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1. Introduction

This is the second part of notes for a lecture course “Introduction to Representation
Theory”.

Around 1970 Peter Gabriel proved that a connected quiver is representation-finite if
and only if the underlying graph is a Dynkin graph of type A, (n > 1), D,(n > 4) or
E,(n =6,7,8). He also showed that the dimension vectors of the indecomposable
representations correspond to the positive roots of the corresponding Lie algebra.
This celebrated result can be seen as a starting point of modern representation
theory of finite-dimensional algebras. Equally important was the discovery of almost
split sequences (now called Auslander-Reiten sequences) by Maurice Auslander and
Idun Reiten. We will prove both results. Furthermore, we will explain the knitting
algorithm for preprojective components.

1.1. Acknowledgements. The second author thanks his student Tim Eickmann
for typo hunting.
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Part 1. Homological Algebra I: Resolutions and extension groups
2. Homological Algebra

2.1. The Snake Lemma.

Theorem 2.1 (Snake Lemma). Given the following commutative diagram of homo-
morphisms

fi g1

Uy Vi Wi 0
f2 g2
0 U, Vs Wy

such that the two rows are exact. Taken kernels and cokernels of the homomorphisms
a, b, c we obtain a commutative diagram

0 0 0
fo 9o
Up——= Vo —=W,
agn bO co
U, fi v g1 W, 0
a b c
f2 92
0 Us Vo Ws
a b2 Cc2
f3 g3

0 0 0

with exact rows and columns. Then
§(z) := (azo fy tobogtocy)(x)
defines a homomorphism (the “connecting homomorphism”)
d: Ker(c) — Cok(a)
such that the sequence
Ker(a) Lo, Ker(b) £ Ker(c) 2 Cok(a) 5, Cok(b) £ Cok(c)
15 exact.

Proof. The proof is divided into two steps: First, we define the map J, second we
verify the exactness.

Relations
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We need some preliminary remarks on relations: Let V' and W be modules. A
submodule p C V x W is called a relation. If f: V' — W is a homomorphism, then
the graph

() =A{(v, f(v)) [v eV}

of f is a relation. Vice versa, a relation p C V x W is the graph of a homomorphism,
if for every v € V' there exists exactly one w € W such that (v, w) € p.

If p C V x W is a relation, then the opposite relation is defined as p~! = {(w,v) |
(v,w) € p}. Obviously this is a submodule again, namely of W x V.

It Vi, V5, V3 are modules and p C V; x Vo and o C V5, x V3 are relations, then
gop:={(v1,v3) € V} x V3 | there exists some vy € V5 with (v1,v9) € p, (v9,v3) € 0}

is the composition of p and o. It is easy to check that o o p is a submodule of
Vi x V.

For homomorphisms f: V) — V5 and g: Vo — V5 we have I'(g) o I'(f) = I'(gf).

The composition of relations is associative: If p C Vi x V5, 0 C VoxViand 7 C Vayx V)
are relations, then (T oo)op= 7o (00 p).

Let p C V x W be arelation. For a subset X of V' define p(X) ={w e W | (z,w) €
p for some x € X}. If z € V, then set p(z) = p({z}).

For example, if f: V — W is a homomorphism and X a subset of V', then

(LX) = f(X).
Similarly, (I'(f)~")(Y) = f~(Y) for any subset Y of W.

Thus in our situation, a, f, 'bg; *co stands for

[(ay) oT(f2) Lo T(b) o T'(g1) " o T'(cp).

First, we claim that this is indeed the graph of some homomorphism §.

0 is a homomorphism

We show that as f; 'bg; 'co is a homomorphism: Let S be the set of tuples
(wo, wi, vy, v, Uz, uz) € Wy X Wi X Vi X Vo x Uy x Us
such that

wy = co(wo) = g1(v1),
vy = b(v1) = fa(ua),

Uz = G,Q(UQ).
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Wo
g1
U1 —— W1
Ib
f2

U9 ——= V2
1a2
Uus

We have to show that for every wy € Wy there exists a tuple
(wo, w1, v1, V2, Uz, uz)

in S, and that for two tuples (wp,wy, vy, va, us, ug) and (wj, wi, vy, vh, ub, uy) with
wp = w(, we always have ug = uj.
Thus, let w € Wy. Since ¢; is surjective, there exists some v € V; with g1(v) = co(w).
We have

g2b(v) = cg1(v) = ceo(w) = 0.
Therefore b(v) belongs to the kernel of g, and also to the image of f,. Thus there
exists some u € Uy with fo(u) = b(v). So we see that

(w, co(w), v,b(v), u, as(u)) € S.
Now let (w, co(w), v, b(v"), v, z) also be in S. We get

g1(v — ") = co(w) — co(w) = 0.
Thus v — v’ belongs to the kernel of g;, and therefore to the image of fi;. So there
exists some y € Uy with fi(y) = v —'. This implies

folu =) =bv =) =bfi(y) = foaly).
Since fy is injective, we get u — v’ = a(y). But this yields
as(u) — x = as(u —u') = aza(y) = 0.

Thus we see that as(u) = x, and this implies that ¢ is a homomorphism.
Exactness

Next, we want to show that Ker(d) = Im(gy): Let x € V. To compute dgo(x)
we need a tuple (go(z),wy, v1,v9,uz,uz) € S. Since g1by = cogo and bby = 0 we
can choose (go(x),cogo(x),bo(x),0,0,0). This implies dgo(x) = 0. Vice versa, let
w € Ker(d). So there exists some (w,wy, vy, Vg, uz,0) € S. Since uy belongs to the
kernel of ay and therefore to the image of a, there exists some y € U; with a(y) = us.
We have

bfi(y) = faa(y) = fa(uz) = b(vy).

Thus vy — f1(y) is contained in Ker(b). This implies that there exists some x € V;
with by(z) = v1 — fi(y). We get

cogo(x) = g1bo(x) = g1(v1 — f1(y)) = g1(v1) = co(w).
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Since ¢ is injective, we have go(x) = w. So we see that w belongs to the image of
go-

Finally, we want to show that Ker(f;) = Im(d): Let (wo,wy,v1,v9, us, uz) € S, in
other words d(wg) = uz. We have

fa(uz) = faaa(us) = bafa(us).

Since fo(ug) = vy = b(vy), we get by fo(ug) = bob(vy) = 0. This shows that the
image of ¢ is contained in the kernel of f3. Vice versa, let uz be an element in Us,
which belongs to the kernel of f3;. Since ay is surjective, there exists some uy € Us
with ag(uz) = ug. We have by fo(us) = fsas(us) = f3(us) = 0, and therefore fo(us)
belongs to the kernel of by and also to the image of b. Let fo(us) = b(vy) =: vs.
This implies cg;(v1) = g2b(v1) = gafa(uz) = 0. We see that g1(vq) is in the kernel
of ¢ and therefore in the image of ¢g. So there exists some wy € Wy with co(wg) =
g1(v1). Altogether, we constructed a tuple (wg, wy, vy, vg, g, uz) in S. This implies
uz = 6(wp). This finishes the proof of the Snake Lemma. O

Next, we want to show that the connecting homomorphism is “natural”: Assume
we have two commutative diagrams with exact rows:

U, v 2w, 0

al bl Cl

f2 g2

O U2 VVZ W27
U v I

a’l b’l c’l

;b )9 /

0 Uy v Wy,

Let §: Ker(c) — Cok(a) and 6": Ker(¢') — Cok(a’) be the corresponding connecting
homomorphisms.

Additionally, for i = 1,2 let p;: U; — U, ¢;: V; — V! and r;: W; — W/ be homo-

7
morphisms such that the following diagram is commutative:

U, Vi Wi 0
N ‘ N ‘ N
U, l %4 l wi 0
0 Uy ‘ Vo ‘ Wy
NN NG
0 U; 4 W;

The homomorphisms p;: U; — U/ induce a homomorphism ps: Cok(a) — Cok(a’),
and the homomorphisms r;: W; — W/ induce a homomorphism ry: Ker(c) —
Ker(¢).
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Lemma 2.2. The diagram

Ker(c) —2~ Cok(a)
-
Ker(¢') —— Cok(a')

15 commutative.

Proof. Again, let S be the set of tuples
(wo, wy, vy, V2, ug, uz) € Wy x Wy x Vi x Vo x Uy x Us
such that
wy = co(wo) = g1(v1),
vy = b(v1) = fa(us),
us = as(us),

and let S be the correspondingly defined subset of W] x W x V' x Vi x Uj x U;,.
Now one easily checks that for a tuple (wo, wy, v1,ve, us, ug) in S the tuple

(ro(wo), r1(w1), q1(v1), g2(v2), p2(u2), p3(us))
belongs to S’. The claim follows. O

2.2. Complexes. A complex of A-modules is a tuple Cy = (C,,, dp,)nez (we often
just write (C,,, dy,), or (Cy, d,)) where the C,, are A-modules and the d,,: C,, — C,,_4
are homomorphisms such that

Im(d,,) C Ker(d,,_1)

for all n, or equivalently, such that d,,_1d, = 0 for all n.

dp42 dp+1 d dp—1
. Cn-i—l " Cn_n>0n_1n—)

A cocomplex is a tuple C* = (C™,d"),cz where the C™ are A-modules and the
d": C™ — C™"1 are homomorphisms such that d"™d" = 0 for all n.

dn—2

n—1 n n+1
Cnfl d Cn L Cn+1 d .

Remark: We will mainly formulate results and definitions by using complexes, but
there are always corresponding results and definitions for cocomplexes. We leave it
to the reader to perform the necessary reformulations.

In this lecture course we will deal only with (co)complexes of modules over a K-
algebra A and with (co)complexes of vector spaces over the field K.

A complex Cy = (C,,, d,,)nez is an exact sequence of A-modules if

Im(d,) = Ker(d,-1)
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for all n. In this case, for a > b we also call

d da—1 dpy1
c, d o T M o

dp42 dpt1
: C(bJrl Cb7

da_
Ca i) a—1 —1> e

exact sequences. An exact sequence of the form
0—XxX-Lv-Lz-0

is a short exact sequence. We denote such a sequence by (f,g). Note that this
implies that f is a monomorphism and ¢ is an epimorphism.

Example: Let M be an A-module, and let Cy = (C,,d,)nez be a complex of
A-modules. Then

HOH’IA(M, C') = (HOH’IA(M, Cn)7 HOH’IA(M, dn))nEZ
is a complex of K-vector spaces and
Homy (Co, M) = (Homu(C,,, M), Homa(dy11, M))nez

is a cocomplex of K-vector spaces. (Of course, K is a K-algebra, and the K-modules
are just the K-vector spaces.)

End of Lecture 32

Given two complexes Cy = (Cy, dp)nez and C, = (C,d})nez, @ homomorphism

of complexes (or just map of complexes) is given by fo = (fu)nez: Co — C)
where the f,,: C,, — C/ are homomorphisms with d, f,, = f,_1d, for all n.

dnt1 dn
Cn—l—l Cn Cn—l e
lfn-kl fnl fn—ll
d’ d’
/ n+1 / n /
Cn—l—l Cn n—1 e

The maps Cy — C. of complexes form a vector space: Let f,, go: Co — C. be such
maps, and let A € K. Define fo + go := (fn + 9n)nez, and let Afe := (Afp)nez-

If fo = (fu)n: Co — C.L and go = (gn)n: Cl, — C7 are maps of complexes, then the
composition

gofe =gao fo: Co — C
is defined by ge fe := (gnfn)n-
Let Co = (Cy,dy,)n be a complex. A subcomplex C, = (C!,d. ), of C, is given by

submodules C! C C,, such that d), is obtain via the restriction of d,, to C/,. (Thus we
require that d,(C}) C C)_, for all n.) The corresponding factor complex C,/C
is of the form (C,/C!,d"), where d! is the homomorphism C, /C! — C,_1/C!

induced by d,.
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Let fo = (fu)n: CL — Cs and ge = (gn)n: Co — C7 be homomorphisms of com-
plexes. Then

0—CL e 2 or—o
is a short exact sequence of complexes provided
0— s e, 2 en—o

is a short exact sequence for all n.

2.3. From complexes to modules. We can interpret complexes of J-modules
(here we use our terminology from the first part of the lecture course) as J’-modules
where

J :=JuUzZU{d}.
(We assume that J, Z and {d} are pairwise disjoint sets.)

If Co = (C,,d,)n is a complex of J-modules, then we consider the J-module

C = @C’n.

nel

We add some further endomorphisms of the vector space C', namely for n € Z
take the projection ¢,,: C' — C onto C,, and additionally take ¢4: C' — C whose
restriction to C,, is just d,. This converts C' into a J'-module.

Now if fo = (fn)n: Ce — C. is a homomorphism of complexes, then

Dr: B —Da

nez nez nez

defines a homomorphism of J’-modules, and one obtains all homomorphisms of J'-
modules in such a way.

We can use this identification of complexes of J-modules with J’-modules for trans-
ferring the terminology we developed for modules to complexes: For example sub-
complexes or factor complexes can be defined as .J’-submodules or .J'-factor modules.

2.4. Homology of complexes. Given a complex Cy = (C,,, d,,), define
H,(Co) = Ker(dy)/ Im(dp 1),
the nth homology module (or homology group) of C,. Set Hy(Cy) = (H,,(Cl))n.
Similarly, for a cocomplex C* = (C™,d") let
H"(C®) = Ker(d")/ Tm(d" ")
be the nth cohomology group of C*.

Each homomorphism f,: Cy — C. of complexes induces homomorphisms

H,,(fa): Ho(Co) — Hu(CQ).
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(One has to check that f,,(Im(d,11)) C Im(d],, ) and f,(Ker(d,)) C Ker(d,).)

It follows that H,, defines a functor from the category of complexes of A-modules to
the category of A-modules.

Let Cy = (C,,,d,,) be a complex. We consider the homomorphisms

dn+1 dn dnfl
Cor 255 €, 22 0y 25 0y,

By assumption we have Im(d;, ;) C Ker(d;) for all i.

The following picture illustrates the situation. Observe that the homology groups
HZ(C.) = Ker(dl)/lm(dlﬂ)

are highlighted by the thick vertical lines. The marked regions indicate which parts
of C; and C;_; get identified by the map d;. Namely d; induces an isomorphism

C;/ Ker(d;) — Im(d;).

The map d,, factors through Ker(d,,_;) and the map C,, = Ker(d,,_1) factors through
Cok(d,,4+1). Thus we get an induced homomorphism d,,: Cok(d, 1) — Ker(d,_1).
The following picture describes the situation:
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dn

Cok(dp11) Ker(d,_1)

So we obtain a commutative diagram

Ch

L]

Cok(d,41) o, Ker(d,_1)

The kernel of d,, is just H,(C,) and its cokernel is H,_1(C,). Thus we obtain an
exact sequence

i§ dn PS4
0— H,(C,) = Cok(d+1) = Ker(d,—1) — H,-1(Cs) — 0

where i¢ and p¢ | denote the inclusion and the projection, respectively. The inclu-
sion Ker(d¥) — C,, is denoted by u¢.

2.5. Homotopy of morphisms of complexes. Let Cy, = (C,,d,) and C, =
(C!.d!) be complexes, and let f,,ge: Co — C? be homomorphisms of complexes.

Then f, and g, are called homotopic if for all n € Z there exist homomorphisms
5,1 Cp — C) . such that

B = fo — Gn = dpp 10 + Sn_1d,y,.

In this case we write f, ~ go. (This defines an equivalence relation.) The sequence
s = (sp)n is a homotopy from f, to g.

dn+1 dn
CnJrl Cn Cnfl —
Sn Sn—1
! ! !
CnJrl & Cn n—1 e

n+1

The morphism f,: Cy — C. is zero homotopic if f, and the zero homomorphism
0: Cy — C. are homotopic. The class of zero homotopic homomorphisms forms an
ideal in the category of complexes of A-modules.

Proposition 2.3. If f,,g.: Co — C. are homomorphisms of complexes such that
fo and gs are homotopic, then H,(fs) = H,(gs) for all n € Z.
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Proof. Let Cy = (C,,,d,,) and C, = (C!,d.,), and let = € Ker(d,,). We get

n» 'n

fa(@) = gn(x) = (fu — 9n) ()
= ( In+15n + 8n-1dy,)(2)

= d;z-i-lsn (7)

since d,(z) = 0. This shows that f,(z) and g,(z) only differ by an element in
Im(d;, ). Thus they belong to the same residue class modulo Im(d],, ). O

Corollary 2.4. Let f,: Cy — C. be a homomorphism of complexes. Then the
following hold:

(i) If fe is zero homotopic, then H,(fs) =0 for all n;
(ii) If there exists a homomorphism ge: Cl, — C4 such that gefs ~ lc, and
fege ~ 1ci, then H,(f.) is an isomorphism for all n.

Proof. As in the proof of Proposition 2.3 we show that f,(x) € Im(d;_ ). This

implies (i). We have H,(g¢)Hn(fo) = Hu(gefe) = Hu(le,) and H,(fo)Hyn(ge) =
H,(fege) = Hn(1¢,). Thus H,(f,) is an isomorphism. O

2.6. The long exact homology sequence. Let

0— A, 2% B, 25 ¢, — 0
be a short exact sequence of complexes. We would like to construct a homomorphism
On: Hy(Co) — Hp_1(As).

Recall that the elements in H,,(C,) are residue classes of the form x+Im(dS, ) with
x € Ker(d). Here we write Ay = (A,,d?), By = (B,,d?) and C, = (C,,,d?).

For z € Ker(d9) set
O +Tm(dS, ) == 2+ Tm(d;)
where z € (f, 1, dPg-")(x).

Theorem 2.5 (Long Exact Homology Sequence). With the notation above, we ob-
tain a well defined homomorphism

5n: Hn(co) - n—l(Ao)
and the sequence

Hn(g.) 6n
e

H,(C,) = H,_1(A,)

. 6n+1 Hn<A.) H"(f') Hn(B.) H’nfl(f‘) .

15 exact.
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Proof. Taking kernels and cokernels of the maps d2, d? and d? we obtain the fol-
lowing commutative diagram with exact rows and columns:

B,—> .C, 0

1 1

Cok(d4) ~= Cok(dB) ——> Cok(dS) —0

(The arrows without label are just the canonical inclusions and projections, re-
spectively. By f! ¢/, and f/_,, g/ , we denote the induced homomorphisms on the

kernels and cokernels of the maps d?, d? and d¢, respectively.)

The map f} is a restriction of the monomorphism f,, thus f/ is also a monomor-
phism. Since g, ; is an epimorphism and g, ;(Im(d?)) C Im(dS), we know that
gr_, is an epimorphism as well.

We have seen above that the homomorphism dfll: A, — A,_1 induces a homomor-
phism

a=dA: Cok(d?,,) — Ker(d? ).
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Similarly, we obtain b = dB and ¢ = d¥. The kernels and cokernels of these homo-
morphisms are homology groups. We obtain the following commutative diagram:

0 0 0
Hy(Ad) Hy(Be) —— Hy(Cl)
in iy i
V4 an
Cok(d2, 1) 2~ Cok(dZ, )~ Cok(dS, ) —> 0

a b c
0 — Ker(d! ) > Ker(d? ) ~—>Ker(dS )

Pﬁ—l p5—1 pg—1

Hy—1(fe) Hy—1(ge)

H, 1(As) —> H,_1(B,) — H,,_1(C,)

0 0 0

Now we can apply the Snake Lemma: For our n we obtain a connecting homomor-
phism
0: Hn<Co) - n71<Ao)

which yields the required exact sequence. It remains to show that § = 9,,.

Let T be the set of all triples (x,y, 2) with x € Ker(dY), y € B,, z € A,_; such that
gn<y) =z and fn71<z) = d§<y)

(1) For every x € Ker(d$) there exists a triple (z,v,2) € T:

Let x € Ker(d). Since g, is surjective, there exists some y € B, with g,(y) = z.
We have

In1d2(y) = di gn(y) = di, (x) = 0.
Thus df(y) belongs to the kernel of g, 1 and therefore to the image of f,, ;. Thus
there exists some 2z € A,y with f,,_1(2) = dZ(y).

(2) If (2,91, 21,), (T, Y2, 22) € T, then z; — 2, € Im(d2):

We have g, (y1 —y2) = z —x = 0. Since Ker(g,) = Im(f,) there exists some a,, € A,
such that f,(a,) = y1 — yo. It follows that

fn—ldﬁ(an) = dffn(an) = df(yl - yQ) = fn—1(21 - 22)-
Since f,_1 is a monomorphism, we get d“(a,) = 21 — 2z5. Thus z; — 2o € Im(d?).

