct summand of M such that U =

⊕
j∈J Uj with

Uj indecomposable for all j ∈ J . Then there exists an injective map σ : J → I such
that Uj ∼= Mσ(j) for all j ∈ J . In particular, U is isomorphic to MI′ for some subset
I ′ of I.

Proof. Let U =
⊕

j∈J Uj with indecomposable module Uj. We choose a direct
complement C of U , thus

M = U ⊕ C =
⊕

j∈J

Uj ⊕ C.

To this decomposition we apply the above Theorem 27.5. Thus for any indecompos-
able module N we have |J(N)| ≤ |I(N)|. Thus there is an injective map σ : J → I
such that Uj ∼= Mσ(j) for all j. We can identify J with a subset I ′ of I, and we
obtain U ∼= MI′. �

Corollary 27.7 (Krull-Remak-Schmidt-Azumaya). Assume that M =
⊕

i∈IMi is
a direct sum of modules Mi with local endomorphism rings. Let M =

⊕
j∈J Uj

with indecomposable modules Uj. Then there exists a bijection σ : I → J such that
Mi
∼= Uσ(i).

Proof. By Corollary 27.6 there is an injective map σ : I → J with Mi
∼= Uσ(i) for all i.

By Corollaries 27.4 and 27.6 we know that the modules Uj have local endomorphism
rings. Thus for every indecomposable module N we have not only |J(N)| ≤ |I(N)|,
but also the reverse |I(N)| ≤ |J(N)|, which implies |J(N)| = |I(N)|. Thus we can
construct a bijection σ : I → J with Mi

∼= Uσ(i) for all i. �

27.3. The Crawley-Jønsson-Warfield Theorem.

Theorem 27.8 (Crawley-Jønsson-Warfield). Let M =
⊕

i∈IMi be a direct sum of
modules Mi with local endomorphism rings. If U is a countably generated direct
summand of M , then there exists a subset J of I with

U ∼= MJ :=
⊕

j∈J

Mj .
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Proof. Let U be a countably generated direct summand of M , and let u1, u2, . . . be
a countable generating set of U . Inductively we construct submodules Ut and Vt of
U with

U = U1 ⊕ · · · ⊕ Ut ⊕ Vt

such that u1, . . . , ut ∈
⊕t

i=1 Ui, and such that each Ut is a direct sum of indecom-
posable modules.

As a start of our induction we take t = 0, and there is nothing to show. Now assume
that we constructed alread U1, . . . , Ut, Vt with the mentioned properties.

Let ut+1 = xt+1 + yt+1 with xt+1 ∈
⊕t

i=1 Ui and yt+1 ∈ Vt. Now Vt is a direct
summand of M and vt+1 ∈ Vt. Thus by Theorem 27.2, (a) there exists a direct
decomposition Vt = Ut+1 ⊕ Vt+1 with yt+1 ∈ Ut+1 such that Ut+1 is a direct sum of
modules of the form Mi. Since yt+1 ∈ Ut+1, we know that ut+1 = xt+1 +yt+1 belongs
to
⊕t+1

i=1 Ui.

We obtain the direct decomposition

U1 ⊕ · · · ⊕ Ut ⊕ Ut+1 ⊕ Vt+1,

and the modules Ui with 1 ≤ i ≤ t+ 1 have the desired form.

By construction, the submodules Ui with i ∈ N1 form a direct sum. This direct sum
is a submodule of U , and it also contains all elements ui with i ∈ N1. Since these
elements form a generating set for U , we get U =

⊕
i Ui. Thus we wrote U as a

direct sum of indecomposable modules. Corollary 27.6 shows now that U is of the
desired form. �

27.4. Kaplansky’s Theorem. Let U be a submodule of a module M , and let
M = M1 ⊕M2 be a direct decomposition of M . We call U compatible with the
direct decomposition M = M1 ⊕M2 if U = (U ∩M1) + (U ∩M2).

By ℵ0 we denote the first infinite cardinal number. (For example Q is of cardinality
ℵ0.) Let c be a cardinal number. A module M is called c-generated if M has a
generating set of cardinality at most c, and M is countably generated if M is
ℵ0-generated.

Theorem 27.9 (Kaplansky). Let c ≥ ℵ0 be a cardinal number. The class of mod-
ules, which are direct sums of c-generated modules, is closed under direct summands.

Proof. For each i ∈ I let Mi be a c-generated module, and let M =
⊕

i∈IMi. We
can assume Mi 6= 0 for all i. Let M = X ⊕ Y . We want to show that X is a direct
sum of c-generated submodules. Set e = e(X, Y ). If U is a submodule of M , define
σ(U) = eU + (1− e)U . We call a subset J ⊆ I compatible if MJ is compatible with
the decomposition X ⊕ Y . A set with cardinality at most c is called a c-set.