(3) If (z,y,2) € T and z € Im(dY, ), then z € Im(d2):

Let z = dg+1(r) for some r € C),,1. Since g, is surjective there exists some
s € Bpy1 with g,41(s) = r. We have

gﬂ(@/) =T = ngrl(T) = dg+1gn+1<5) = gnderl(S)-
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Therefore y — d? , (s) is an element in Ker(g,) and thus also in the image of f,,. Let
y—dP (s) = fa(t) for some t € A,. We get
Faordil () = d3] fu(t) = d (y) — dd}] 4 (s) = d}i(y) = faa(2).
Since f,_; is injective, this implies d?}(¢t) = z. Thus z is an element in Im(d?).
(4) If (z,y,2) € T, then z € Ker(d? ,):
We have
Facady_1(2) = d}}_ fai(2) = d}_yd (y) = 0.
Since f,_» is injective, we get d4 ,(z) = 0.
Combining (1),(2),(3) and (4) yields a homomorphism 6, : H,(Cs) — H,_1(A.)
defined by
Sn(z +Im(dS ) == 2 + Im(d3)
for each (x,y,z) € T.
The set of all pairs (pS(x),p? ,(2)) such that there exists a triple (x,y,2) € T is
given by the relation
P(py1) o D(up 1)~ o T(fu) ™ 0 T(dy) 0 T(ga) ™ o T(uy) o T(py)) 7.

This is the graph of our homomorphism d,,.

Ker(d$) —— H,(C,)
|
B, —*—C,
|

A
pn—l

Hyo(A)) =2 Ker(d? ) = A,y 22 B,

Now it is not difficult to show that this relation coincides with the relation

D(pn_y) o D(foy) ™ o (b)) o T(gy) ™" o I(iy))
which is the graph of §.

This implies 6 = §,,. 0
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The exact sequence in the above theorem is called the long exact homology
sequence associated to the given short exact sequence of complexes. The homo-
morphisms 9,, are called connecting homomorphisms.

The connecting homomorphisms are “natural”: Let

0—— A LB, 20, ——0
lpo \Lq. l?"o
0— A Lo p " o

be a commutative diagram with exact rows. Then the diagram

H,(C.) =2~ H, 1(A.)

Hn(r.)l \LHn—l(pO)
H,(CL) —2 H,_y(AL)

commutes, where §,, and ¢/, are the connecting homomorphisms coming from the
two exact rows.

3. Projective resolutions and extension groups

3.1. Projective resolutions. Let P, i > 0 be projective modules, and let M be
an arbitrary module. Let p;: P, — P;_1, i > 1 and €: Fy — M be homomorphisms
such that

Pit+1 i £
N i+1L>jDip—’>---p—2>P1p—l>Po—>M—>0

is an exact sequence. Then we call
Pi+1 Pi p2 p1
Po=(—>P,4—PFP—- 5P —R)

a projective resolution of M. We think of P, as a complex of A-modules: Just
set P, =0 and p;;; = 0 for all 7 < 0.

Define
Qp (M) i= Qb (M) = Ker(e),

and let Q% (M) = Ker(p;—1), ¢ > 2. These are called the syzygy modules of M
with respect to P,. Note that they depend on the chosen projective resolution.

End of Lecture 33

If all P; are free modules, we call P, a free resolution of M.
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The resqlution P, is a minimal projective resolution of M if the homomorphisms
P, — Qp (M),i>1and also e: By — M are projective covers. In this case, we call

Q" (M) = O, (M)

the nth syzygy module of M. This does not depend on the chosen minimal
projective resolution.

Lemma 3.1. If
0—-U—=P—-M-—0

is a short exact sequence of A-modules with P projective, then U = Q(M) @ P’ for
some projective module P’.

Proof. Exercise. O

Sometimes we are a bit sloppy when we deal with syzygy modules: If there exists
a short exact sequence 0 — U — P — M — 0 with P projective, we just write
Q(M) = U, knowing that this is not at all well defined and depends on the choice
of P.

Lemma 3.2. For every module M there is a projective resolution.

Proof. Define the modules P; inductively. Let ¢ = ¢y: Py — M be an epimorphism
with Fy a projective module. Such an epimorphism exists, since every module is
isomorphic to a factor module of a free module. Let p;: Ker(gg) — P, be the
inclusion. Let e1: P, — Ker(gg) be an epimorphism with P; projective, and define
p1r = oe: Pp — Py Now let e5: P, — Ker(gy) be an epimorphism with P,
projective, etc.

The first row of the resulting diagram

£

P F M 0
H2 H1
) )

ANV AN

Ker(g Ker(gg
is exact, and we get a projective resolution
of Cok(py) = M. O

Theorem 3.3. Given a diagram of homomorphisms with exact rows

p3 P2 P1

Py P

where the P; and P} are projective. Then the following hold:

)
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(i) There exists a “lifting” of f, i.e. there are homomorphisms f;: P; — P! such
that

pifi = ficapi and €' fo = fe

for all i;
(ii) Any two liftings fo = (fi)i>o and f. = (f])i>0 are homotopic.

Proof. (i): The map ¢’': P; — N is an epimorphism, and the composition fe: Py —
N is a homomorphism starting in a projective module. Thus there exists a homo-
morphism fy: Py — P such that &' fy = fe.

We have Im(p;) = Ker(e) and Im(p}) = Ker(¢’). So we obtain a diagram with exact
rows of the following form:

p3 P2 p1

Py Py Im(p1) —0
|7
~= Py — P ——~Tm(p}) —=0

The homomorphism % is obtained from fy by restriction to Im(p;). Since P; is
projective, and since p] is an epimorphism there exists a homomorphism f;: P, — P]
such that p|fi = fop1, and this implies p} f; = fop1. Now we continue inductively
to obtain the required lifting (f;)i>o.

(ii): Assume we have two liftings, say fo = (fi)i>0 and f, = (f!)i>0. This implies
fe=<efo=¢f
and therefore £'(fy — f;) = 0.

Let ¢;: Im(p,) — P!, be the inclusion and let m;: P/ — Im(p}) be the obvious
projection. Thus p} = ¢; o m;.

The image of fy — f{ clearly is contained in Ker(¢’) = Im(p)). Now let s;: Py —
Im(p}) be the map defined by s((m) = (fo— f})(m). The map 7 is an epimorphism,
and sj, is a map from a projective module to Im(p}). Thus by the projectivity of P,
there exists a homomorphism sg: Py — P| such that m o sy = si,.

We obtain the following commutative diagram:

Py—=M

= e ]

Pl = Im(p)) —>F—= N

Now assume s;_;: P,_; — P/ is already defined such that

/ /
fic1 — fi1 = PiSi—1 + Si—aDi—1.
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We claim that pi(f; — f/ — s;_1pi) = 0: We have

Pi(fi = fi = sicapi) = pifi — Pifi — Pisicapi
= fi-1pi — fi/—lpi - pgsiflpi
= (fie1 = fi_)pi — Disicapi
= (PiSi—1 + Si—2Di—1)Di — D;Si—1Ds

= S;—2Pi—1Di
=0
(since p;_1p; = 0).
P, Di P, Di—1 P,
fil / lfz’l lfzz
Si—1 Si—2

P P, P,

; Pi_q

Therefore
Im(f; — f] — si—1pi) C Ker(p;) = Im(p;-f—l)'
Let s;: P, — Im(p},,) be defined by sj(m) = (fi — f] — si—1pi)(m).

7

Since P, is projective there exists a homomorphism s;: P; — P/, such that ;1 05, =
si. Thus we get a commutative diagram

P;
S ,
, fi—fi—si—1pi
S
/ / /
Pl Y Im(p;y;) e L

Thus p,,s; = f; — [] — si—1p; and therefore f; — f/ = p},,s; + si_1p;, as required.

(2

This shows that f, — f. is zero homotopic. Therefore f, = (f;); and f, = (f!); are
homotopic. 0

3.2. Ext. Let
Po=(--25p 2 2op 2 p)
be a projective resolution of M = Cok(p;), and let N be any A-module. Define
Ext’y (M, N) := H"(Homu(P,, N)),

the nth cohomology group of extensions of M and N. This definition does not
depend on the projective resolution we started with:

Lemma 3.4. If P, and P, are projective resolutions of M, then for all modules N
we have

H"(Homy(P,, N)) = H"(Homyu(P., N)).
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Proof. Let fo = (fi)i>o0 and ge = (gi)i>0 be liftings associated to

p3 p2 P1

Py P

Py P} P ——= M 0

and
P P, Ph P P P, Y 0
P.pBpBap Sy 0.

By Theorem 3.3 these liftings exist and we have gofe ~ 1p, and fege ~ 1p;. Thus,
we get a diagram

p3 P2 P1

Py Py Fo
g2fo—1p, g1fi—1p, gofo—1p,
S92 S1 S0
p3 p2 D1
Py Py R

such that g;f; — 1p, = piy15; + si—1p; for all i. (Again we think of P, as a complex
with P, =0 for all i < 0.)
Next we apply Hom4(—, V) to all maps in the previous diagram and get

Hom (ge fe, N) ~ Homy(1p,, N).

Similarly, one can show that Hom(fege, N) ~ Homy(1p;, N). Now Corollary 2.4
tells us that H"(Homa(gefe, N)) = H"(Homu(1p,, N)) and H"(Homa(fegs, N)) =
H™(Homy(1p;, N)). Thus

H"(Homa(fe, N)): H"(Homyu(P,, N)) — H"(Homu(P,, N))

is an isomorphism. O

End of Lecture 34

3.3. Induced maps between extension groups. Let P, be a projective resolu-
tion of a module M, and let g: N — N’ be a homomorphism. Then we obtain an
induced map

Exty(M,g): H"(Homy(P,, N)) — H"(Hom(P,, N'))
defined by [a] — [g o a]. Here a: P, — N is a homomorphism with « o p, 1 = 0.
There is also a contravariant version of this: Let f: M — M’ be a homomorphism,

and let P, and P, be projective resolutions of M and M’, respectively. Then for any
module N we obtain an induced map

Ext’y(f, N): H"(Homyu(P., N)) — H"(Homu(P,, N))
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defined by [3] — [B o f,]. Here 8: P, — N is a homomorphism with fop) , =0
and f,: P, — P! is part of a lifting of f.

3.4. Some properties of extension groups. Obviously, we have Ext (M, N) =0
for all n < 0.

Lemma 3.5. Ext (M, N) = Hom,(M, N).

Proof. The sequence P, — Py — M — 0 is exact. Applying Homy(—, N) yields an
exact sequence

0 — Homa(M, N) — Hom(By, N) 224N, pom , (P, N).
By definition Ext% (M, N) = Ker(Homy4(p1, N)) = Homu (M, N). O

Let M be a module and
0— QM) P M —0
a short exact sequences with Fy projective.
Lemma 3.6. Ext! (M, N) = Homy(Q(M),N)/{sous |s: Py — N}.

Proof. 1t is easy to check that Hom4(Q(M), N) = Ker(Homy(p2, N)) and {s o u |
s: Py — N} = Im(Homyu(py, N)). O

Lemma 3.7. For alln > 1 we have Ext™ (M, N) = Ext'; (QM, N).

Proof. If P, = (P;, pi)i»o is a projective resolution of M, then --- Py 2% P, *2 P is
a projective resolution of Q(M). O

3.5. Long exact Ext-sequences. Let
0-X—-Y—->27—-0

be a short exact sequence of A-modules, and let M be any module and P, a projective
resolution of M. Then there exists an exact sequence of cocomplexes

0 — Homy(P,, X) — Homyu (P, Y) — Homyu (P, Z) — 0.

This induces an exact sequence

0 — Hom (M, X) — Homu(M,Y) —— Homy (M, Z)

Ext!y (M, X) — Ext4(M,Y) — Ext} (M, 2)

e

Ext? (M, X) — Ext%(M,Y) — Ext% (M, Z)

Ext® (M, X)
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which is called a long exact Ext-sequence.

To obtain a “contravariant long exact Ext-sequence”, we need the following result:

Lemma 3.8 (Horseshoe Lemma). Let

0-xLva4z 0

be a short exact sequence of A-module. Then there exists a short exact sequence of
complezes
n:0— P —P,—P/'—0

where P., P, and P are projective resolutions of X, Y and Z, respectively. We

also have P, = P, & P,.
Proof. ... O

Let N be any A-module. In the situation of the above lemma, we can apply
Homy(—, N) to the exact sequence 7. Since n splits, we obtain an exact sequence
of cocomplexes

0 — Homu(P), N) — Homu(P,, N) — Homyu(P,, N) — 0.
Thus we get an exact sequence

0 — Homu(Z, N) — Homu (Y, N) — Hom (X, N)

=

Ext!(Z, N) —— Ext} (Y, N) —— Ext}, (X, N)

e

Ext?(Z,N) w Ext? (X, N)

which is again called a (contravariant) long exact Ext-sequence.

Ext(Z, N)

3.6. Short exact sequences and the first extension group. Let M and N be
modules, and let

P.:(...p"_ﬂpn%...&pleo)

be a projective resolution of M = Cok(p,). Let Py — M be the cokernel map of
1, l.€.
PP M-—0

is an exact sequence.

We have
H"(Homy (P, N)) := Ker(Homa(ppy1, N))/ Im(Hom 4 (p,, N)).
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Let [a] := a4+ Im(Homu(p,, N)) be the residue class of some homomorphism
a: P, — N with aop,.1 = 0.

Clearly, we have
Im(Homa(p,, N)) ={sop,|s: P,y — N} C Homu(P,, N).

For an exact sequence
0=NLELM—-0
let
U(f,9)

be the set of homomorphisms a: P, — N such that there exists some 3: Py — E
with foa=fop; and go f =¢.

p2

P, P Py—=M 0
|
=]
Y
0 Nlop—ftoy 0

Observe that ¥(f, g) € Homu (P, N).

Lemma 3.9. The set (f,g) is a cohomology class, i.e. it is the residue class of
some element a € Ker(Hom 4 (p2, N)) modulo Im(Hom(py, N)).

Proof. (a): If a € ¥(f, g), then a € Ker(Hom4(p2, N)):

We have
foaopy=[opiop=0.
Since f is a monomorphism, this implies « o p; = 0.

(b): Next, let a, o € 9(f,g). We have to show that a« — o’ € Im(Hom4(py, N)):

There exist 3 and 3 with go3=ec=go3, foa = Bop; and foa' = ' op,. This
implies g(3 — ') = 0. Since P, is projective and Im(f) = Ker(g), there exists some
s: Py — N with fos=0— /3. We get

fla—=a)=(8~pF)p1=fosop:.
Since f is a monomorphism, this implies &« — o/ = s o p;. In other words, o — o/ €
Im(Hom 4 (p1, N)).

(c): Again, let o € ¥(f,g), and let v € Im(Homa(py, N)). We claim that a + v €
U(f,9):

Clearly, v = s o p; for some homomorphism s: Py — N. There exists some 3 with
gof=cand foa=op;. This implies
fla+7) = Bpi+ fspi = (B+ fs)pr.
Set 0 := B+ fs. We get
g8 =g(B+fs)=gB+gfs=gB=c.
Here we used that go f = 0. Thus a+ v € ¥(f,g). O
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End of Lecture 35

Theorem 3.10. The map
Y: {0 - N —%—M— 0}~ — Exth(M,N)
(f.9) —&(f.9)
defines a bijection between the set of equivalence classes of short exact sequences
0=NLxL M0
and Extl (M, N).

Proof. First we show that v is surjective: Let a: P, — N be a homomorphism with
aopy =0. Let

REPEPSM—0
be a projective presentation of M. Set Q(M) := Ker(¢).

Thus p; = py o e where €1: P, — Q(M) is the projection, and py: Q(M) — Py is
the inclusion. Since a0 py = 0, there exists some o/: Q(M) — N with a = o/ o g;.
Let (f,g) := o/ (u1,€) be the short exact sequence induced by «'. Thus we have a
commutative diagram

p2

P, P, P1 ja € M 0
0—— QM) > Py > M 0
]

f g
0 N E M 0

This implies « € ¥(f, g).

Next, we will show that v is injective: Assume that ¥(f1,g1) = ¥(f2,92) for two
short exact sequence (f1,¢1) and (fs, g2), and let o € ¥(f1,1). Let o/: Q(M) — N
and g : (M) — Py be as before. the restriction of a to 2(M) and let pf: Q(M) —
P, be the obvious inclusion.

We obtain a diagram

0—= QM) 2P —> M 0

a’l ﬁll B2 H
fi g1

0 N E M
|

YR

N f2 LG M

0 Es 0

with exact rows and where all squares made from solid arrows commute.

By the universal property of the pushout there is a homomorphism v: F; — FEj
with vo f; = f and v o 3; = F5. Now as in the proof of Skript 1, Lemma 10.10
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we also get go 0y = g1. Thus the sequences (f1, g1) and (fs, go) are equivalent. This
finishes the proof. O

Let 0 — X LY % Z — 0 be a short exact sequence, and let M and N be modules.
Then the connecting homomorphism

Homy (M, Z) — Ext! (M, X)

is given by h +— [n] where 7 is the short exact sequence h*(f,g) induced by h via a
pullback.

7 0— X . M—0
| b

Y
0—>xtoy 2.y 0

Similarly, the connecting homomorphism
Homy (X, N) — Ext!(Z, N)

is given by h +— [n] and where 7 is the short exact sequence h.(f,g) induced by h
via a pushout.

If (f,g) is a split short exact sequence, then ¥(f, g) = 0+ Im(Hom4(p;, N)) is the
zero element in Ext!, (M, N): Obviously, the diagram

p1

P Ph——M 0
| |
0 10 H
vl Y o)
0O—N——NOM—M—0
is commutative. This implies

U([6],[01]) = 0+ Im(Homa(py, N)).

In fact, Ext) (M, N) is a K-vector space and 1 is an isomorphism of K-vector spaces.
So we obtain the following fact:

Lemma 3.11. For an A-module M we have ExtY (M, M) = 0 if and only if each
short exact sequence

0—-M-—-FE—M-—0
splits. In other words, = M & M.
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3.7. The vector space structure on the first extension group. Let
m:0— QM) — PBy— M —0
be a short exact sequence with Py projective. For ¢ = 1,2 let
m:O%N&EiiM%O
be short exact sequences.

Take the direct sum 7, &1 and construct the pullback along the diagonal embedding
M — M @& M. This yields a short exact sequence 7.

We know that every short exact sequence 0 — X — x — M — 0 is induced by n,,.
Thus we get a homomorphism [g}] : Q(M) — N & N such that the diagram

u

N 00— Q(M) Py - M 0
[ | H
n: 0—=N&N E' M 0
| | I8
mdn: 0— N®N—FE SE,—=M>OM—0
fi 0] [91 0]
[OfQ 0 g2

commutes. Taking the pushout of 1’ along [1,1]: N @ N — N we get the following
commutative diagram:

N 0—= QM) > Py —> M 0
| H

n 0—NODON E M 0
SR

n’ 0 N E" M 0

In other words,

This implies " = (a3 + @2)«(npr). Define
mtn =1

Note that there exists some [;, i = 1,2 such that the diagram

N - 00— QM) “>P —>M 0
-, ]
. fi gi
ni 0 N E; M 0

commutes. Thus 1, = (o)« (nar).
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Similarly, let n: 0 - N — E — M — 0 be a short exact sequence. For A\ € K let
Let ' := (A)«(n) be the short exact sequence induced by the multiplication map
with A. We also know that there exists some a: Q(M) — N which induces 7. Thus
we obtain a commutative diagram

M - 0—= QM) Py M 0

U 0 N E M 0
]

4 0 N £ M 0

Define \n :=17'.

Thus, we defined an addition and a scalar multiplication on the set of equivalence
classes of short exact sequences. We leave it as an (easy) exercice to show that this
really defines a K-vector space structure on Ext’ (M, N).

4. Injective modules

A module I is called injective if the following is satisfied: For any monomor-
phism f: X — Y, and any homomorphism h: X — I there exists a homomorphism
g: Y — I such that gf = h.

Y
g 7
s
¥

1 <T X
Lemma 4.1. The following are equivalent:

(i) I is injective;
ii) The functor Homa(—,I) is exact;
)

(i) Every monomorphism I — N splits;
(iv) For all A-modules M we have Ext'y(M, 1) = 0.

Proof. (i) <= (ii): By (i) we know that for all monomorphisms f: X — Y
the map Homu(f, I): Homa(Y,I) — Homy (X, I) is surjective. This implies that
Homa(—, I) is an exact contravariant functor. The converse is also true.
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(i) = (iii): Let f: I — N be a monomorphism. Thus there exists some g: N — [
such that the diagram
N
g /
2
L
1 <T 1
commutes. Thus f is a split monomorphism.

(ili) = (i): Let f: X — Y be a monomorphism, and let h: X — I be an arbitrary
homomorphism. Taking the pushout along h we obtain a commutative diagram

R

0 I E Cok(

0—X Y Cok(f) —=0
f)

%0

with exact rows. By (iii) we know that f’ is a split monomorphism. Thus there
exists some f”: E — [ with f” o f’ = 1;. Observe that Im(h' o f) C Im(f’). Set
g := f" oh'. This implies g o f = h. In other words, I is injective.

(iil) <= (iv): We have Ext}(X,I) = 0 if and only if each short exact sequence
0— I — E — X — 0 splits. This is obviously equivalent to (iii). O

Lemma 4.2. For an algebra A the following are equivalent:

(i) A is semisimple;
(ii) Every A-module is projective;
(iii) Every A-module is injective.

Proof. Recall that A is semisimple if and only if all A-modules are semisimple. A
module M is semisimple if and only if every submodule of M is a direct summand.
Thus A is semisimple if and only if each short exact sequence

0—-X—-=Y—-27—-0

of A-modules splits. Now the lemma follows from the basic properties of projective
and injective modules. U

For any left A-module M let D(4M) = Homg (4 M, K) be the dual module of
aM. This is a right A-module, or equivalently, a left A°°-module: For o € D(4M),
a € A°®° and = € 4 M define (ac)(z) := a(ax). It follows that ((ab)a)(z)a(abxr) =
(acx)(bx) = (b(a))(x). Thus (bx a)a = (ab)a = b(a«) for all x € M and a,b € A.

Similarly, let M4 now be a right A-module. Then D(Mj,) becomes an A-module
as follows: For a € D(M,) and a € A set (aa)(z) := a(xa). Thus we have
((ab)a)(x) = a(zab) = (ba)(za) = (a(ba))(x) for all z € M and a,b € A.

Lemma 4.3. The A-module D(As) = D(aor A) is injective.
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Proof. Let f: X — Y be a monomorphism of A-modules, and let
e: Homg(Ax, K) — K

be the map defined by a — «a(1). Clearly, e is K-linear, but in general it will not
be A-linear. Let h: X — Hompg (A4, K) be a homomorphism of A-modules.

Let us now just think of K-linear maps: There exists a K-linear map ¢’: ¥ — K
such that ¢’ o f = eo h. Define a map h': Y — Homg (Aa, K) by b (y)(a) := €'(ay)
forally € Y and a € A.

X Homy(Ay, K) ——= K

/ 7
f h/./
// e
~

It is easy to see that A’ is K-linear. We want to show that A’ is A-linear. (In other
words, k' is a homomorphism of A-modules.)

For y € Y and a,b € A we have I/(by)(a) = €'(aby). Furthermore, (bh'(y))(a) =
R (y)(ab) = €'(aby). This finishes the proof. O

Lemma 4.4. There are natural isomorphisms

Hom 4 (——,Ii[]MQ> = Ii[I{OTHA(‘_7A4%)

iel iel
and
Hom 4 <@ M;, —) = H Hom(M;, —).
icl el
Proof. Exercise. O

Lemma 4.5. The following hold:

(i) Direct summands of injective modules are injective;
(ii) Direct products of injective modules are injective;
(iii) Finite direct sums of injective modules are injective.

Proof. Let I = I, & I, be a direct sum decomposition of an injective A-module
I, and let f: X — Y be a monomorphism. If h: X — I; is a homomorphism,
then [2]: X — I} & I, is a homomorphism, and since I is injective, we get some
g=1[%]:Y — I, ® I, such that

gof=1[05]of=1[4].
Thus ¢; o f = h and therefore I is injective. This proves (i).

L

Let I;, © € I be injective A-modules, let f: X — Y be a monomorphism, and
suppose that h: X — [[..;[; is any homomorphism. Clearly, h = (h;);c; where

h; is obtained by composing h with the obvious projection [],., I; — I;. Since
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I; is injective, there exists a homomorphism g¢;: Y — [, with g; o f = h;. Set
g :=(gi)ier: Y — [lie; Li- It follows that g o f = h. This proves (ii).

The statement (iii) follows obviously form (ii). O

Warning: Infinite direct sums of injective modules are often not injective. The
reason is that in general we have

@HomA( k- @HomA i, —) % Homy (@ M;, ) )

el el el

Lemma 4.6. If P4 is a projective A°°-module, then D(Py) is an injective A-module.

Proof. First assume that Py = @,.; A4 is a free A°P-module. We know already by
Lemma 4.3 that D(Ay) is an injective A-module. By Lemma 4.4 we have

D(P4) = Homg <EB AA,K> =~ [ [Homg (A4, K) = ] D(Aa).

el el el

Now Lemma 4.5 (ii) implies that D(Pj4) is projective. Any projective module is
a direct summand of a free module. Thus Lemma 4.5 (i) yields that D(Py) is an
injective A-module for all projective A°°-module Pj,. O

Lemma 4.7. FEvery A-module can be embedded into an injective A-module.

Proof. Let 4M be an A-module. There exists a projective A°°’-module P4 and
an epimorphism P4, — D(4M). Applying the duality D = Homg(—, K) gives a
monomorphism DD(4M) — D(P4). Lemma 4.6 says that D(P,) is an injective
A-module. Tt is also clear that there exists a monomorphism 4 M — DD(4M).
This finishes the proof. O

One can now define injective resolutions, and develop Homological Algebra with
injective instead of projective modules.

Recall that a submodule U of a module M is called large if for any non-zero sub-
module V' of M the intersection U NV is non-zero.

A homomorphism f: M — [ is called an injective envelope if the following hold:
(i) I is injective;

(ii) f is a monomorphism;
(iii) f(M) is a large submodule of I.

End of Lecture 36

Lemma 4.8. Let Uy and Uy be large submodules of My and My, respectively. Then
Uy, ® Us s large in My & Ms.
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Proof. Let W be a non-zero submodule of My ® Ms. For ¢ = 1,2 let m;: My ® My —
M; be the obvious projection. Without loss of generality assume (W) # 0. Since
Uy is large in M; and 71(W) is a non-zero submodule of M, there exists some
w = (wy,ws) € W with wy # 0 and wy € Uy. If wy =0, then w € (U; @ Us) NW.
If wy # 0, then we look at the submodule Aws of Us. Again there has to be some
a € A with 0 # awy € Uy. This implies 0 # (awy, awsy) € (U & Uy) N W. O

Lemma 4.9. Let I be an injective module, and let U and V be submodules of I
such that UNV = 0. Assume that U and V' are mazximal with this property (i.e.
if U CU withU' NV =0, then U = U', and if V C V' with UNV' =0, then
V=V') Then [ =U®YV.

Proof. 1t is easy to check that the map
fI—=1/UsI/V

defined by m +— (m + U, m + V') is a monomorphism: Namely, m € Ker(f) implies
meUnNV =0.

There is an embedding (U + V)/U — I/U. We claim that (U + V)/U is large in
I/U: Let U'/U be a submodule of I/U (thus U C U’ C I) with

(U +V)/UN (U JU)=0=U/U.

In other words, (U+V)NU'=U+ (VNU') =U. This implies (V NU’) C U and
(obviously) (VNU') C V. Thus VNU’ = 0. By the maximality of U we get U = U’
and therefore U’ /U = 0.

Similarly one shows that (U + V')/V is a large submodule of 1/V.

We get

U+ Us(U+V))V=2VaOeUCMCM/UoM)V.
By Lemma 4.8 we know that M is large in M /U & M/V. But M is injective and
therefore a direct summand of M/U & M/V. Thus M & C = M/U & MV for some

C'. Since M is large, we get C' =0. So M = M/U @ M/V. By the maximality of U
and V we get V.= M/U and U = M/V and therefore U @V = M. O

The dual statement for projective modules is also true:

Lemma 4.10. Let P be a projective module, and let U and V' be submodules of P
such that U +V = P. Assume that U and V are minimal with this property (i.e.
if U CU with U +V = P, then U =U’, and if V' CV with U + V' = P, then
V=V'). Then P=U®a®V.

Lemma 4.11. Let U be a submodule of a module M. Then there exists a submodule

V' of M which is maximal with the property U NV = 0.

Proof. Let
V={WCM|UnNW =0}
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Take a chain (V;);e; in V. (Thus for all V; and V; we have V; C V; or V; C V;.) Set
V =, Vi. We get

Unv=un (UV) =Jwnv)=o.

i

Now the claim follows from Zorn’s Lemma. O

Warning: For a submodule U of a module M there does not necessarily exist a
minimal V' such that U +V = M.

Example: Let M = K[T] and U = (T'). Then for each n > 1 we have (T) + (T +
)" =M.

Theorem 4.12. Every A-module has an injective envelope.
Proof. Let X be an A-module, and let X — I be a monomorphism with I injective.

Let V be a submodule of I with X NV = 0 and we assume that V' is maximal with
this property. Such a V' exists by the previous lemma.

Next, let
U={UCIT|UNV =0and X CU}.

Again, by Zorn’s Lemma we obtain a submodule U of [ which is maximal with
UNV =0and X CU.

Thus, U and V are as in the assumptions of the previous lemma, and we obtain
I =U®V and X CU. We know that U is injective, and we have our embedding
X —=U.

We claim that X is a large submodule of U:

Let U’ be a submodule of U with X N U’ = 0. We have to show that U" = 0. We
have X N (U' @& V) =0: If 2 = v + v, then x — v = v and therefore v = 0. Thus
x=u" € XNU' = 0. By the maximality of V' we have U’V =V. Thus U' =0. O

Warning: Projective covers do not exist in general.

If X is an A-module, we denote its injective hull by 7(X).
Lemma 4.13. Injective envelopes are uniquely determined up to isomorphism.

Proof. Exercise. O

Recall that a module M is uniform, if for all non-zero submodules U and V' of M
we have U NV # 0.

Lemma 4.14. Let I be an indecomposable injective A-module. Then the following
hold:

(i) 1 is uniform (i.e. if U and V are non-zero submodules of I, then UNV #0);
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(ii) Each injective endomorphism of I is an automorphism;
(iii) If f,g € Enda(I) are both not invertible, then f + g is not invertible;
(iv) Enda([) is a local ring.

Proof. (i): Let U and V' be non-zero submodules of I. Assume U NV = 0. Let
U’ and V' be submodules which are maximal with the properties U C U’, V C V'
and U' NV’ =0. Lemma 4.9 implies that I = U’ @ V’. But [ is indecomposable, a
contradiction.

(ii): Let f: I — I be an injective homomorphism. Since [ is injective, f is a split
monomorphism. Thus I = f(I) @ Cok(f). Since I is indecomposable and f(I) # 0,
we get Cok(f) = 0. Thus f is also surjective and therefore an automorphism.

(iii): Let f and g be non-invertible elements in End4 (7). by (ii) we know that f and
g are not injective. Thus Ker(f) # 0 # Ker(g). By (i) we get Ker(f) N Ker(g) # 0.
This implies Ker(f + g) # 0.

We know already from the theory of local rings that (iii) and (iv) are equivalent
statements. u

injective resolution
minimal injective resolution

Theorem 4.15. Let I* be an injective resolution of an A-module N. Then for any
A-module M we have an isomorphism

Exth (M, N) = H"(Hom (M, I*)).

which s “natural in M and N 7.

Proof. Exercise. O

5. Digression: Homological dimensions

5.1. Projective, injective and global dimension. Let A be a K-algebra. For
an A-module M let proj.dim(M) be the minimal j > 0 such that there exists a
projective resolution (F;,d;); of M with P; = 0, if such a minimum exists, and
define proj. dim(M) = oo, otherwise.
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We call proj. dim(M) the projective dimension of M. The global dimension of
A is by definition
gl. dim(A) = sup{proj. dim(M) | M € mod(A)}.
Here sup denote the supremum of a set.
It often happens that the global dimension of an algebra A is infinite, for example
if we take A = K[X]/(X?). One proves this by constructing the minimal projective

resolution of the simple A-module S. Inductively one shows that Q'(S) 2 S for all
1> 1.

Proposition 5.1. Assume that A is finite-dimensional. Then we have

gl. dim(A) = max{proj.dim(S) | S a simple A-module}.
Proof. Use the Horseshoe Lemma. O

Similarly, let inj.dim(M) be the minimal j > 0 such that there exists an injec-
tive resolution (I;,d;); of M with I; = 0, if such a minimum exists, and define
inj. dim(M) = oo, otherwise.

We call inj. dim(M) the injective dimension of M.

Theorem 5.2 (No loop conjecture). Let A be a finite-dimensional K-algebra. If
Ext} (S, 9) # 0 for some simple A-module S, then gl. dim(A) = oo.

Conjecture 5.3 (Strong no loop conjecture). Let A be a finite-dimensional K-
algebra. If Ext'y(S,S) # 0 for some simple A-module S, then proj.dim(S) = co.
5.2. Hereditary algebras. A K-algebra A is hereditary if gl. dim(A) < 1.

5.3. Selfinjective algebras.

5.4. Finitistic dimension. For an algebra A let
fin.dim(A) := sup{proj. dim(M) | M € mod(A), proj. dim(M) < oo}

be the finitistic dimension of A. The following conjecture is unsolved for several
decades and remains wide open:

Conjecture 5.4 (Finitistic dimension conjecture). If A is finite-dimensional, then
fin.dim(A) < oo.

5.5. Representation dimension. The representation dimension of a finite-
dimensional K-algebra A is the infimum over all gl. dim(C') where C is a generator-
cogenerator of A, i.e. each indecomposable projective module and each indecom-
posable injective module occurs (up to isomorphism) as a direct summand of C.

Theorem 5.5 (Auslander). For a finite-dimensional K -algebra A the following hold:

(i) rep.dim(A) = 0 if and only if A is semisimple;
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) #

)= 2 zf and only if A is representation-finite, but not semisimple.

(ii) rep.dim
(ili) rep.dim

Theorem 5.7 Rouquler) For each n > 3 there exists a finite-dimensional algebra

) =

5.6. Dominant dimension. dominant dimension of A

(A
(A
Theorem 5.6 (Iyama). If A is a finite-dimensional algebra, then rep.dim(A) < oo.
(
(A

A with rep.dim

5.7. Auslander algebras. Let A be a finite-dimensional representation-finite K-
algebra. The Auslander algebra of A is defined as End4(M) where M is the
direct sum of a complete set of representatives of isomorphism classes of the inde-
composable A-modules.

Theorem 5.8 (Auslander).

5.8. Gorenstein algebras.

6. Tensor products, adjunction formulas and Tor-functors

6.1. Tensor products of modules. Let A be a K-algebra. Let X be an A°P-
module, and let Y be an A-module. Recall that X can be seen as a right A-module
as well. For z € X and a € A we denote the action of A°? and A on X by axx = z-a.

By V(X,Y) we denote a K-vector space with basis
XxY={(z,y)|re X,ye Y}

Let R(X,Y’) be the subspace of V(X,Y') which is generated by all vectors of the
form

where v € X, y €Y, a € Aand A\ € K. The vector space
X®aY =V(X,)Y)/R(X,Y)

is the tensor product of X, and 4Y. The elements z in X ®4 Y are of the form

Z T @ Yi
i=1

where z @y := (x,y) + R(X,Y). But note that this expression of z is in general not
unique.
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End of Lecture 37

Warning

From here on there are only fragments, incomplete proofs or no proofs
at all, typos, wrong statements and other horrible things...

A map #: X xY — V where V is a vector space is called balanced if for all
v, € X,y,y €Y,ae€ Aand \ € K the following hold:

) Bz +2',y) = Blz,y) + B2, y),
) Bz, y+y) = Bz, y) + B(z,y),
) B(za,y) = B(x, ay),

) B(

(
(
( ra,y
( Az, y) = AB(z,y).

1
2
3
4

In particular, a balanced map is K-bilinear.

For example, the map
wWw: X XY —-X®4Y

defined by (z,y) — x®uy is balanced. This map has the following universal property:

Lemma 6.1. For each balanced map 3: X xY — V there exists a unique K-linear
map v: X @Y — V with f =vyow.

XxY —Xe,Y

Furthermore, this property characterizes X ®4Y up to isomorphism.

Proof. We can extend (§ and w (uniquely) to K-linear maps 3': V(X,Y) — V and
Wi V(XY) - X ®4 Y, respectively. We have R(X,Y) C Ker(f'), since 3 is
balanced. Let ¢: R(X,Y) — Ker(#') be the inclusion map. Now it follows easily
that there is a unique K-linear map v: X ®4Y — V with § = yow and ' = you'.

0—=RX,)Y)—V(X,Y) > X @,V —> 0

|
| | ¥
’ A
0—— Ker(f) —= V(X,Y) 2~y 0

g

Let A, B, C' be K-algebras, and let 4 Xpg be an A-B°-bimodule and gYs a B-C°P-
bimodule. We claim that X ® gY is an A-C°P-bimodule with the bimodule structure
defined by

a(z ®y) = (ax) @y,
(z®@y)e=2® (yc)
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where a € A, c € C and r ®y € X ®p Y: One has to check that everything is
well defined. It is clear that we obtain an A-module structure and a C°P-module
structure. Furthermore, we have

(ale @ y))e = ((ax) ® y)e = (az) @ (ye) = al(z D y)e).
Thus we get a bimodule structure on X ®p Y.
Lemma 6.2. For any A-module M, we have
AA @ M =M

as A-modules.

Proof. The A-module homomorphisms 7: A® s M — M, a®m — am and ¢: M —
A®4 M, m— 1®m are mutual inverses. U

Let f: X4 — X and g: 4Y — 4Y’ be homomorphisms. Then the map f: X xY —
X' ®4 Y’ defined by (z,y) — f(x) ® g(y) is balanced. Thus there exists a unique
K-linear map

f®g: X@4Y - X' @,4Y'

with (f® g)(z®y) = f(2z) ® g(y).
XXxY —2>X®,Y

e
l 2~ f®g
XI®AY/

Now let f = 1x, and let g be as above. We obtain a K-linear map
XRgi=ly®g: X®4Y - X, Y
Lemma 6.3. (i) For any right A-module X we get an additive right exact
functor
X ®4 —: Mod(A) — Mod(K)
defined by Y — X ®,Y and g— X ® g.
(ii) For any A-module oY we get an additive right exact functor

—®4Y: Mod(A) — Mod(K)
defined by X — X @, Y and f— fRY.

Proof. We just prove (i) and leave (ii) as an exercise. Clearly, X ®4 — is a functor:
We have X ®4 (go f) = (X ®49) 0 (X ®a f). In particular, X @4 1y = 1xg,v.
Additivity:
(X@a(f+9)z®y) =z (f+9)y)
=@ (f(y) +9())

=(z® f(y) + (z®g(y))
=X @f)rey) +(X@g)(ray).
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Right exactness:

U
Lemma 6.4. (i) Let X4 be a right A-module. If (Y;); is a family of A-modules,

then
X ®4 (@Y) ~PX ©aY)

where an isomorphism is defined by x ® (y;); — (z ® y;);.
(ii) Let oY be an A-module. If (X;); is a family of right A-modules, then

(@Xl> Y 2 PHXi®aY)
where an isomorphism is defined by (z;); @ y — (x; @ y);.

Proof. Again, we just prove (i).

n

Corollary 6.5. If P4 is a projective right A-module and 4@ a projective left A-
module, then

P ®4—: Mod(A) — Mod(K)
and

— ®4 Q: Mod(A°?) — Mod(K)

are exact functor.

Proof. We know that A ® 4 — is exact. It follows that @Z A ®4 — is exact. Since
Py®Qa =@, A for some Qa, we use the additivity of ® and get that Py ® — is
exact as well. The exactness of — ®4 @ is proved in the same way. O

Lemma 6.6. Let A be a finite-dimensional algebra, and let X 4 be a right A-module.
If X ®4 — 1s exact, then X4 is projective.