We start with some preliminary considerations:

(1) If J ⊆ I is a c-set, then MJ is c-generated.
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Proof: For every i ∈ I choose a c-set Xi which generates Mi. Then set XJ =
⋃
i∈J Xi

which is a generating set of MJ . (Here we assume that MJ =
⊕

i∈J Mi is an inner
direct sum, so the Mi are indeed submodules of MJ .) Since J and also all the Xi

are c-sets, the cardinality of XJ is at most c2. Since c is an infinite cardinal, we have
c2 = c.

(2) If U is a c-generated submodule ofM , then eU , (1−e)U and σ(U) are c-generated.

Proof: If X is a generating set of U , then eX = {ex | x ∈ X} is a generating set of
eU . Similarly, (1− e)X is a generating set of (1− e)U .

(3) For every c-generated submodule U of M there exists a c-set J ⊆ I such that
U ⊆MJ .

Proof: Let X be a generating set of U . For every x ∈ X there exists a finite subset
J(x) ⊆ I with x ∈ MJ(x). Define J =

⋃
x∈X J(x). Now all sets J(x) are finite, X is

a c-set and c is an infinite cardinal number, thus we conclude that J is a c-set. By
construction X is contained in the submodule MJ of M . Since U is (as a module)
generated by X, we know that U is a submodule of MJ .

(4) For every c-generated submodule U of M there exists a compatible c-set J ⊆ I
such that U ⊆ MJ .

Proof: Let U be a c-generated submodule of M . By (3) we can find a c-set J(1) ⊆ I
such that U ⊆ MJ(1). We can form σ(MJ(1)).

Inductively we construct c-sets J(1) ⊆ J(2) ⊆ · · · ⊆ I such that σ(MJ(t)) ⊆
σ(MJ(t+1)) for all t ≥ 1. (Here we use (1), (2) and (3).) Define J =

⋃
t≥1 J(t).

We have MJ =
⋃
t≥1 MJ(t). Since J(t) is a c-set, and since c is an infinite cardinal

number, the set J is also a c-set. It remains to show that MJ is compatible with the
decomposition M = X ⊕ Y , in other words, we have to show that for every x ∈MJ

also ex belongs to MJ : Since x ∈ MJ we have x ∈ MJ(t) for some t. Therefore
ex ∈ eMJ(t) ⊆ σ(MJ(t)) ⊆MJ(t+1) ⊆MJ .

(5) If I(j) is a compatible subset of I, then eMI(j) ⊆ MI(j). Set J =
⋃
I(j). If

eMI(j) ⊆MI(j) for every j, then eMJ ⊆MJ .

Now we can start with the proof of the theorem:

Let I(α) be an ordered chain of compatible subsets of I with the following properties:

(i) The cardinality of I(α+ 1) \ I(α) is at most c;
(ii) If λ is a limit number, then I(λ) =

⋃
α<λ I(α);

(iii) We have
⋃
α I(α) = I.

Here I(α) is defined inductively: Let I(0) = 0. If α is an ordinal number with
I(α) ⊂ I, choose some x ∈ MI \MI(α). Let Ux be the submodule generated by x.
By (4) there exists a compatible subset J(x) of I with cardinality at most c such
that Ux is contained in MJ(x). Define I(α+ 1) = I(α)∪ J(x). By (5) this is again a
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compatible set. For a limit number λ define I(λ) as in (ii). It follows from (5) that
I(λ) is compatible.

Since I(α) is compatible, we get a decomposition

MI(α) = X(α)⊕ Y (α)

with X(α) ⊆ X and Y (α) ⊆ Y . Let us stress that the submodules X(α) and
Y (α) are direct summands of M . We have X(α) ⊆ X(α + 1), and X(α) is a direct
summand of X(α + 1), say X(α + 1) = X(α) ⊕ U(α + 1). If λ is a limit ordinal
number, then X(α) =

⋃
α<λX(α). We get

X =
⊕

α

U(α)

and
U(α + 1) = X(α + 1)/X(α) = eMI(α+1)/eMI(α)

∼= eMI(α+1)\I(α).

By (i), (1) and (2) we obtain that U(α) is c-generated. �

Corollary 27.10. Let M =
⊕

i∈IMi be a direct sum of countably generated modules
Mi with local endomorphism rings. If U is a direct summand of M , then there exists
a subset J ⊆ I such that U ∼= MJ .

Proof. By Theorem 27.9 every direct summand U of M is a direct sum of countably
generated modules Uj . On the other hand, we know that every countably generated
direct summand Uj of M is a direct sum of indecomposable modules, thus U ist a
direct sum of indecomposable modules. Finally, we use Corollary 27.6. �

Question 27.11. Is the class of modules, which are direct sums of modules with
local enomorphism rings, closed under direct summands?

The following is a direct consequence of Theorem 27.9:

Theorem 27.12 (Kaplansky). Every projective module is a direct sum of countably
generated projective modules.