Proof. Exercise. O

End of Lecture 38

6.2. Adjoint functors. Let A and B be categories, and let F': A — Band G: B —
A be functors. If

Hompg(F(X),Y)) =2 Homu (X, G(Y))
for all X € A and Y € B and if this isomorphism is “natural”, then F' and G are
adjoint functors. One calls F' the left adjoint of (G, and G is the right adjoint
of F.
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Theorem 6.7 (Adjunction formula). Let A and B be K-algebras, let 4 Xp be an A-

BP-bimodule, gY a B-module and o7 an A-module. Then there is an isomorphism
Adj:=n: Homu(X ®p Y, Z) — Homp(Y, Homu (X, 7))

where 1 is defined by n(f)(y)(x) := f(z®vy). Furthermore, n is “natural in X,Y, Z”.

Proof. ...
O

6.3. Tor. We will not need any Tor-functors, but at least we will define them and
acknowledge their existence.

Let P, be a projective resolution of ,Y, and let X 4 be a right A-module. This yields
a complex
= XU P> X4 P> X®40—---
For n € Z define
Tor(X,Y) := H,(X @4 P,).

Let P, be a projective resolution of a right A-module X 4. Then one can show that
for all A-modules 4Y we have

Tor(X,Y) = H, (P, @4 Y).

Similarly as for Ext!,(—, —) one can prove that Tor?(X,Y") does not depend on the
choice of the projective resolution of Y.

The following hold:
(i) Tor(X,Y) =0 for all n < 0;

(ii) Torg (X, Y) =X ®,Y;
(iif) If 4P is projective, then Tor2 (X, P) =0 for all n > 1.

(iv
Again, similarly as for Ext!(—, —) we get long exact Tor-sequences:
(i) Let

n:0— X)), - X, —> X4 —0

be a short exact sequence of right A-modules. For every A-module 4Y this induces

an exact sequence

Tort (X', Y) — Tord (X, Y) — Tor (X" Y)

Tory (X", Y)

X' @Y X®4Y X"®4Y 0
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(ii) Let
n:0— 4Y — Y — ,Y" -0

be a short exact sequence of A-modules. For every right A-module X4 this induces

an_exactsequence

Tord(X,Y") — Tord (X, Y) — Tori (X, Y")

Tory (X,Y")

X®@,4Y

X®4Y

X®AY”%O

Note that the bifunctor Tor? (—, —) is covariant in both arguments. This is not true
for Ext’y(—, —).

Theorem 6.8 (General adjunction formula). Let A and B be K-algebras, let 4 Xp
be an A-B°P-bimodule, gY a B-module and oZ an A-module. If 47 is injective,
then there is an isomorphism

Hom (Tor? (X, Y), Z) = Ext’y(Y, Hom4(X, Z))
foralln > 1.

KKk Sk oKk ok Sk kR ok Sk kR Sk sk skook Sk sk sk ok ok sk kol sk stk sk sk skokoskoskokoskok kol skokok sk sk skok sk skokoskok ok sk skok sk skokok sk kokoskokokok skokoko sk
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Part 2. Homological Algebra II: Auslander-Reiten Theory
7. Auslander-Reiten Theory

7.1. The transpose of a module. ...

7.2. The Auslander-Reiten formula. An A-module M is finitely presented if
there exists an exact sequence

PE5PL M0

with Py and P; are finitely generated projective A-modules. Our aim is to prove the
following result:

Theorem 7.1 (Auslander-Reiten formula). For a finitely presented A-module M
we have

Ext! (N, 7(M)) = DHom ,(M, N).

Before we can prove Theorem 7.1 we need some preparatory results:

Lemma 7.2. Let X — Y 5 Z — 0 be ezxact, and let

P

X Y A 0

ol T

X/ BY, gBZ/

be a commutative diagram where &, and &, are isomorphisms and Im(f) C Ker(g).
Then

Ker(g)/ Tm(f) = Ker(¢).

Proof. ...

End of Lecture 39

Lemma 7.3. Let f: X — Y be a homomorphism, and letw: Y — Z be a monomor-
phism. Then
Ker(Homy (N, f)) = Ker(Homyu (N, uo f)).

Proof. Let h: N — X be a homomorphism. Then h € Ker(Homy4 (N, f)) if and only
if foh = 0. This is equivalent to wo f o h = 0, since u is injective. Furthermore
uo foh=0if and only if h € Ker(Homy4(N,uo f)). O

Let A be a K-algebra, and let X be an A-module. Set
X" = HOH’IA<X, AA)
Observe that X* is a right A-module.
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For an A-module Y define
Nxy: X" ®4Y — Homy(X,Y)
by (a ® y)(z) := a(z) - y. In other words
nxy (@ ®y) = py o
where p, is the right multiplication with y.
X4 Ay
Clearly, X* is a right A-module: For @ € X* and a € A set (a-a)(z) := a(x) - a.
The map X* x Y — Homyu(X,Y), (a,y) — py, o « is bilinear, and we have

(aa,y) — py o (aa)
(e, ay) — pay o .
We also know that
(py o (@a))(x) = py(a(z) -a) = a(z) - ay = (pay © @) ().
In other words, the map (o, y) — p, o a is balanced.

w

X*xY

l nxy

Homa(X,Y)

X"®4Y

Lemma 7.4. The image of nxy consists of the homomorphisms X — Y which
factor through finitely generated projective modules.

Proof. We have

i=1 i=1

n
= E Py; © Q.
=1

Nxy (Z ; ® yz) = ZTIXY(%‘ ® yi)

H

X @AA [Py1 7777 Pyn} Y
i=1

To prove the other direction, let P be a finitely generated projective module, and
assume h = g o f for some homomorphisms h: X - Y, f: X - Pandg: P — Y.
There exists a module C' such that P @ C' is a free module of finite rank. Thus
without loss of generality we can assume that P is free of finite rank. Let e, ... e,
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be a free generating set of P. Then f(z) = >, a;(z)e; for some «a;(z) € A. This
defines some homomorphisms «;: X — 4A. Set y; := g(e;). It follows that

Nxy (Z o ®yi> (z) = A i)y
= Z ai(z)g(e:)

=g (Z ozi(x)ei>
= (go f)(z) = h(z).
This finishes the proof. U

Lemma 7.5. Assume that X is finitely generated, and let f: X — Y be a homo-
morphism. Then the following are equivalent:

(i) f factors through a projective module;
(ii) f factors through a finitely generated projective module;
(iii) f factors through a free module of finite rank.

Proof. Exercise. O

Let Homu (X, Y)p := Pa(X,Y) be the set of homomorphisms X — Y which factor
through a projective module. Clearly, this is a subspace of Homy4(X,Y'). As before,
define

Hom ,(X,Y) := Homa(X,Y)/Pa(X,Y).

Lemma 7.6. If X is a finitely generated projective A-module, then nxy is bijective.

Proof. 1t is enough to show that
Naay: (4A)" ®aY — Homy(4A,Y)

is bijective. (Note that 7xqxy is bijective if and only if 1xy and 7x/y are bijective.)

Recall that (AA)* = HOIHA(AA, AA) = AA, AA XA Y = AY and HOIHA(AA, AY) =
AY.

Thus we have isomorphisms A4 ®4Y — Y, a®y — a(l)y and Y — Homy(44,Y),
y + py. Composing these yields a map a ® y — pa(1)y = py © . We have

Pa(iy(a) = aa(l)y = a(a)y = (py © a)(a).
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7.3. The Nakayama functor. Let
v: Mod(A) — Mod(A)
be the Nakayama functor defined by
v(X) :=D(X") = Homg (X", K) = Homg(Homa (X, 4A), K).
Since X* is a right A-module, we know that v(X) is an A-module.

Lemma 7.7. The functor v is right exact, and it maps finitely generated projective
modules to injective modules.

Proof. We know that for all modules N the functor Hom4(—, V) is left exact. It is
also clear that D is contravariant and exact. Thus v is right exact.

Now let P be finitely generated projective. It follows that D(P*) is injective: With-
out loss of generality assume P = 4A. Then P* = A, and Homg (A4, K) is injec-
tive. ]

Set v7! := Homyu(D(A4), —).

7.4. Proof of the Auslander-Reiten formula. Now we can prove Theorem 7.1:
Let M be a finitely presented module. Thus there exists an exact sequence
PLPLM—0

where Fy and P, are finitely generated projective modules. Applying v yields an
exact sequence

(P 22 u(py) XY y(M) — 0
where v(FPy) and v(P;) are now injective modules. Define

7(M) := Ker(v(p)).

We obtain an exact sequence

0 — 7(M) — v(P) 22 vy 2 v — 0.

Warning: 7(M) is not uniquely determined by M, since it depends on the chosen
projective presentation of M. But if Mod(A) has projective covers, then we take a
minimal projective presentation of M. In this case, 7(M) is uniquely determined
up to isomorphism.

Notation: If X LY % 7 are homomorphisms with Im(f) C Ker(g), then set

HX Ly L 7):=Ker(g)/ Im(f).

We know that Ext! (N, 7(M)) is equal to

Hom 4 (va(p)
_

H (HomA(N, v(Py)) )\, Homu(N, v(Py)) 2maNa) g0 (N, V(M))) .
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Let u: v(M) — I be a monomorphism where [ is injective. We get
Exty (N, 7(M)) = Ker(Hom4 (N, v(q)))/ Im(Hom4 (N, v(p)))
= Ker(Hom (N, u) o Homu4 (N, v(q)))/ Im(Hom4 (N, v(p))).

For the last equality we used Lemma 7.3.

Define a map
Exy :=10D(nxy: DHomyu(X,Y) — Homa(Y, v(X))
by

D(nxvy)

D Homu(X,Y)

D(X* ®,4Y) === Homg (X* ®, Y, K)

|

Hom4 (Y, Homg (X*, K))

Homy (Y, v(X))

where ¢ := Ad]j is the isomorphism given by the adjunction formula Theorem 6.7.
We know by Lemma 7.6 that {xy is bijective, provided X is finitely generated
projective.

Using this, we obtain a commutative diagram

D Homu (P, N) —— D Homu (P, N) —— D Homus (M, N) — 0

liPlN lﬁPON lf]MN

f Hom (N, v(P;)) — Homa (N, v(Fy)) — Homu (N, v(M))
whose first row is exact and whose second row is a complex. This is based on the

facts that the functor D is exact, and the functor Homy(—, N) is left exact.

Thus we can apply Lemma 7.2 to this situation and obtain
H(p) = Ker(§un)
= Ker(D(namw))
= {a € DHomus (M, N) | a(Im(nyn)) = 0}.
(If f: V — W is a K-linear map, then the kernel of f*: DW — DV consists of all
g: W — K such that go f = 0. This is equivalent to g(Im(f)) =0.)

Recall that
Eun = Adj o D(nuw).
If M is finitely generated, then Lemma 7.4 and Lemma 7.5 yield that

Im(nyn) = Homu (M, N)p.
This implies
{a € DHomy (M, N) | a(Im(nan)) = 0} = DHom 4 (M, N).
This finishes the proof of Theorem 7.1.
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The isomorphism
DHom 4 (M, N) — Ext! (N, 7(M))

1s “natural in M and N7”:

Let M be a finitely presented A-module, and let f: M — M’ be a homomorphism.
This yields a map

D Homa(f, N): DHomu (M, N) — D Hom(M', N)
and a homomorphism 7(f): 7(M) — 7(M"). Now one easily checks that the diagram
Ext! (N, 7(M)) =<—— DHom 4 (M, N)
lEXt}A(NvT(f)) lDHomA(f,N)
Ext!, (N, 7(M")) <— DHom ,(M’, N)
commutes, and that Ext’ (N, 7(f)) is uniquely determined by f.

Similarly, if g: N — N’ is a homomorphism, we get a commutative diagram
Ext4 (N, 7(M)) <— DHom (M, N)
TEX@(W(M)) TDHomA(Mvg)

Ext! (N, 7(M)) <— DHom , (M, N)

Explicit construction of the isomorphism

¢rrn: DHom 4 (M, N) — Ext! (N, 7(M)).

7.5. Existence of Auslander-Reiten sequences. Now we use the Auslander-
Reiten formula to prove the existence of Auslander-Reiten sequences:

Let M = N be a finitely presented A-module, and assume that End4 (M) is a local
ring. We have End , (M) := Hom 4 (M, M) = End4(M)/I where

I:=Ends(M)p :={f € Enda(M) | f factors through a projective module}.

If M is projective, then Hom (M, M) = 0. Thus, assume M is not projective.
The identity 1,; does not factor through a projective module: If 1,; = g o f for
some homomorphisms f: M — P and g: P — M with P projective, then f is a
split monomorphism. Since M is indecomposable, it follows that M is projective, a
contradiction.

Note that End4(M)p is an ideal in End4(M). It follows that
Enda(M)p Crad(Ends(M)).

Thus we get a surjective homomorphism of rings

Hom (M, M) — Ends(M)/rad(End4(M)).
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Recall that End4(M)/rad(End4(M)) is a skew field.

Set
U :={a € DEnd, (M) | a(rad(End 4(M))) = 0},

and let € be a non-zero element in U.

Now our isomorphism
¢arar: DHom 4 (M, M) — Ext}y (M, 7(M))
sends ¢ to a non-split short exact sequence

00— (M) LY LMo

Let
0-xLyLz o0

be a short exact sequence of A-modules. Then g is a right almost split homo-
morphism if for every homomorphism h: N — Z which is not a split epimorphism
there exists some h': N — Y with go h' = h.

0 X Y A 0

Dually, f is a left almost split homomorphism if for every homomorphism
h: X — M which is not a split monomorphism there exists some h': Y — M with

Wof=h.

0 xloy 2.y 0
hl 7
s
M

Now let
n: 0= (M) Ly L M —o.

be the short exact sequence we constructed above.

Lemma 7.8. g is a right almost split homomorphism.

Proof. Let h: N — M be a homomorphism, which is not a split epimorphism. We
have to show that there exists some h’': N — Y such that gh’ = h, or equivalently
that the induced short exact sequence h*(f, g) splits.

Since h is not a split epimorphism, the map
Hom (M, h): Homs(M, N) — Homyu (M, M)

defined by f — hf is not surjective: If hf = 1,;, then h is a split epimorphism, a
contradiction.
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The induced map
Hom , (M, h): Hom ,(M, N) — Hom , (M, M)

is also not surjective, since its image is contained in rad(End,(M)). We obtain a
commutative diagram

DHom , (M, M) 224 Ext! (M, 7(M))
lDHomA(M,h) lExt}L‘(h;r(M))

PMN

DHom 4 (M, N) — Ext! (N, 7(M))

where @y7p/(€) =1 and DHom 4 (M, h)(g) = 0. This implies Ext}y(h, 7(M))(n) = 0.

Note that the map Ext} (h, 7(M)) sends a short exact sequence 9 to the short exact
sequence h* (1) induced by h via a pullback.

So we get h*(n) = 0 for all h: N — M which are not split epimorphisms. In other
words, ¢ is a right almost split morphism. O

End of Lecture 40

Lemma 7.9. Let 0 — X LY % Z S 0bea non-split short eract sequence.
Assume that g is right almost split and that End (X)) is a local ring. Then f is left
almost split.

Proof. Let h: X — X’ be a homomorphism which is not a split monomorphism.
Taking the pushout we obtain a commutative diagram

f g

0 X Y Z 0
I g’
0 X' Y’ Z 0

whose rows are exact. Assume 1) does not split. Thus ¢’ is not a split epimorphism.

Since ¢ is right almost split, there exists some ¢”: Y’ — Y with go ¢’ = ¢'. It
follows that g(¢”f') =¢'f' = 0.

0 X Y A 0

Since Im(f) = Ker(g) this implies ¢” f' = f f” for some homomorphism f”: X’ — X.
Thus

g(g"n') = (99" = ¢g'h = g.
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In other words, g(¢”h' — 1y) = 0. Again, since Im(f) = Ker(g), there exists some
p: Y — X with ¢"h/ — 1y = fp. This implies

ff//h — g//f/h
— g//h/f
=(fp+1y)f
=fof+f

and therefore f(f"h — pf — 1x) = 0. Since f is injective, f"h — pf —1x = 0. In
other words, 1x = f”h — pf. By assumption, End4(X) is a local ring. So f"h
or pf is invertible in End4(X). Thus f is a split monomorphism or h is a split
monomorphism. In both cases, we have a contradiction. O

Recall the following result:

Lemma 7.10 (Fitting Lemma). Let M be a module of length m, and let h €
Enda(M). Then M = Im(h™) & Ker(h™).

A homomorphism ¢g: M — N is right minimal if all ~ € End4(M) with gh = ¢
are automorphisms. Dually, a homomorphism f: M — N is left minimal if all
h € End4(N) with hf = f are automorphisms.

Lemma 7.11. Let g: M — N be a homomorphism, and assume that M has length
m. Then there ezists a decomposition M = My, @& My with g(Ms) = 0, and the
restriction g: My — N is right minimal.

Proof. Let M = M; @ M, with My C Ker(g) and M, is of maximal length with this
property. If now M; = M| & M with M{" C Ker(g), then M{ @& M, C Ker(g). Thus
M = 0.

So without loss of generality assume that g(M’) # 0 for each non-zero direct sum-
mand M’ of M. Assume that gh = g for some h € End4(M).

By the Fitting Lemma we have M = Im(h"™) @ Ker(h™) for some m. If Ker(h™) #
0, then g(Ker(h™)) # 0, and therefore there exists some 0 # = € Ker(h™) with
g(x) # 0. We get g(x) = gh™(z) = 0, a contradiction. Thus Ker(h™) = 0. This
implies M = Im(h"™), which implies that h is surjective. It follows that h is an
isomorphism. O

Lemma 7.12. Let0 = X LV % Z -0 be a non-split short exact sequence. If X
15 indecomposable, then g 1s right minimal.

Proof. Without loss of generality we assume that f is an inclusion map. By Lemma
7.11 We have a decomposition Y = Y; ®Y; such that Y3 C Ker(g) and the restriction
g: Y1 — Z is right minimal. It follows that X = Ker(g) = (Ker(g) NY7) & Ya.

Case 1: Ker(g) NY; = 0. This implies X = Y5, thus f is a split monomorphism, a
contradiction since our sequence does not split.
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Case 2: Y5 = 0. Then Y =Y and the restriction g: Y} — Z coincides with ¢g.

We leave it as an exercise to formulate and prove the dual statements of Lemma
7.11 and 7.12.

Theorem 7.13. Let
0-XLy“%Lzo0

be a short exact sequence of A-modules. Then the following are equivalent:

(i) g is right almost split, and X is indecomposable;
(ii) f is left almost split, and Z is indecomposable;
(iii) f and g are irreducible.

Proof. Use Skript 1, Cor. 11.5 and the dual statement Cor. 11.10 and
Skript 1, Lemma 11.6 (Converse Bottleneck Lemma) and the dual state-
ment Lemma 11.11. Furthermore, we need Skript 1, Cor. 11.3 and Cor.
11.8. O

7.6. Properties of 7, Tr and v.

Lemma 7.14. For any indecomposable A-module M we have
v H T (M) = Qo (M).

Proof. Let P, — Py — M — 0 be a minimal projective presentation of M. Thus we
get ab exact sequence

0— Q(M)— P % Py— M—0.
Applying v yields an exact sequence
0 — (M) — v(P) 22 u(Ry).
and obtain an exact sequence
0—vi(r(M)— P 5 P,

Here we use that v~ (v(P)) = P, which comes from the fact that v induces an equiv-
alence between the category of projective A-modules and the category of injective
A-modules. This implies v~ (7(M)) = Qy(M). O

Now we apply v 1

Here is the dual statement:
Lemma 7.15. For any indecomposable A-module M we have
v(r7H (M) = Bp(M).

Lemma 7.16. Let A be a finite-dimensional K-algebra. For an A-module M the
following are equivalent:

(i) proj.dim(M) < 1;
(ii) For each injective A-module I we have Homu (I, 7(M)) = 0.
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Proof. Clearly, proj. dim(M) < 1 if and only if Qy(M) = 0. By the Lemma above
this is equivalent to Homa(D(A4),7(M)) = 0. But we know that each indecom-
posable injective A-module is isomorphic to a direct summand of D(A,4). (Let I be
an indecomposable injective A-module. Then D(7) is an indecomposable projective
right A-module. It follows that D(7) is isomorphic to a direct summand of A 4. Thus
I =2 DD(I) is a direct summand of D(A,).) This finishes the proof. O

Here is the dual statement, which can be proved accordingly:

Lemma 7.17. Let A be a finite-dimensional K-algebra. For an A-module M the
following are equivalent:

(i) inj. dim(M) < 1;
(ii) For each projective A-module P we have Hom4(7=1(M), P) = 0.

7.7. Properties of Auslander-Reiten sequences. Let A be a finite-dimensional
K-algebra. In this section, by a “module” we mean a finite-dimensional module. A
homomorphism f: X — Y is a source map for X if the following hold:

(i) f is not a split monomorphism;
(ii) For each homomorphism f’: X — Y’ which is not a split monomorphism
there exists a homomorphism f”: Y — Y’ with f' = " o f;

x L

/7
f -
l 2
YI

(iii) If h: Y — Y is a homomorphism with f = ho f, then A is an isomorphism.
X~y Dn
Dually, a homomorphism ¢: Y — Z is a sink map for Z if the following hold:

()" g is not a split epimorphism;
(ii)" For each homomorphism ¢’: Y’ — Z which is not a split epimorphism there
exists a homomorphism ¢”: Y — Y with ¢’ = g o ¢”;

YI

"o
9 Ve /
s g

P
y —=7
(iii)* If h: Y — Y is a homomorphism with g = g o h, then h is an isomorphism.
(Y >z

We know already the following facts:
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o If
0-xLyLz-o0

is an Auslander-Reiten sequence, then f is a source map for X, and ¢ is a
sink map for Z.

e If X is an indecomposable module which is not injective, then there exists a
source map for X.

e If 7 is an indecomposable module which is not projective, then there exists
a sink map for Z.

Lemma 7.18. (i) If f: X — Y 1is a source map, then X is indecomposable;
(ii) If g: Y — Z is a sink map, then Z is indecomposable.

Proof. We just prove (i): Let X = X; @ X5 with X; # 0 # Xy, and let 7: X — X,
1 = 1,2 be the projection. Clearly, m; is not a split monomorphism, thus there exists
some ¢;Y — X; with g; o f = m;. This implies 1x = [m, mo]" = [g1,95] o f. Thus f
is a split monomorphism, a contradiction. O

Lemma 7.19. Let P be an indecomposable projective module. Then the embedding
rad(P) — P

s a sink map.

Proof. Denote the embedding rad(P) — P by g. Clearly, g is not a split epimor-
phism. This proves (i)". Let ¢’: Y' — P be a homomorphism which is not a split
epimorphism. Since P is projective, we can conclude that ¢’ is not an epimorphism.
Thus Im(¢’) C P which implies Im(¢g’) C rad(P). Here we use that P is a local
module. So we proved (ii)*. Finally, assume g = gh for some h € End(rad(P)).
Since g is injective, this implies that h is the identity 1,.q(p). This proves (iii)*. O

Lemma 7.20. Let I be an indecomposable injective module. Then the projection

Q — Q/soc(Q)

1S @ source map.

Proof. Dualize the proof of Lemma 7.19. O

Corollary 7.21. There a source map and a sink map for every indecomposable
module.

Lemma 7.22. Let f: X — Y be a source map, and let f': X — Y’ be an arbitrary

homomorphism. Then the following are equivalent:

(i) There exists a homomorphism f": X — Y" and an isomorphism h:Y —
Y'®Y" such that the diagram

commautes.
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(ii) f' is irreducible or Y’ = 0.

Proof. (i) = (i): If Y’ = 0, then choose f” = f. Thus, let f’ be irreducible. It
follows that f’ is not a split monomorphism. Thus there exists some h': Y — Y’

with f' = I'f.
x Loy
»
2 h
Y/

Now f’is irreducible and f is not a split monomorphism. Thus A is a split epimor-
phism. Let Y” = Ker(h'). This is a direct summand of of Y. Let p: Y — Y” be the
corresponding projection. We obtain a commutative diagram

T Ly

m I

f Yy’ D Yy

X

Clearly, [’I‘;] is an isomorphism. Now set f” :=pf.

!

(i) = (ii): Without loss of generality we assume h = 1. Thus f = [ ]{N] X —
Y =Y'@Y"”. We have to show: If Y # 0, then f’ is irreducible.

(a): f"is not a split monomorphism: Otherwise f would be a split monomorphism,
a contradiction.

(b): f"is not a split epimorphism: We know that Y’ # 0 and X is indecomposable.
If f"is a split epimorphism, we get that f’ is an isomorphism and therefore a split
monomorphism, a contradiction.

(c): Let f' = hg.

XLY’

A

C

There is a source map [J{///} : X = Y'@Y”. Assume g is not a split monomorphism.
Then there exists some [¢/, ¢"]: Y/ @ Y” such that the diagram

X _{]{i}yl DY"

g9
A’}

C
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commutes. Thus g = ¢'f" 4+ ¢” f”. It follows that the diagram

7

X Y' ey

|: f/l/:| l/ /

I [hg/ hg"]

v’ ® Yy 0 1
commutes. Since [ J{,/,] is left minimal, the map [hog’ hsli"} is an automorphism. Thus
hg' is an automorphism. This implies that h is a split epimorphism. So we have
shown that f’ is irreducible. O

Corollary 7.23. Let f: X — Y be a source map, and let h:' Y — M be a split
epimorphism. Then ho f: X — M is irreducible.

Here is the dual statement which is proved accordingly:

Lemma 7.24. Let g: Y — Z be a sink map, and let g': Y' — Z be an arbitrary
homomorphism. Then the following are equivalent:
(i) There exists a homomorphism ¢": Y" — Z and an isomorphism h:Y' @

Y" —Y such that the diagram
Y/ @ Y//

commutes.
(i) ¢’ is irreducible or Y' = 0.

Corollary 7.25. Let g: Y — Z be a sink map, and let h: M — Y be a split
monomorphism. Then go h: M — Z is irreducible.

Here is again the (preliminary) definition of the Auslander-Reiten quiver I',4
of A: The vertices are the isomorphism classes of indecomposable A-modules, and
there is an arrow [X] — [Y] if and only if there exists an irreducible map X —

Y. Furthermore, we draw a dotted arrow [r(X)]<- - [X] for each non-projective
indecomposable A-module X.

A (connected) component of I'4 is a full subquiver I' = (I'y,I';) of "4 such that
the following hold:

(i) For each arrow [X] — [Y]in T4 with {[X], [Y]}NTy # 0 we have {[X],[Y]} C
Lo;
(ii) IfO[X ] and [Y] are vertices in I', then there exists a sequence
([X1]7 [X2]7 R [Xt])

of vertices in T with [X] = [X;], [Y] = [X}], and for each 1 <i < ¢ — 1 there
is an arrow [X;] — [X;y1] or an arrow [X; 1] — [X}].
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Corollary 7.26. Let X — Y be a source map, and let Y = EB§=1 Y™ where Y; is

indecomposable, n; > 1 and Y; Y for all i # j. Then there are precisely t arrows
in T4 starting at [X], namely [X] — [Yi], 1 <i < t.

Lemma 7.27. A vertex [X] is a source in T 4 if and only if X is simple projective.

Proof. Assume P is a simple projective module. Then any non-zero homomorphism
X — P is a split epimorphism. So [P] has to be a source in I'y. Now assume P
is projective, but not simple. Then the embedding rad(P) — P is a non-zero sink
map. It follows that [P] cannot be a source in I'4. Finally, if Z is an indecomposable
non-projective A-module, then again there exists a non-zero sink map ¥ — Z. So
[Z] cannot be a source. This finishes the proof. O

Lemma 7.28. A source map X — Y is not a monomorphism if and only if X is
mjective.
We leave it to the reader to formulate the dual statements.

Corollary 7.29. T'4 s a locally finite quiver.

Let 0 —» X LV % Z — 0 be an Auslander-Reiten sequence in mod(A). Thus,
by definition f and g are irreducible. We proved already that X and Z have to be
indecomposable (Skript 1). It follows that we get a commutative diagram

0 X E X)) —=0

where h and A’ are isomorphisms.
Here 771(X) := TrD(X).

Source maps are unique in the following sense: Let X be an indecomposable A-
module which is not injective, and let f: X — Y and f: X — Y’ be source maps.
Byg:Y — Zand ¢': Y — Z’ we denote the projections onto the cokernel of f and
1!, respectively. Then we get a cimmutative diagram

0—X Ty Loy 0
f g
0—— X Y Z 0

where h and A’ are isomorphisms.

Dually, sink maps are unique as well.

End of Lecture 41
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7.8. Digression: The Brauer-Thrall Conjectures. Assume that A is a finite-
dimensional K-algebra, and let Sy, ... .5, be a set of representatives of isomorphism
classes of simple A-modules. Then the quiver of A has vertices 1,...,n and there
are exactly dim Ext};(S;, S;) arrows from i to j.

The algebra A is connected if the quiver of A is connected.

Lemma 7.30. For a finite-dimensional algebra A the following are equivalent:

(i) A is connected;

(ii) For any indecomposable projective A-modules P 2% P’ there exists a tu-
ple (P, Ps, ..., Py) of indecomposable projective modules such that P, =
P, P, = P and for each 1 < i < m — 1 we have Homu(P;, Pi11) @
HOI’HA( i+1 ) 7£ 0

(iii) For any simple A- modules S and S’ there exists a tuple (Si,Ss,...,Sm) of
simple modules such that S; = S, S,, = S’ and for each 1 <i <m —1 we
have Ext'y(S;, Sit1) ® Bxt!(Si1, S;) # 0;

(iv) If A= Ay X Ay then Ay =0 or Ay =0;

(v) 0 and 1 are the only central idempotents in A.

Proof. Exercise. Hint: If Ext4(95;,S;) # 0, then there exists a non-split short exact
sequence

0—8LELS -0
Then there exists an epimorphism p;: P, — S;. This yields a homomorphism
pi: P, — E such that gp, = p;. Clearly, A’ has to be an epimorphism. (Why?)
Let p;: P; — S; be the obvious epimorphism. Then there exists an epimorphism

p;: P; — E such that fp; = pj. Next, there exists a non-zero homomorphism
q: Pj — P; such that p;qg = fp;. U

Theorem 7.31 (Auslander). Let A be a finite-dimensional connected K -algebra,
and let C be a component of the Auslander-Reiten quiver of A. Assume that there
exists some b such that all indecomposable modules in C have length at most b. Then
C is a finite component and it contains all indecomposable A-modules. In particular,
A is representation-finite.

Proof. (a): Let X be an indecomposable A-module such that there exists a non-zero
homomorphism h: X — Y for some [Y] € C. We claim that [X] € C: Let

1 —

gV =gV ,...,gt1 @Y —Y

be the sink map ending in Y, where Yi( is indecomposable for all 1 < ¢ < ¢t;. If h
is a split epimorphism, then h is an isomorphism and we are done. Thus, assume
ho := h is not a split epimorphism. It follows that there exists a homomorphism

(1)
1

t1
t(l) =1
1
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such that .
1
ho = g(l)f(l) = Zgi(l)fi(l): X =Y.
i=1
Since hg # 0, there exists some 1 <4y < t; such that g 7& 0. Set hy )
and A} =g, 1) Next, assume that for each 1 <k <n —1 we already Constructed a

non-invertible homomorphism

hl Y Y(k 1)

-1
where [ ] € C and Y(O =Y, and a homomorphism
hi: X — Y
i
such that b} o---oh) ohy # 0. So we get the following diagram:

\Lhnl lth \th Lho
(n—1) . v (n—=2) 1)
Y;"*l Ry in—2 hy_o R }/il Ry Y

with hf ohbo---oh! joh, 1 #0.
If h,,_1 is an isomorphism, then X 2 Ylinjll) and therefore [X] € C.

Thus assume that h,_,: X — Yi(n_l) is non-invertible. Let

_ (n—1)
_[g 7"'7gtn @Y Y;nl

be the sink map ending in Yli_: ), where Yz( ") s indecomposable for all 1 < i < t,,.
Since h,,_; is not a split epimorphism, there exists a homomorphism

e b
=1 x - @y
(n) i=1

ln

g(n)

such that
by = g f " = §j%"ﬁ" Xyt
Since hj ohlyo---oh! _oh, 1 #0, there exists some 1 <14, <t, such that
Wyohbo- ol og™of™ £0.
Set h,, = f(" and h! = 9@ . Thus
hiohyo---oh! ohl oh,#0.

ear 1S non-invertible, since 1s irreducible.
Clearly, h!, tible, h!, ducibl

If n > 2° — 2 we know by the Harada-Sai Lemma that h,, has to be an isomorphism.
This finishes the proof of (a).
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(b): Dually, if Z is an indecomposable A-module such that there exists a non-zero
homomorphism Y — Z for some [Y] € C, then [Z] € C.

(c): Let Y be an indecomposable A-module with [Y] € C, and let S be a composition
factor of Y. Then there exists a non-zero homomorphism Ps — Y where Pg is
the indecomposable projective module with top S. By (a) we know that [Pg] €
C. Now we use Lemma 7.30, (iii) in combination with (a) and (b) to show that
all indecomposable projective A-modules lie in C. Finally, if Z is an arbitrary
indecomposable A-module, then again there exists an indecomposable projective
module P and a non-zero homomorphism P — Z. Now (b) implies that [Z] € C.
It follows that C = (I'4,d4). By the proof of (a) and (b) we know that there is a
path of length at most 2° — 2 in C which starts in [P] and ends in [Z]. It is also
clear that C has only finitely many vertices: Since I'4 is a locally finite quiver, for
each projective vertex [P] there are only finitely many paths of length at most 2° —2
starting in [P]. O

Corollary 7.32 (1st Brauer-Thrall Conjecture). Let A be a finite-dimensional K -
algebra. Assume there exists some b such that all indecomposable A-modules have
length at most b. Then A is representation-finite.

Thus the 1st Brauer-Thrall Conjecture says that bounded representation type implies
finite representation type. There exists a completely different proof of the 1st Brauer-
Thrall conjecture due to Roiter, using the Gabriel-Roiter measure.

Conjecture 7.33 (2nd Brauer-Thrall Conjeture). Let A be a finite-dimensional
algebra over an infinite field K. If A is representation-infinite, then there exists
some d € N such that the following hold: For each n > 1 there are infinitely many
isomorphism classes of indecomposable A-modules of dimension nd.

Theorem 7.34 (Smalg). Let A be a finite-dimensional algebra over an infinite field
K. Assume there exists some d € N such that there are infinitely many isomorphism
classes of indecomposable A-modules of dimension d. Then for each n > 1 there are
infinitely many isomorphism classes of indecomposable A-modules of dimension nd.

Thus to prove Conjecture 7.33, the induction step is already known by Theorem
7.34. Just the beginning of the induction is missing...

Conjecture 7.33 is true if K is algebraically closed. This was proved by Bautista
using the well developed theory of representation-finite algebras over algebraically

closed fields.

7.9. The bimodule of irreducible morphisms. Let A be a finite-dimensional K-
algebra, and as before let mod(A) be the category of finitely generated A-modules.
All modules are assumed to be finitely generated.

For indecomposable A-modules X and Y let
rada(X,Y) := {f € Hom4(X,Y) | f is not invertible}.
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In particular, if X 2V, then rads(X,Y) = Homu(X,Y). If X =Y, then
rada(X, X) = rad(Enda(X)) := J(End(X)).

Now let X =@@;_, X; and Y = EB;:I Y; be A-modules with X; and Y indecompos-
able for all 7 and j. Recall that we can think of an endomorphism f: X — Y as a

matrix
Juu o fa
f=1: :
Jie o St
where f;;: X; — Y} is an homomorphism for all ¢ and j. Set
rads(Xq,Y7) - rada(Xs, Y1)
rads(X,Y) := : :
rada(X1,Y;) -+ rada(X,, V)

Thus rad4(X,Y) € Homu(X,Y).

Lemma 7.35. For A-modules X andY we have f ¢ rada(X,Y) if and only if there
exists a split monomorphism w: X' — X and a split epimorphism p: Y — Y’ such
that po fou: X' — Y’ is an isomorphism and X' # 0.

Proof. Exercise. O
For A-modules X and Y let rad’(X,Y) be the set of homomorphisms f: X — Y

with f = ho g for some g € rada(X, M), h € rada(M,Y) and M.

Lemma 7.36. Let X and Y be indecomposable A-modules. For a homomorphism
f: X =Y the following are equivalent:

(i) f is irreducible;

(ii) f €rada(X,Y) \ rad’(X,Y).

Proof. Assume f: X — Y is irreducible. Since X and Y are indecomposable we
know that f is an isomorphism if and only if f is a split monomorphism if and only
if fis a split epimorphism. Thus f € rad(X,Y). Assume f € rad%(X,Y).

End of Lecture 42

For indecomposable A-modules X and Y define
Irra(X,Y) :=rads(X,Y)/rad’ (X, Y).
We call Irr 4 (X, Y') the bimodule of irreducible maps from X to Y.

Set F(X) := Ends(X)/rad(End4s(X)) and F(Y) := Enda(Y)/rad(Enda(X)).
Since X and Y are indecomposable, we know that F'(X) and F(Y') are skew fields.
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Lemma 7.37. Irr4(X,Y) is an F(X)°P-F(Y)-bimodule.

Proof. Let f € Irry(X,Y), g € F(X) and h € F(Y), where f € rads(X,Y),
g € Ends(X) and h € End4(Y). Define
gxf=TIg
h-f:=hf.
We have to check that this is well defined: We have a map
Enda(Y) x Homy(X,Y) x Enda(X) — Homa(X,Y)

defined by (h, f,g) — hfg. Clearly, if f € rada(X,Y), then hf and fg are in
rad4(X,Y). It follows that rad4(X,Y) is an End4(X)°P-End4(Y)-bimodule. It is
also clear that rad%(X,Y) is a subbimodule: Let f = fof; € rad%(X,Y) where f; €
rad4(X,C) and f; € rada(C,Y) for some C. Then hf = (hf2)fi and fg = fo(f19),
so they are both in rad? (X, Y’). Furthermore, the images of the maps rad(X,Y") x
rad(Enda (X)) — rada(X,Y), (f,9) — fg and rad4(X,Y) x rad(Ends(Y)) —
rada(X,Y), (h, f) = hf are both contained in rad%(X,Y). Thus Irrs(X,Y) is
annihilated by rad(End4(X)°?) and rad(End4(Y")). This implies that Irr,(X,Y) is
an F(X)°P-F(Y)-bimodule. O

Lemma 7.38. Let Z be indecomposable and non-projective. Then F(Z) = F(1(Z)).

7
7

Proof. Exercise. O

Lemma 7.39. Assume K is algebraically closed. If X is an indecomposable A-
module, then F(X) = K.

Proof. Exercise. O

Theorem 7.40. Let M and N be indecomposable A-modules. Let g: Y — N be a
sink map for N. Write

Y=MaY'
with t maximal. Thus g = [g1,...,g1,9'] where g;: M — N, 1 <i<tandg:Y' —
N are homomorphisms. Then the following hold:

(i) The residue classes of gi,...,g¢ in Irra(M, N) form a basis of the F'(M)°P-
vector space Irr 4 (M, N);
(ii) We have

= dimpnyera (V) = S

Dually, let f: M — X be a source map for M. Write
X=NoX

with s maximal. Thus f = '[fi,..., fs, ['] where fi: M — N, 1 < i < s and
f's M — X" are homomorphisms. Then the following hold:
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(iii) The residue classes of fi,..., fs in Irra(M, N) form a basis of the F(N)-
vector space Irr 4 (M, N);
(iv) We have

s = dimF(N)(IrrA(M N)) = dmcllfrij;(%’)])v))

We have s =t if and only if dimy(F(M)) = dimg (F(N)) or s =t = 0.

Proof. (a): First we show that the set {gi,...,g;} is linearly independent in the
F(M)°P-vector space Irr (M, N):

Assume

(1) > Xix7=0

where \; € Enda(M), g; € rads(M,N), \; = Ai + rad(Ends(M)), i = g +
radi(ﬂ/[, N) and 0 = 0 +rad’ (M, N). By definition \; xg; = ¢:\;. We have to show
that \; =0, i.e. \; € rad(End4(M)) for all 1.