Proof. Each projective A-module is a direct summand of a direct sum of modules
of the form AA. The module AA is cyclic, in particular it is countably generated.
Thus we can apply Theorem 27.9, where we set c = ℵ0. �

————————————————————————————-

28. Projective modules over semiperfect algebras

In this section we generalize the results from Section 25.

An algebra A is semiperfect if the following equivalent conditions are satisfied:

(i) AA is a (finite) direct sum of local modules;
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(ii) AA is a (finite) direct sum of modules with local endomorphism ring;
(iii) The identity 1A is a sum of pairwise orthogonal idempotents ei such that the

rings eiAei are local.

If A is semiperfect, then Aop is semiperfect as well. This follows since condition (iii)
is left-right symmetric.

Examples:

(a) Finite-dimensional algebras are semiperfect.
(b) Let M1, . . . ,Mn be indecomposable A-modules with local endomorphism

rings, and let M = M1 ⊕ · · · ⊕ Mn. Then EndA(M) is semiperfect, since
condition (iii) is obviously satisfied.

Theorem 28.1. Let A be a semiperfect algebra. Then A/J(A) is semisimple.

Proof. The module AA is a finite direct sum of local modules, thus AA/ rad(AA) is
a finite sum of simple modules and therefore semisimple. �

Warning: The converse of the above theorem does not hold: By K(T ) we denote
the field of rational functions in one variable T . Thus K(T ) consists of fractions
f/g of polynomials f, g ∈ K[T ] where g 6= 0. Now let A be the subring of K(T )
consisting of all rational functions f/g such that neither T nor T − 1 divide g. The
radical J(A) of A is the ideal generated by T (T − 1), and the corresponding factor
ring A/J(A) is isomorphic to K × K, in particular it is semisimple. Note that A
has no zero divisors, but A/J(A) contains the two orthogonal idempotents −T + 1
and T . For example

(−T + 1)2 = T 2 − 2T + 1 = (T 2 − T )− T + 1,

and modulo T 2 − T this is equal to −T + 1.

Theorem 28.2. Let A be a semiperfect algebra. Then the following hold:

• Each projective A-module is a direct sum of indecomposable modules;
• Each indecomposable projective module is local and has a local endomophism

ring;
• If AA = P1 ⊕ · · · ⊕ Pn is a direct decomposition of the regular represen-

tation into indecomposable modules Pi, then each indecomposable projective
A-module is isomorphic to one of the Pi.

Proof. Since A is a semiperfect algebra, the module AA is a direct sum of local
modules. Thus let

AA =

m⊕

i=1

Qi

with local modules Qi. As a direct summand of AA each Qi is of the form Aei
for some idempotent ei. In particular Qi is cyclic. The endomorphism ring of an
A-module of the form Ae (where e is an idempotent) is (eAe)op, and if Ae is local,
then so is eAe. Thus also (eAe)op is a local ring.
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Let P be a projective A-module. Thus P is a direct summand of a free A-module F .
We know that F is a direct sum of modules with local endomorphism ring, namely
of copies of the Qi. Kaplansky’s Theorem implies that

P =
⊕

j∈J

Pj

is a direct sum of countably generated modules Pj . By the Crawley-Jønsson-Warfield
Theorem each Pj (and therefore also P ) is a direct sum of modules of the form Qi.

So each projective module is a direct sum of indecomposable modules, and each
indecomposable projective module is of the form Qi, in particular it is local.

If AA =
⊕n

k=1 Pk is another direct decomposition with indecomposable modules Pk,
then by the Krull-Remak-Schmidt Theorem we getm = n, and each Pk is isomorphic
to some Qi. �

Theorem 28.3. Let A be a semiperfect algebra. The map P 7→ P/ rad(P ) yields
a bijection between the isomorphism classes of indecomposable projective A-modules
and the isomorphism classes of simple A-modules.

Proof. By Theorem 28.2 we know that each indecomposable projective A-module is
local and isomorphic to a direct summand of AA. Now we can continue just as in
the proof of Theorem 25.3. �

Theorem 28.4. Let A be a semiperfect algebra, and let P be an indecomposable
projective A-module. Set S := P/ rad(P ). Then the following hold:

(i) P is local;
(ii) EndA(P ) is a local ring;
(iii) J(EndA(P )) = {f ∈ EndA(P ) | Im(f) ⊆ rad(P )};
(iv) Each endomorphism of P induces an endomorphism of S, and we obtain an

algebra isomorphism EndA(P )/J(EndA(P ))→ EndA(S);
(v) The multiplicity of P in a direct sum decomposition AA =

⊕m
i=1 Pi with

indecomposable modules Pi is exactly the dimension of S as an EndA(S)-
module.

Proof. We have shown already that each indecomposable projective A-module P is
local and isomorphic to a direct summand of AA. Therefore EndA(P ) is local. In
particular, rad(P ) is small in P . Now copy the proof of Theorem 25.4. �

End of Lecture 31

————————————————————————————-
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29. Digression: Projective modules in other areas of mathematics
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