Assume A\ ¢ rad(End4(M)). In other words, A, is invertible. We get

t A1 A1
Zgl)\z:[glu7gt7g/]O[A]:gO[)\]MﬁN
i1 Ot Ot

By Equation (1) we know that this map is contained in rad? (M, N).

A1
Clearly, [ :

] is a split monomorphism, since
0

A1
Ah0,...,0]0 [A ] = 1.
Ot

Using Lemma 7.24 this implies that 2521 g;\; is irreducible and can therefore not
be contained in rad? (M, N), a contradiction.

(b): Next, we show that {g1,...,7;} generates the F'(M)°P-vector space Irr (M, N):

Let u: M — N be a homomorphism with u € rads(M, N). We have to show that
7 := u +rad’ (M, N) is a linear combination of g7, ..., 7.

Since g is a sink map and wu is not a split epimorphism, we get a commutative
diagram
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such that u = >"'_, giu; + g'u'.

We know that ¢' € rads(Y’, N), since ¢’ is just the restriction of the sink map ¢
to a direct summand Y’ of Y. Thus ¢’ is irreducible or ¢’ = 0. Furthermore, M is
indecomposable and Y’ does not contain any direct summand isomorphic to M. So
u' € rad(M,Y"). Thus implies ¢'u/ € rad’ and therefore g’v/ = 0. It follows that

t t
U= g U * g + g'u' = g U; * Gj.
i=1 i=1

This finishes the proof.

The second part of the theorem is proved dually. O

Corollary 7.41. Let
0—=717(2)—=Y —=2Z—-0

be an Auslander-Reiten sequence, and let M be indecomposable. Then
dim g Irra (M, Z) = dim g Irr 4 (7(2), M).

Proof. Let t be maximal such that Y = M* @ Y” for some module Y’. Then we get
_dimg Irry (M, Z)  dimg Irra(7(2), M)
 dimgF(M) dimg F(M)

End of Lecture 43

It is often quite difficult to construct Auslander-Reiten sequences. But if there exists
a projective-injective module, one gets one such sequence for free:

Lemma 7.42. Let I be an indecomposable projective-injective A-module, and as-
sume that I is not simple. Then there is an Auslander-Reiten sequence of the form

0 — rad(/) — rad(I)/soc(I) ® I — I/soc(I) — 0.
Proof. ...
O
7.10. Translation quivers and mesh categories. Let I' = (I'g,I'1,s,t) be a
quiver (now we allow 'y and I'; to be infinite sets).

We call I" locally finite if for each vertex y there are at most finitely many arrows
ending at y and there are are most finitely many arrows starting at .

If there is an arrow © — y then x is called a direct predecessor of y, and if there
is an arrow y — z then z is a direct successor of y.

Let = be the set of direct predecessors of y, and let y* be the set of direct successors
of y. Note that we do not assume that y~ and y* are disjoint.
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A path of length n > 1 in I' is of the form w = (o, . .., ) where the a; are arrows
such that s(a;) = t(ayyq) for 1 <i < n—1. We say that w starts in s(w) := s(a,),
and w ends in ¢(w) := t(ay). In this case, s(w) is a predecessor of ¢(w), and t(w)
is a successor of s(w).

Additionally, for each vertex = of T' there is a path 1, of length 0 with s(1,) =
t(1;) = x. For vertices z and y let W (x,y) be the set of paths from = to y. If a
path w in I' starts in x and ends in y, we say that x is a predecessor of y, and y is a
successor of x. If w = (ay,...,a,) has length n > 1, and if s(w) = t(w), then w is
called a cycle in I'. In this case, we say that s(ay), ..., s(a,) lie on the cycle w.

A vertex x in a quiver I' is reachable if there are just finitely many paths in T’
which end in x.

It follows immediately that a vertex x is reachable if and only if x has only finitely
many predecessors and none of these lies on a cycle. Of course, every predecessor of
a reachable vertex is again reachable. We define a chain

@I,lfgofggnflfgnfg
of subsets of I'.

By definition _;I' = (). For n > 0, if ,,_;I" is already defined, then let ,,I' be the set
of all vertices z of I such that z— C ,,_{I.

By ,.I' we denote the full subquiver of I" with vertices ,,I". Set

ool = U 2L oand I = U ol

n>0 n>0

Clearly, . I' is the set of all reachable vertices of T'.
Now let K be a field. We define the path category KT as follows:

The objects in KT are the vertices of I'. For vertices x,y € Iy, we take as morphism
set Homgr(z,y), the K-vector space with basis W(z,y).

The composition of morphisms is by definition K-bilinear, so it is enough to define
the composition of two basis elements: First, the path 1, of length 0 is the unit
element for the object x. Next, if w = (aq,...,ap) € W(z,y)andv = (51, ..., 0n) €
W (y, z), then define

vwi=v-w = (B, ..., By 0,y 0p) € Wz, 2).
This is again a path since s((3,,) = t(aq).

We call I' = (I'g, 'y, s,t, 7,0) a translation quiver if the following hold:

(T1) (Ty,I'y, s,t) is a locally finite quiver without loops;
(T2) 7: I'l, = L'y is an injective map where I, is a subset of Iy, and for all z € I
and every y € 'y the number of arrows y — z equals the number of arrows

7(2) = v;
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(T3) ¢: Iy — I'y is an injective map with o(«): 7(z) — y for each a:y — 2z,
where I} is the set of all arrows a: y — z with z € I,

Note that a translation quiver can have multiple arrows between two vertices.

T = (Ig, 'y, s,t,7,0) is a translation quiver, then 7 is called the translation of T'.
The vertices in I'g \ I') are the projective vertices, and I'y\ 7(I'{)) are the injective
vertices. If I' does not have any projective or injective vertices, then I" is stable.

A translation quiver I' is preprojective if the following hold:

(P1) There are no oriented cycles in I';

(P2) If z is non-projective vertex, then 2z~ # {);

(P3) For each vertex z there exists some n > 0 such that 7"(z) is a projective
vertex.

A translation quiver I' is preinjective if the following hold:

(I1) There are no oriented cycles in I';

(I2) If z is non-injective vertex, then z* # ();

(I3) For each vertex z there exists some n > 0 such that 77"(z) is an injective
vertex.

Again, let I' be a translation quiver. A function f: 'y — Z is additive if for all
non-projective vertices z we have

Fr@) + () =) fy).

For example, if C is a component of the Auslander-Reiten quiver of an algebra A
with dimg Irry (X,Y) < 1 for all X,Y € C, then f([X]) := I(X) is an additive
function on the translation quiver C.

We will often investigate translation quivers without multiple arrows. In this case,
we do not mention the map o, since it is uniquely determined by the other data.

By condition (T2) we know that each non-projective vertex z of I' yields a subquiver
of the form

7(2) : z

a(m A

Yn

Such a subquiver is called a mesh in I'. (Recall that there could be more than one
arrow from 7(z) to y; and therefore also from y; to z. In this case, the map o yields
a bijection between the set of arrows y; — z and the set of arrows 7(z) — v;.)
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Now let K be a field, and let I' = (I'g, 'y, s,¢,7,0) be a translation quiver. We
look at the path category KT := K(I'g,I'1,s,t) of the quiver (I'p,T'1,s,t). For each
non-projective vertex z we call the linear combination

ps = Z a-o(a)
a: y—z

the mesh relation associated to z, where the sum runs over all arrows ending in
z. This is an element in the path category KT

The mesh category K(I') of the translation quiver I' is by definition the factor
category of KT modulo the ideal generated by all mesh relations p, where z runs
through the set I', of all non-projective vertices of I

Example: Let I' be the following translation quiver:

sl
NN

This is a translation quiver without multiple arrows. The dashed arrows describe 7,
they start in some z and end in 7(z). Thus we have three projective vertices u, v, w
and three injective vertices w,y, z. The mesh relations are

yoo =0,
00 4+ ey =0,
e = 0.

For example, in the path category KT we have dim Homgr(u,y) = 2. But in the
mesh category K(I'), we obtain Homg r(u,y) = 0.

Assume that I' = (I'y, 'y, s,¢,7,0) is a translation quiver without multiple arrows.
A function
d: F() U Fl — N1

is a valuation for I' if the following hold:

(V1) If a: * — y is an arrow, then d(z) and d(y) divide d(«);
(V2) We have d(7(z)) = d(z) and d(7(z) — y) = d(y — =) for every non-projective
vertex z and every arrow y — 2.

If d is a valuation for I', then we call (I', d) a valued translation quiver. If d is a
valuation for I" with d(x) = 1 for all vertices = of I, then d is a split valuation.

Our main and most important examples of valued translation quivers are the fol-
lowing:
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Let A be a finite-dimensional K-algebra. For an A-module X denote its isomorphism
class by [X]. If X and Y are indecomposable A-modules, then as before define

F(X) :=End4(X)/rad(End(X))
and
Irr4(X,Y) := rad (X, Y)/rad’ (X, Y).
Let 74 be the Auslander-Reiten translation of A.

The Auslander-Reiten quiver I'4 of A has as vertices the isomorphism classes
of indecomposable A-modules. If X and Y are indecomposable A-modules, there
is an arrow [X] ——[Y] if and only if Irr4(X,Y") # 0. Define 7([Z]) := [14(Z)]
if Z is indecomposable and non-projective. In this case, we draw a dotted arrow
[ra(Z)) <~ 12].

For each vertex [X] of I'4 define
dy = da([X]) := dimg F(X),
and for each arrow [X] — [V] let
dyy = da([X] = [Y]) :=dimg Irr4 (X, Y).

When we display arrows in I'4 we often write [X] dxy, Y]

For an indecomposable projective module P and an indecomposable module X let
rxp be the multiplicity of X in a direct sum decompositions of rad(P) into inde-
composables, i.e.

rad(P) = X"™Xr ¢ C

for some module C' and ryp is maximal with this property.

Lemma 7.43. For a finite-dimensional K-algebra the following hold:

(i) T(A) := (Ta,d4) is a translation quiver;

(ii) The valuation da is split if and only if for each indecomposable A-module X
we have End4(X)/rad(Ends (X)) = K (For example, if K is algebraically
closed, then da is a split valuation.);

(i) A vertex [X] of (I',da) is projective (resp. injective) if and only if X is
projective (resp. injective).

Proof. We have Irr4(X, X) = 0 for every indecomposable A-module X. (Recall that
every irreducible map between indecomposable modules is either a monomorphism
or an epimorphism.) Thus the quiver I'y does not have any loops. If Z is an
indecomposable non-projective module, then the skew fields F'(74(Z)) and F(Z) are
isomorphic, and dimg Irr(74(2),Y) = dimg Irra (Y, Z) for each indecomposable
module Y. This shows that ['4 is locally finite, and that the conditions (T1), (T2),
(T3) and (V2) are satisfied. Since Irr4(X,Y) is an F(X)°P-F(Y)-bimodule, also
(V1) holds.
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4

If C is a connected component of (I" 4, d4) such that C is a preprojective (resp. prein-
jective) translation quiver, then C is called a preprojective (resp. preinjective)
component of I'y4.

An indecomposable A-module X is preprojective (resp. preinjective) if [X] lies
in a preprojective (resp. preinjective) component of I' 4.

Let I' be a translation quiver with a split valuation d. Then we define the expansion

(I',d)¢ of " as follows:

The quiver (I',d)¢ has the same vertices as (I', d), and also the same translation .
For every arrow a: x — y in ', we get a sequence of d(z — y) arrows o': x — y
where 1 < i < d(a). (Thus the arrows in (I',d)¢ starting in x and ending in y are
enumerated, there is a first arrow, a second arrow, etc.) Now o sends the ith arrow
y — 2 to the ith arrow 7(2) — y provided z is a non-projective vertex.

7.11. Examples of Auslander-Reiten quivers. (a): Let K = R and set

A= (ﬂ§ 8 C My(C).

Clearly, A is a 5-dimensional K-algebra. Let e;; = ({§) and ego = (§9). Set
M =Ae;; =[§] and N = Aeyp =[§].
These are the indecomposable projective A-modules, and we have 4A = M & N.
We can identify Hom4 (M, N) with C since
Hom (M, N) =rada(M, N) = e;1 Aeqy = C.
Next, we observe that rad(M) = 0 and rad(N) = [§] = [E] @ [R]. Tt follows that

the obvious map M @& M — N is a sink map. Furthermore, it is easy to check that
Ends(M) =R, F(M) 2R, Ends(N) = C and F(N) = C.

We have
dimg Irrg (M, N)  dimg Irry (M, N)
dimg F(M) 1

2=ryN =

This implies dimg Irra (M, N) = 2. Thus M — N is a source map. We get an
Auslander-Reiten sequence 0 — M — N — ) — 0 where QQ = [%R}.

Next, we look for the source map starting in N: We have dimg Irra(NV,Q) =
dimg Irry (M, N) = 2 and dimgF(Q) = 1. Thus N — @ @ @ is a source map.
We obtain an Auslander-Reiten sequence 0 — N — @ & @ — R — 0 where
k=gl
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The modules 77 (M) and 77! (N) are injective, thus the following is the Auslander-
Reiten quiver of A:

dy =1 R ——— [(C/]R]

So there are just four indecomposable A-modules up to isomorphism. Using dimen-
sion vectors it looks as follows:

Note that the valuation of the vertices remains constant on 7-orbits (and 7~ !-orbits),
so it is enough to display them only once per orbit.

(b): Next, let
E K
A= (0 K) C My(K)

where £ C K is a field extension of dimension three, e.g. £k = Q and K = Q(\?/ﬁ)
The indecomposable projective A-modules are

M:AGHZ[S] and N:Aeggz[g].

In this case there are 6 indecomposable A-modules, and the Auslander-Reiten quiver
I' 4 looks like this:

_ 3 3 0
dy =3 1~~~ -~ 2 ST T T T T~ 1

(c): Here is the Auslander-Reiten quiver of the algebra A = K@Q/I where @ is the

quiver
1
2 3
N
4

and [ is the ideal generated by ba — dc:
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End of Lecture 44

7.12. Knitting preprojective components. Let A be a finite-dimensional K-
algebra.

Basic idea: Let X be an indecomposable A-module. Whenever the sink map ending
in X is known, we can construct the source map starting in X. In I'(A) = (I"4, da)
the situation around the vertex [X] looks like this:
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Here the Y; are non-injective modules, the [; are injective, and the P; are projective.
The sink map ending in X is of the form Y — X where

Y = EB y, g @ p s,
i=1 i=1

To get the source map X — Z, we have to translate the non-injective modules Y;
using 7, . Note that

for all 4. Furthermore, we have to check if X occurs as a direct summand of rad(P)
where P runs through the set of indecomposable projective modules. In this case,
there is an arrow [X| — [P] with valuation

dXP = dlmK II‘I‘A(X’ P) =Txp- dlmKF(X)
We get
: t
7 = @it (vp) st oo st g @ penn,
i=1

i=1

If X is non-injective, we get a mesh

[ra ' (V)]

[P
in the Auslander-Reiten quiver I'(A) of A. We have
Ayt = dxoriyy  and - doyxy = dx
Knitting preparations

(i) Determine all indecomposable projectives P, ..., P, and all indecomposable
injectives Iy, ..., I,.
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(ii) For each 1 <i < n determine rad(F;) and decompose it into indecomposable
modules, say

rad(F;) = @ R
j=1

where r;; > 1, and the R;; are indecomposable such that R;, = R; if and
only if k = 1.
(ili) For each 1 <1i <n determine dp, = dimy F'(P;).

Note that
dr,;p, = dimg Irr o (Rij, P) = 135 - dg,,
where r;; = rg, p,. Furthermore, we know that
F(P;) = Ends(P;)/rad(Enda(F;)) = Enda(P;/rad(FP;)) = End4(S;)
where S; is the simple A-module with S; = P;/rad(F;).

The knitting algorithm

Let 1A be the empty quiver.
We define inductively quivers ,A, ,A', ,A” n > 0 which are subquivers of ("4, d).

For all n > 1 these quivers will satisfy
nflé g né g nflé” g né/ g né”-

By A, A/, ,A” we denote the set of vertices of ,A, ,A', , A", respectively.

(ag) Define (A: Let ¢A be the quiver (without arrows) with vertices [S] where
S is simple projective.

(bo) Add projectives: For each [S] € (A, if S = R;; for some ¢, j, then (if it
wasn’t added already) add the vertex [P;] with valuation dp,, and add an
arrow [S] — [P;] with valuation dgp, = rgp, - ds. We denote the resulting
quiver by (A’

(co) Translate the non-injectives in (¢A: For each [S] € (A with S non-
injective, add the vertex [1,"(S5)] to ¢A’ with valuation d,-1(s) = ds, and for
each arrow [S] — [Y] constructed so far add an arrow [Y] — [7,(9)] to o4’
with valuation dYTXI( 5) = dsy. We denote the resulting quiver by (A”.

Note that any source map starting in a simple projective module S is of the form
S — P where P is projective. (Proof: Assume there is an indecomposable non-
projective module X and an arrow [S] — [X]. Then there has to be an arrow
[T4(X)] — [S], a contradiction since [S] is a source in (I'4,d4).) Thus we get P
from the data collected in (i), (ii) and (iii). More precisely, we have

n
dsp. /dp,
Pori
i=1

and we know that dsp, = rgp, - ds.
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Now assume that for n > 1 the quivers , 1A, ,_1A’" and ,,_;A” are already defined.
We also assume that for each vertex [X] € ,,_1A” and each arrow [X] — [Y] in
w1 A" we defined valuations dyx and dxy, respectively.

(a,) Define ,A: Let ,A be the full subquiver of ,, ;A" with vertices [X] such
that all direct predecessors of [X] in ,,_A” are contained in , 1A, and if
[X] is a vertex with X = P; projective, then we require additionally that
[RZ]] € n—lé for all 7.

(b,) Add projectives: For each [X] € ,A, if X = R;; for some 4, j, then (if
it wasn’t added already) add the vertex [P] to , ;A" with valuation dp,,
and add an arrow [X] — [P)] to ,, ;A" with valuation dxp, = rxp - dx. We
denote the resulting quiver by ,A’

(¢,) Translate the non-injectives in , A\, _;A: For each [X] € ,A\,,_1A with
X non-injective, add the vertex [7;'(X)] to ,A’ with valuation d.1(x) = dx,

and for each arrow [X] — [Y] constructed to far add an arrow [Y] — [7;*(X)]
to ,A" with valuation dYT/;l x) = dxy. We denote the resulting quiver by

"
nQ".

The algorithm stops if ,A \ ,_1A is empty for some n. It can happen that the
algorithm never stops.

Define

n>0 n>0

Let [X] € ,A, and let [X] — [Z;], 1 < i <t be the arrows in ,A’ starting in [X].
Then the corresponding homomorphism

¢
X @zl
i=1
is a source map. Similarly, let [V;] — [X], 1 <i < s be the arrows in ,A ending in
[X]. Then the corresponding homomorphism

S

dy, x /dy,
Dy x
1=1

is a sink map. The following lemma is now easy to prove:

Lemma 7.44. For all n > —1 we have

In particular, A = (L,).

Clearly, oA is a full subquiver of (I'4, d4). One easily checks that ,,A is a translation
subquiver of (I'4,d4) in the obvious sense.

The number of connected components of . A is bounded by the number of simple
projective A-modules.
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If we know the dimension vectors dim(F;) and dim(R;;) for all ¢, j, then our knitting
algorithm yields an algorithm to determine dim(X) for any vertex [X] € , A:

Let [X] be a vertex in ,A\ , 1A, and let [X] — [Z;], 1 < i <t be the arrows in
LA starting in [X]. Then X is non-injective if and only if

In this case, we have

dim(r~ (X)) = ~dim(X) + 3 dx, - dim(Z,).

i=1

These considerations provide a knitting algorithm which is only based on dimension
vectors. We will prove the following result:

Theorem 7.45. Let [X],[Y] € A. Then [X] = [Y] if and only if dim(X) =
dim(Y).

Lemma 7.46. Let C be a connected component of (I'a,da). If
C C x4,

then C is a preprojective component of (I'4,da).

Proof. (a): By construction, for each [X]| € ,A” we have 7%(X) is projective for
some n > 0.

(b): The quiver ,A has no oriented cycles: One shows by induction on n that if
[X] — [Y] is an arrow in ,A, then there exists a unique ¢ < n such that [Y] €
AN\ 1A and [X] € ;1A The result follows.

(c): Let [X] € ,A. Then [X] has a direct predecessor in ,A if and only if X is not
in OA- ]

Often knitting does not work. For example, we cannot even start with the knitting
procedure, if there is no simple projective module. Furthermore, if an indecompos-
able projective module F; is inserted such that an indecomposable direct summand
of rad(P;) does not show up in some step of the knitting prodedure, then we are
doomed and cannot continue.

But the good news is that in many interesting situations knitting does work. Here
are the two most important situations: Path algebras and directed algebras. In fact,
using covering theory, one can use knitting to construct the Auslander-Reiten quiver
of any representation-finite algebra (provided the characteristic of the ground field
is not two).

The dual situation: Obviously, there is also a “dual knitting algorithm” by starting
with the simple injective A-modules. As a knitting preparation one needs to de-
compose I;/soc(l;) into a direct sum of indecomposables, and one needs the values
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d;, = dimg F'(I;). If C is a component of I'(A) which is obtained by the dual knitting
algorithm, then C is a preinjective component.

Lemma 7.47. Let Q) be a finite connected quiver without oriented cycles. Then the
following hold:

(i) I(KQ) has a unique preprojective component P and a unique preinjective
component L;
(ii) P =7 if and only if KQ is representation-finite.

Proof. Exercise. O

7.13. More examples of Auslander-Reiten quivers. (a): Let @) be the quiver

4

.
N

and let A = K(@Q. Using the dimension vector notation, I'4 looks as follows:

100 o U 1900
000 . ______ L 111

010 o/ _N\-101 ./ ___\_0l0

001 «_ ______ L U —— 001

Here is an interesting question: What happens with the Auslander-Reiten quiver of
K@ if we change the orientation of an arrow in 7

For example, the path algebra of the quiver

NV
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has the following Auslander-Reiten quiver:

1o 0. _ _ _ _ __ 190
10
0

(b): Let @ be the quiver

1<—2)a
and let A = KQ/I where I is generated by the path aa. Clearly, A is finite-
dimensional, and has two simple modules, whch we denote by 1 and 2. The

Auslander-Reiten quiver of A looks like this:

NN
N\, a4
N

Note that this time, we did not display the dimension vectors of each indecomposable
module. Instead we used the composition factors 1 and 2 to indicate how the modules
look like. For example, the 4-dimensional A-module

2

1 2
1

has a simple top 2, its socle is isomorphic to 1 1. Note also that one has to identify
the two vertices on the upper left with the two vertices on the upper right. Thus "4
has in fact just 7 vertices. Sometimes one displays certain vertices more than once,
in order to obtain a nicer and easier to understand picture.

Clearly, I' 4 does not contain a preprojective component. We have a simple projective
module, namely 1. So ¢A = {1}. But then we see that 1A\ ¢A = (). So there is just
one reachable vertex in ['4.

We constructed I'y “by hand”. In other words, our methods are not yet developed
enough to prove that this is really the Auslander-Reiten quiver of A.
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(c): Let A be the path algebra of the quiver

3

/]

2

|

1

Then there is an infinite preprojective component in (I'4,d4), which can be ob-
tained from the following picture by identifying the vertices in the first with the
corresponding vertices in the fourth row:

Exercise: Determine ,A for all n > 0.

(d): Let

A— Pé{ % C My(C).

Using the dimension vector notation, we obtain an infinite preprojective component

of (FA,dA)Z

(e): Let
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Again using the dimension vector notation we get an infinite preprojective compo-
nent:

2 2 4
1 l«s————-—2<————3=<——— —¢--
1 1 3
N N N
2 4 6 8
2 l<———-—-3=<—-————-5=<————7
0 2 4 6
I N N
1 1 3 3
1 0<—-————1l=<———=—2=<————3<————--.
0 0 2 2

(f): Let A= KQ/I where @ is the quiver
f

7

e

d

c b a

3 2 1

and the ideal I is generated by abcdef and cdg. It turns out that (I'4, D) consists
of a single preprojective component:

6
5<-8
4
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I
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| —oo o—o
| —oo ococo
| [ I

Y I
=) o

[ejenien) oO—HO

_ _
_ _
_ _
/ | \ , / | _
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=] =]
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O

< — — — —
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(g): Let A= KQ/I where @ is the quiver
3
2

b

<
o

1

and [ is the ideal generated by ba. The indecomposable projective A-modules are
of the foom P, = 1, P, = ;2 ,, P3 = 2. Then A consists of a preprojective
component

which does not contain P;.

(h): Let A= KQ/I where @ is the quiver

and [ is the ideal generated by ba. The indecomposable projective A-modules are of
the form P, =1, P, = ;2 ,, P3 = E ®1. Then A consists of two points, namely
P, and P:

Note that one of the direct summands of the radical of P; does not show up in the
course of the knitting algorithm. So we get oA\ 1A = ().
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(i): Let A= KQ/I where @ is the quiver

L,
.

and [ is the ideal generated by ba. The indecomposable projective A-modules are
of the form Py =1, P, = ,2,, P; = ) 234, P, = 4. Then A has two connected

components, one is an (infinite) preprojective component, and the other one consists
just of the vertex Pjy:

0 0 0

10<——————— 30 <—————-—~— 50<———— — —---
2 4 6
0 0
00 <——————— 20<——————— 40 <———————---
1 3 5
0 1
01 <——————— 10
0 1

and [ is the ideal generated by ca and ¢b. The indecomposable projective A-modules
are of the form P, = 1, P, = ;2,, P; = ,3,. Then A consists of an infinite
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preprojective component containing an injective module:

0 0 2 4

0<—-————-—-— l<-—=—-———-- 3<———-—-—-— 5 <—————— -

1 0 0
1 3 5
2 <— === - = 4 <——=———— 6 <— — — — — — -
0 0 0

(1): Let A = K|[T|/(T*). There is just one simple A-modules S, and all indecom-
posable A-modules are uniserial. The Auslander-Reiten quiver looks like this:

nNnntn

nNnn

nn

The only indecomposable projective A-module has length 4. For the other three
indecomposables we have 74(X) = X. For example, the obvious sequence of the
form

S
0—)%%5@2—)%%0

is an Auslander-Reiten sequence.

(m): Let @ be the quiver
4
2 3
\ /
1

and set A = KQ/(ba).
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Using the socle series notation the Auslander-Reiten quiver of A looks as follows:

SN N
N N NS
\2/ N, |
NN

(n): Let @ be the quiver
a b
1=—=2—=3
c d

and let A = KQ/I where [ is generated by ba, cd,ac — db. The (I'4,d4) looks as
follows (one has to identify the three modules on the left with the three modules on

the right):

Note that A is a selfinjective algebra, i.e. an A-module is projective if and only if it
is injective.

(0): Let @ be the quiver

S
w

o
e~

o
ot
D

1 2
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and let A = KQ/I where [ is generated by cba. Then (I'4,d4) looks as follows:

______ 4 < — — — — — — - — - - — —

<————— 2

LN SN S LN
NN, TN NS
NN N
NN
NN

8. Grothendieck group and Ringel form

8.1. Grothendieck group. As before, let A be a finite-dimensional K-algebra,

and let Sq,...,.5, be a complete set of representatives of isomorphism classes of the
simple A-modules. For a finite-dimensional module M let
dim(M) = ([M : S4],...,[M : S,])

be its dimension vector. Here [M : S;] is the Jordan-Holder multiplicity of S; in M.
Note that dim(M) € Ny C Z". Set e; := dim(S;). Then

G(A) = Ko(A) :=2"
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is the Grothendieck group of mod(A), and ey, ..., e, is a free generating set of
the abelian group G(A).

We can see dim as a map
dim: {A-modules}/ = — G(A)

which associates to each modules M, or more precisely to each isomorphism class
[M], the dimension vector dim(M).

Note that

> M S =1(X).

i=1
Furthermore, dim is additive on short exact sequences ,ie. if 0 = X — Y —
Z — 0 is a short exact sequence, then dim(Y’) = dim(X) + dim(Z).

Lemma 8.1. If

f: {A-modules}/ = — H
1s a map which is additive on short exact sequences and H is an abelian group, then
there ezists a unique group homomorphism f': G(A) — H such that the diagram

dim

{A-modules}/ =

G(A)

commutes.

Proof. Define a group homomorphism f': G(A) — H by f'(e;) :== f(5;) for 1 <i <
n. We have to show that f'(dim(M)) = f(M) for all finite-dimensional A-modules
M. We proof this by induction on the length (M) of M. If {((M) = 1, then M = S;
and we are done, since f'(dim(M)) = f'(e;) = f(S;).

Next, assume [(M) > 1. Then there exists a submodule U of M such that U # 0 #
M/U. We obtain a short exact sequence
0—-U—-M-— M/U— 0.

Clearly, I(U) < (M) and I(M/U) < I(M). Thus by induction f'(dim(U)) = f(U)
and f'(dim(M/U)) = f(M/U). Since f is additive on short exact sequences, we get

fM) = f(U) + [(M/U) = f(dim(U)) + f'(dim(M/U)) = f'(dim(M)).
It is obvious that f’ is unique. This finishes the proof. O

Here is an alternative construction of G(A): Let F(A) be the free abelian group
with generators the isomorphism classes of finite-dimensional A-modules. Let U(A)
be the subgroup of F(A) which is generated by the elements of the form

[X] =[]+ 2]
if there is a short exact sequence 0 — X — Y — Z — 0. Define

G(A) := F(A)/U(A).
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For an A-module M set [M] := [M]+ U(A). It follows that G(A) is isomorphic to
7™ with generators [S;], 1 <i < n. By induction on [(M) one shows that

n

[M] =Y [M:8]-[S].

i=1

—

8.2. The Ringel form. We assume now that A is a finite-dimensional K-algebra
with gl.dim(A) = d < oco. In other words, we assume Ext}™(X,Y) = 0 for all
A-modules X and Y and d is minimal with this property.

Define
d

(X,Y)a:=> (—1)'dim Ext,(X,Y).
=0
(If gl. dim(A) = oo, but proj.dim(X) < oo or inj.dim(Y) < oo, then we can still
define (X,Y)4 = >,,(—1)"dim Ext,(X,Y).)
Recall that Ext%(X,Y) = Hom4(X,Y). We know that for each short exact sequence
0—-X'-X—->X"-0

and an A-module Y we get a long exact sequence

0 — Ext% (X" Y) — Ext%(X,Y) — Ext (X", Y)

=

Exty (X" Y) — Ext}(X,Y) — Ext} (X", Y)

=

Ext%(X",Y) — Ext%(X,Y) — Ext}(X",Y)

Now one easily checks that this implies

Ext? (X")Y)

d d
D (=1)fdim Bxt!y(X",Y) = > (—1)'dim Ext,(X,Y)

t=0 t=0

_|_

M=

(—1)'dim Ext} (X', Y) =0.

t

Il
o

In other words,
(X" Y)Y — (X, Y)a+ (X, Y)s=0.
It follows that
(=, Y)a: {A-modules}/ = — Z
is a map which is additive (on short exact sequences). Thus (dim(X),Y)4 =
(X,Y)a is well defined.
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Similarly, we get that
(X, YNa— (X, V)4 + (X, Y")a=0.
if0 =Y —Y — Y” — 0 is a short exact sequence.
Thus (dim(M), dim(N)) 4 := (M, N) 4 is well defined, and we obtain a bilinear map
(=, —)a: G(A) x G(A) — Z.
This map is determined by the values

d
(eies)a =Y _(—=1)'dim Ext!y(S;, S;)

=0
since dim(M) = >"" [ [M : Sile;.

9. Reachable and directing modules

Let K be a field, and let A be a finite-dimensional K-algebra. By M = M(A) we
denote the category mod(A) of all finite-dimensional A-modules.

9.1. Reachable modules. A path of length n > 0 in M is a finite sequence
([Xol, [X1],- .., [Xn]) of isomorphism classes of indecomposable A-modules X; such
that for all 1 < i < n there exists a homomorphism X; ; — X, which is non-zero
and not an isomorphism, in other words we assume rad(X;_1, X;) # 0. We say

that such a path ([Xo], [Xi],...,[X,]) starts in X and ends in X,,. If n > 1 and
[Xo] = [X,], then ([Xo], [Xi],...,[X,]) is a cycle in M. In this case, we say that
the modules X, ..., X,,_1 lie on a cycle.

If X and Y are indecomposable A-modules, we write X <Y if there exists a path
from X to Y, and we write X < Y if there is such a path of length n > 1.

An indecomposable module X in M is reachable if there are only finitely many
paths in M which end in X. Let

£(A)
be the subcategory of reachable modules in M.

Furthermore, we call X directing if X does not lie on a cycle, or equivalently, if
X £ X.

The following two statements are obvious:

Lemma 9.1. Every reachable module is directing.

Lemma 9.2. If X is a directing module, then rad(End4 (X)) = 0.
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Examples: (a): Let A = K[T]/(T™) for some m > 2. Then none of the indecom-
posable A-modules is directing.

(b): If A is the path algebra of a quiver of type A,, then each indecomposable
A-module is directing.

Let T'(A) = (I'4,da) be the Auslander-Reiten quiver of A. If Y is a reachable A-
module, and [X] is a predecessor of [Y] in T'(A), then by definition there exists a
path from [X] to [Y] in ['4. Thus, we also get a path from X to Y in M. This
implies that X is a reachable module as well. In particular, if Z is a reachable non-
projective module, then 74(Z) is reachable. So the Auslander-Reiten translation
maps the set of isomorphism classes of reachable modules into itself.

We define classes
= MCMC--Cp M MC---

of indecomposable modules as follows: Set ;M = (. Let n > 0 and assume
that ,_1M is already defined. Then let ,,,M be the subcategory of all indecompos-
able modules M in M with the following property: If N is indecomposable with
rada(N, M) # 0, then N € ,_; M.

Let
n>0

be the full subcategory of M containing all M € ,M, n > 0.

Then the following hold:

(a) p1M C , M (Proof by induction on n > 0);

(b) oM is the class of simple projective modules;

(¢) 1M contains additionally all indecomposable projective modules P such that
rad(P) is semisimple and projective;

(d) M can contain non-projective modules (e.g. if A is the path algebra of a
quiver of type Ay);

(e) »nM is closed under indecomposable submodules;

(f) If g: Y — Z is a sink map, and

t
Y =Y
i=1

a direct sum decomposition with Y; indecomposable and Y; € ,, M for
all i, then Z € ,M; (Proof: Let N be indecomposable, and let 0 # h €
rad4 (N, Z). Then there exists some h': N — Y with h = goh'.

N

/
/
At
‘g

Y —7

Thus we can find some 0 # h,: N — Y. If A, is an isomorphism, then
N 2Y, €, M. If b is not an isomorphism, then N € , oM C, 1 M.)
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(g) If Z € , M is non-projective, then 74(Z) € ,,_oM;
(h) We have
E(A) = M.

Lemma 9.3. Let A be a finite-dimensional K-algebra. If Z is an indecomposable
A-module, then Z € ,M if and only if [Z] € ,(T4).

Proof. The staatement is correct for n = —1. Thus assume n > 0. If Z € , M and

t
P 7
i=1

is a sink map with Y; indecomposable for all ¢, then Y; € ,_ 1M for all i. Thus
by induction assumption [Y;] € ,_1(I"4), and therefore [Z] € ,,(I'4). Vice versa, if
[Z] € n(Ta), then [Y;] € ,-1(T'4). Thus Y; € ,_y M. Using (f) we get Z € ,M. O

Let
E(A)
be the full subquiver of all vertices [X] of T'4 such that X is a reachable module.
One easily checks that F(A) is again a valued translation quiver.
Summarizing our results and notation, we obtain
E(A) = o(l4) =od, and E(A) = M.
Furthermore, £(A) is the full subcategory of all A-modules X such that [X] € E(A).

We say that K is a splitting field for A if End4(S) = K for all simple A-modules
S.

Examples: If K is algebraically closed, then K is a splitting field for K. Also, if
A = KQ is a finite-dimensional path algebra, then K is a splitting field for A.

Roughly speaking, if K is a splitting field for A, then there are more combinatorial
tools available, which help to understand (parts of) mod(A). The most common
tools are mesh categories and integral quadratic forms.

Theorem 9.4. Let A be a finite-dimensional K-algebra, and assume that K is a
splitting field for A. Then the valuation for E(A) splits, and there is an equivalence
of categories

n: K(E(A)) — E(A).

Proof. Let T be a complete set of indecomposable A-modules (thus we take exactly
one module from each isomorphism class). Set

Z=IN,M and ZI=ZNEA).

For XY € . .Z we want to construct homomorphisms
a’y € Homy(X,Y)
with 1 <i < dyy = dimg Irra (X, Y).
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If Y = P is projective, we choose a direct decomposition

rad(P) = @ X~

XeT
We know that dxp = dimg Irr4 (X, P). Let
asyp: X — P
with 1 <17 < dxp be the inclusion maps.

By induction we assume that for all X,Y € ,7 we have chosen homomorphisms
aiy: X — Y where 1 <i < dxy.

Let Z € ,,.1Z be non-projective, and let
0-xL @PrirLzo
YenT

be the Auslander-Reiten sequence ending in Z, where the dxy component maps
X — Y of f are given by diy, 1 <i < dyy. Now g together with the direct sum

decomposition
B
YenT

yields homomorphisms a¥,: Y — Z, 1 < i < dxy = dyz. These homomorphisms
obviously satisfy the equation

dxy

Z Zagfzaé(Y = 0.

YenT i=1

Denote the corresponding arrows from [X] to [Y] in
[':=E(A)°
by %y where 1 <i < dyy.
We obtain a functor
n: K(I') — E(A)
as follows: For X € 7 define
n([X]) ==X and 7 (aky) = dxy.

This yields a functor K(I') — £(A), since by the equation above the mesh relations

are mapped to 0.

Now we will show that 7 is bijective on the homomorphism spaces.

Before we start, note that Ends(X) = K for all X € £(A). (Proof: A reachable
module X does not lie on a cycle in M(A), thus rad(End4(X)) = 0. This shows
that F(X) = End4(X). Let X € M =E(A). If X = P is projective, then

F(X) = Enda(P/rad(P)) = Ends(S) = K
where S is the simple A-module isomorphic to P/rad(P). Here we used that K is
a splitting field for A. If X is non-projective, then F/(X) = F(74(X)). Furthermore
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we know that 74(X) is projective for some n > 1. Thus by induction we get
F(X)=Enda(X) = K.)

Surjectivity of n: Let h: M — Z be a homomorphism in . Z, and let Z € ,Z. We
use induction on n. If M = Z, then h = c¢- 1), for some ¢ € K. Thus h = n(c- 1py).
Assume now that M # Z. This implies that A is not an isomorphism. The sink
map ending in 7 is

9= (ay2)v;: @ Yo7 — 7.

Yen17Z

E 7
Y.

By induction the homomorphisms hy,;: M — Y are in the image of 7, and by the
construction of 7 also the homomorphisms aj-, are contained in the image of 7.
Thus A lies in the image of n

We get

Injectivity of n: Let R be the mesh ideal in the path category KT'. We investigate
the kernel IC of

n: KI' — ZT.
Clearly, R € K. Next, let w € K. Thus w € Homgr([M], [Z]) for some [M] and
[Z]. We have to show that w € R. Assume [Z] € ,Z. We use induction on n.
Additionally, we can assume that w # 0. Thus there exists a path from [M] to [Z].

If [M] = [Z], then w = ¢ 1y and n(w) = c¢- 1y = 0. This implies ¢ = 0 and
therefore w = 0.

Thus we assume that [M] # [Z]. Now w is a linear combination of paths from [M]
to [Z], i.e. w is of the form
Yii

where the wy; are elements in Homgr([M], [Y]). Note that [Y] € ,_1Z. Applying n

we obtain A
0=n(w)=>_ aymwy,).
Y,i

If Z is projective, then each al ,: Y — Z is an inclusion map, and we have
Im(ay, ;) N Im@%,z) 70
if and only if Y; = Y5 and i; = iy. This implies a¥ ,n(wy;) = 0 for all Y, 4. Since a}-,

is injective, we get n(wy;) = 0. Thus by induction wy; € R and therefore w € R.

Thus assume Z is not projective. Then we know the kernel of the map
9= (ay)v;: @ Y&z 7
Yen1T
namely

f=(axy)yi: X — @ ydvz,

Yen—1Z
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Thus the map
hi=((wy))yi: M — @ Y7

Yen-1Z

factorizes through f, since g o h = 0. So we obtain a homomorphism A': M — X
such that

(ay )y o b = (n(wya))y.
and therefore a’yy o b/ = n(wy,).
By the surjectivity of 7 there exists some w’: [M]| — [X] such that n(w’) = h’. Thus
we see that
n (&gfywl) = aé(y oh' = 77<WY,2‘)-
In other words, 1 (wy; — ayyw’) = 0. By induction wy; — ayyw’ belongs to the
mesh ideal. Thus also

Y.
= aiz (wri — akyw') + ) (v zaky)
Y,i Y,i
is contained in the mesh ideal. This finishes the proof. U

9.2. Computations in the mesh category. Let M and X be non-isomorphic
indecomposable A-modules such that X is non-projective. Let 0 — 74(X) — E —
X — 0 be the Auslander-Reiten sequence ending in X. Then

0 — Homyu (M, 74(X)) — Homa(M, E) — Homyu (M, X) — 0
is exact.

Let T' = (T'4,d4). If [X] and [Z] are vertices in F(A) such that none of the paths
in I" starting in [X] and ending in [Z] contains a subpath of the form [Y] — [E] —
(71 (Y)], then we have

Hom g gy ([X], [Z]) = Homgr ([X], [Z]).

Using this and the considerations above, we can now calculate dimensions of homo-
morphism spaces using in the mesh category K(E(A)).

Let @ be the quiver

~—95

2
|
1=—3
!

4<—56

and let A = K(@. Here is the Auslander-Reiten quiver of A, using the dimension
vector notation:
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Here we display the locations of the indecomposable projective and the indecom-

posable injective A-modules:

NSNS\ A
WA LN LNLN LN 7

N ONNNN N,
\/\/\/\/\/\

The following pictures show how to compute dim Homy(P;,

—) for all indecom-

posable projective A-modules P;. Note that the cases P, and P, and also P;

and P are dual to each other.

We marked the vertices [Z] by [a] where a =

dim Homy(P;, Z), provided none of the paths in E(A) starting in [P;] and ending

in [Z] contains a subpath of the form [Y] — [E] — [7;*(Y)].
compute dim Homy (X, —) for any indecomposable A-module.

Of course, we can
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/\/\/\/\/\/
./i\//fx/;\/ﬁ\/é\/ﬂ

\/\/\/\/\/\
\/\/\/\/\/\

dim Homu (P, —):

//\/\/\/\/\/
/QYQ\/A/A/A/O

\/\M/\/\/\/\
\w/\/\/\/\/\

dim Hom 4 (Ps, —):

/“\/\/\/\/\/
/ﬂ\/\/A/A/A/l

\/\M/\/\/\/\
\w/\/\/\/\/\
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dim HomA(P5, —):

/\/“\/\/\/\/
/ﬁm/\/\/\/\/
\wﬂm/\/\/\/\

\/\w/\/\/\/\

9.3. Directing modules.

Lemma 9.5. Let X be a directing A-module, then Enda(X) is a skew-field, and we
have Ext'y (X, X) =0 for all i > 1.

Proof. Since rad(End4 (X)) = 0, we know that End,(X) is a skew-field. It is also
clear that Ext)(X,X) =0: If 0 - X — M — X — 0 is a short exact sequence
which does not split, then we immediately get a cycle (X, M;, X) where M; is an
indecomposable direct summand of M.

Let C be the class of indecomposable A-modules M with M = X. We will show by
induction that Ext’, (M, X) =0 for all M € C and all j > 1:

The statement is clear for j = 1. Namely, if Ext! (M, X) # 0, then any non-split
short exact sequence

O%X%@KHM%O

yields X < M =< X, a contradiction.

Next, assume j > 1. Without loss of generality assume M is not projective. Let
0 — QM) - Py = M — 0 be a short exact sequence where ¢: Py — M is a
projective cover of M. We get

Ext’, (M, X) = Ext’, "(Q(M), X).

If Ext’,(M,X) # 0, then there exists an indecomposable direct summand M’ of
Q(M) such that Ext/; " (M’, X) # 0. But for some indecomposable direct summand
P of Py we have M’ < P < M < X, and therefore M’ € C. This is a contradiction
to our induction assumption. 0

Corollary 9.6. Assume gl.dim(A) < oo, and let X be a directing A-module. Then
the following hold:

(i) xa(X) = (X, X)4 = dimg End(X);
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(ii) If K is algebraically closed, then xa(X) = 1;
(i) If K is a splitting field for A, and if X is preprojective or preinjective, then
xa(X) =1.

As before, let A be a finite-dimensional K-algebra. An A-module M is sincere if
each simple A-module occurs as a composition factor of M.

We call the algebra A sincere if there exists an indecomposable sincere A-module.

Lemma 9.7. For an A-module M the following are equivalent:

i) M is sincere;

(ii) For each simple A-module S we have [M : S| # 0;

(iii) If e is a non-zero idempotent in A, then eM # 0;

(iv) For each indecomposable projective A-module P we have Hom (P, M) # 0;
(v) For each indecomposable injective A-module I we have Homy (M, I) # 0

Proof. Exercise. O

Theorem 9.8. Let M be a sincere directing A-module. Then the following hold:

(i) proj.dim(M) <1
(ii) inj.dim(M) < 1;

(iii) gl.dim(A) < 2.
Proof. (i): We can assume that M is not projective. Assume there exists an inde-
composable injective A-module I with Hom (7, 7(M)) # 0. Since M is sincere, we
have Homy (M, I) # 0. This yields M < I < 7(M) < M, a contradiction. Thus
proj. dim(M) < 1.

(ii): This is similar to (i).

(iii): Assume gl.dim(A) > 2. Thus there are indecomposable A-modules with
Ext3 (U, V) # 0. Let 0 — Q(U) — Py — U — 0 be a short exact sequence with
e: Py — U a projective cover. It follows that Ext%(Q(U),V) = Ext? (U, V) # 0.
Thus proj. dim(Q(U)) > 2. Let U’ be an indecomposable direct summand of Q(U)
with proj. dim(U”) > 2. This implies Hom 4 (/, 74(U")) # 0 for some indecomposable
injective A-module /. It follows that

M=TI<7m4U)<U <P=<M

where P is an indecomposable direct summand of Fy, a contradiction. The first and
the last inequality follows from our assumption that M is sincere. This finishes the
proof. O

Theorem 9.9. Let X and Y be indecomposable finite-dimensional A-modules with
dim(X) =dim(Y). If X is a directing module, then X =Y.

Proof. (a): Without loss of generality we can assume that X and Y are sincere:
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Assume X is not sincere. Then let R be the two-sided ideal in A which is gen-
erated by all primitive idempotents e € A such that eX = 0. It follows that
R C Amny(X) :={a€ A|aX =0} and R C Anny(Y) := {a € A | aY = 0}.
Clearly, eX = 0 if and only eY = 0, since dim(X) = dim(Y). We also know that
Anny(X) is a two-sided ideal: If a; X = 0 and as X = 0, then (a; + a2)X = 0.
Furthermore, if aX = 0, then a’'aX = 0 and also aa”X C aX =0 for all «’,a” € A.
It follows that X and Y are indecomposable sincere A/R-modules. Furthermore, X
is also directing as an A/R-module, since a path in mod(A/R) can also be seen as
a path in mod(A). Thus from now on assume that X and Y are sincere.

(b): Since X is directing, we get proj. dim(X) < 1, inj. dim(X) < 1 and gl. dim(A4) <
2. Furthermore, we know that (dim(X),dim(X))4 = dimg Enda(X) > 0, and
therefore

(dim(X), dim(X)) 4 = (dim(X), dim(Y")) 4
= dim Hom,(X,Y) — dim Ext!(X,Y) + dim Ext%(X,Y).

We have Ext?(X,Y) = 0 since proj.dim(X) < 1. Tt follows that Hom4(X,Y) # 0.
Similarly,

(dim(X), dim(X))4 = (dim(Y), dim(X)) 4 = dim Hom(Y, X) — Ext,(Y, X)

since inj. dim(X) < 1. This implies Hom(Y, X) # 0. Thus, if X 2 Y, we get
X <Y < X, a contradiction. O

Motivated by the previous theorem, we say that an indecomposable A-module X is
determined by composition factors if X = Y for all indecomposable A-modules
Y with dim(X) = dim(Y").

Summary

Let A be a finite-dimensional K-algebra. By mod(A) we denote the category of
finite-dimensional left A-modules. Let ind(A) be the subcategory of mod(A) con-
taining all indecomposable A-modules.

The two general problems are these:
Problem 9.10. Classify all modules in ind(A).
Problem 9.11. Describe Homa(X,Y') for all modules X,Y € ind(A).

Note that we do not specify what “classify” and “describe” should exactly mean.

(a) Let £(A) be the subcategory of ind(A) containing all reachable A-modules.
For all X € £(A) and all Y € ind(A) we have dim(X) = dim(Y") if and only
if X2Y.

(b) The knitting algorithm gives A = (L4) = E(A), and for each [X] € E(A)
we can compute dim(X).

(c) For X € ind(A) we have [X| € E(A) if and only if X € £(A).
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(d) If K is a splitting field for A (for example, if K is algebraically closed), then
the mesh category K(FE(A)¢) is equivalent to £(A).

(e) We can use the mesh category of compute dim Hom(X,Y) for all X|Y €
E(A).

We cannot hope to solve Problems 9.10 and 9.11 in general, but for the subcategory
E(A) Cind(A) of reachable A-modules, we get a complete classification of reachable
A-modules (the isomorphism classes of reachable modules are in bijection with the
dimension vectors obtained by the knitting algorithm), and we know a lot of things
about the morphism spaces between them.

Keep in mind that there is also a dual theory, using “coreachable modules” etc.

Furthermore, for some classes of algebras we have £(A) = ind(A), for example
if A is a representation-finite path algebra, or more generally if I'4 is a union of
preprojective components.

9.4. The quiver of an algebra. Let A be a finite-dimensional K-algebra. The
valued quiver Q4 of A has vertices 1,...,n, and there is an arrow ¢ — j if and
only if dimg Ext}y(S;, S;) # 0. In this case, the arrow has valuation

Each vertex i of ()4 has valuation d; := dimg End4(.9;).

Let Q% be the opposite quiver of A, which is obtained from Q4 by reversing all
arrows. The valuation of arrows and vertices stays the same.

Note that Q4 and Q9 can be seen as valued translation quivers, where all vertices
are projective and injective.

Special case: Assume that A is hereditary. Then we have
dpjpi = dij and dpl, = dgl. = dz

Thus, the subquiver P4 of preprojective components of (I'4,d4) is (as a valued
translation quiver) isomorphic to NQY .

We define the valued graph @, of A as follows: The vertices are again 1,...,n.
There is a (non-oriented) edge between ¢ and j if and only if

EXth(Si, S]) N> EXth(Sj, Sz) 7& 0.
Such an edge has as a valuation the pair

(dimEndA(sj) EXt}L‘(SZ‘, Sj), dimEndA(Si)op EXth(Si, S])) = (dij/dj7 d”/dl)

Example of a valued graph:

(2,1)

The representation-finite hereditary algebras can be characterized as follows:
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Theorem 9.12. A hereditary algebra A is representation-finite if and only if Q 4 is
a Dynkin graph.

The list of Dynkin graphs can be found in Skript 3. Note that non-isomorphic
hereditary algebras can have the same valued graph.

9.5. Exercises. 1: Let A be an algebra with gl. dim(A) > d. Show that there exist
indecomposable A-modules X and Y with Ext%(X,Y) # 0.

10. Cartan and Coxeter matrix

Let A be a finite-dimensional K-algebra. We use the usual notation:

e P, ..., P, are the indecomposable projective A-modules;
e [1,..., I, are the indecomposable injective A-modules;
e 5i,...,5, are the simple A-modules;

e S; = top(F;) = soc(l;).

(Of course, the modules P;, I; and S; are just sets of representatives of isomorphism
classes of projective, injective and simple A-modules, respectively.)

Let X and Y be A-modules.
If proj. dim(X) < oo or inj. dim(Y’) < oo, then
(X,Y) 4 = (dim(X), dim(Y))a := Y _(—1)"dimy Ext}y(X,Y)
>0
is the Ringel form of A. This defines a (not necessarily symmetric) bilinear form
(—, —)a: Z" X 2" — 7.
If proj. dim(X) < oo or inj. dim(X) < oo, then set
Xa(X) = xa(dim(X)) := (X, X) 4 = Y _(—1)"dimy Ext}y (X, X).
>0

This defines a quadratic form xa(—): Z" — Z.

10.1. Coxeter matrix.

We did all the missing proofs in this section in the lectures. But you
also find them in Ringel’s book.

If dim(P,),...,dim(P,) are linearly independent, then define the Coxeter matrix
® 4 of A by
dim(P;)® 4 = —dim(/;)
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for 1 <i <n. It follows that &4 € M,(Q).

Lemma 10.1. If gl. dim(A) < oo, then dim(P),...,dim(P,) are linearly indepen-
dent.

Proof. We know that gl. dim(A) < oo if and only if proj. dim(S) < oo for all simple
A-modules S. Furthermore {dim(S;) | 1 < i < n} are a free generating set of the
Grothendieck group G(A). Let

0—PD ... pH _,pO _, 9,0

be a minimal projective resolution of a simple A-module S. This implies

d
> (—1)'dim(P?) = dim(S).
i=0
Thus the vectors dim(P;) generate Z™. The result follows. O

Dually, if gl. dim(A) < oo, then dim(/y),...,dim(/,) are also linearly independent.
So ® 4 is invertible in this case.

By the definition of ® 4, for each P € proj(A) we have
) dim(P)®, = —dim(v(P)).

Let M be an A-module, and let P £ P© — M — 0 be a minimal projective
presentation of M. Thus we obtain an exact sequence

(3) 0— M —PY - PO M0
where M" = Ker(p) = Qo(M). We also get an exact sequence

(4) 0 — 1A(M) — va(PDV) A2,

vA(PO) = va(M) — 0
since the Nakajama functor vy is right exact.
There is the dual construction of 7,;': For an A-module N let

(5) 0—>N—-TOL 1O NS0

be an exact sequence where 0 — N — [(©) L 1MW is a minimal injective presentation

of N.

Applying v, yields an exact sequence

(6) 0 — V7 /N) = v (1) 22 (10 S 1Y (V) = 0
Lemma 10.2. We have
(7) dim(74(M)) = dim(M)® 4 — dim(M")® 4 + dim(v4(M)).
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Proof. From Equation (3) we get
—dim(P™") + dim(P?) = dim(M) — dim(M").

Applying @4 to this sequence, and using dim(P)® 4 = —dim(v4(P)) for all projec-
tive modules P, we get

dim(v4(P")) — dim(va(P®)) = dim(M) P, — dim(M") P4
From the injective presentation of 74(M) (see in Equation (4)) we get
dim(74(M)) = dim(va(P")) — dim(va(P"*)) + dim(va(M))
— dim(M)®,, — dim(M")D 5 + dim(v4(M))

U
Lemma 10.3. If proj. dim(M) < 2, then
(8) dim(74(M)) > dim(M)® 4.
If proj. dim(M) < 2 and inj. dim(74(M)) < 2, then
) dim(74(M)) — dim(M)®, = din(T)

for some injective module I.

Proof. 1f proj.dim(M) < 2, then M" is projective, which implies dim(M")P4 =
—dim(v4(M")). Therefore

dim(74(M)) — dim(M) P4 = dim(va(M") & va(M)),
and therefore this vector is non-negative. Note that v4(M”") is injective. If we

assume additionally that inj. dim(74(M)) < 2, then v4(M) is also injective, since it
is the cokernel of the homomorphism

va(p): VA(P(U) - VA(P(O))

with 4 (PM) and v4(P®) being injective. O
Lemma 10.4. If proj.dim(M) < 1 and Homy (M, 4A) =0, then
(10) dim(r4 (M) = dim(M),.

Proof. If proj.dim(M) < 1, then M” = 0, since Equation (3) gives a minimal
projective presentation of M. By assumption v4(M) = D Homa(M, 4A) = 0. Thus
the result follows directly from Equation (7). O

Note that Equation (10) has many consequences and applications. For example, if
A is a hereditary algebra, then each A-module M satisfies proj. dim(M) < 1, and if
M is non-projective, then Homy (M, 4A) = 0.

Lemma 10.5. Assume proj.dim(M) < 2. If dim(74(M)) = dim(M)Dy, then
proj.dim(M) <1 and Homy (M, 4A) = 0.

Proof. Clearly, dim(74(M)) = dim(M)® 4 implies va(M")oplusva(M) = 0. Since
M" is projective, we have v4(M") = 0 if and only if M” = 0. O
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Using the notations from Equation (5) and (6) we obtain the following dual state-
ments:

(i) We have
dim(, " (N)) = dim(N)¢;" — dim(N")®," + dim (v, " (N)).
(ii) If inj. dim(N) < 2, then
dim(7; ' (N)) > dim(N)®}".
If inj. dim(N) < 2 and proj. dim(7,*(N)) < 2, then
dim (7' (N)) — dim(N)®," = dim(P)

for some projective module P.
(iii) If inj. dim(NV) < 1 and Homa(D(A4), N) = 0, then

dim(7, ' (N)) = dim(N) "

Lemma 10.6. If 0 — U — X — V — 0 is a non-split short exact sequence of
A-modules, then

dim End4(X) < dim End,(U & V).

Proof. Applying Homy(—,U), Homa(—, X) and Homu(—, V') we obtain the com-
mutative diagram

0 0 0
0 — Homy(V, U) — Homy(X, U) — Hom (U, U) —— Ext(V,U)

0 — Homu(V, X)) — Homa (X, X) — Homy (U, X)

0 — Homy (V, V) —— Hom (X, V) —— Homu (U, V)

with exact rows and columns. Since 1 does not split, we know that the connecting
homomorphism ¢ is non-zero. This implies

dim Homy (X, U) < dim Homy (V,U) + dim Homu(U,U) — 1.
Thus we get
dim Homy (X, X) < dim Homu (X, U) + dim Homy (X, V)
< dim Homx(V,U) + dim Homu (U, U) — 1
+ dim Homy (V, V') + dim Homy (U, V)
=dim Endy(U&® V) — 1.
This finishes the proof. U
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Recall that for an indecomposable A-module X we defined
F(X) =Enda(X)/rad(End4 (X)),
which is a K-skew field. If K is algebraically closed, then F'(X) = K for all indecom-

posables X. If K is a splitting field for K, then F(77"(P;)) 2 K and F(7"(];)) = K
for all n > 0.

An algebra A is directed if every indecomposable A-module is directing.

Let A be of finite-global dimension. Then we call the quadratic form y, weakly
positive if x4(z) > 0 for all z > 0 in Z". If x € Z" with xa(z) = 1, then z is called
a root of y4.

Theorem 10.7. Let A be a finite-dimensional directed algebra. If gl. dim(A) < 2,
then the following hold:

(1) xa is weakly positive;

(ii) If K is algebraically closed, then dim yields a bijection between the set of
isomorphism classes of indecomposable A-modules and the set of positive
roots of xa.

Proof. (i): Let x > 0in G(A) = Z™. Thus x = dim(X) for some non-zero A-module
X. We choose X such that dim End4(X) is minimal. In other words, if Y is another
module with dim(Y') = z, then dim End4(X) < dim Ends(Y).

Let X = X1 @ ---® X, with X; indecomposable for all i. It follows from Lemma
10.6 that Ext)(X;, X;) = 0 for all i # j. (Without loss of generality assume

Ext! (X3, X;) # 0. Then there exists a non-split short exact sequence

t
O—>X1—>Y—>EBX1‘—>O
i=2
and Lemma 10.6 implies that dim End(Y) < dim End4(X), a contradiction.) Fur-

thermore, since X; is directing, we have Ext!(X;, X;) = 0 for all i. Thus we get
Ext! (X, X) = 0. Since gl. dim(A) < 2, we have

xa(®) = xa(dim(X)) = dim End4(X) + dim Ext? (X, X) > 0.
Thus x4 is weakly positive.
(ii): If Y is an indecomposable A-module, then we know that
xa(Y) =dim End,(Y),

since Y is directing. We also know that End4(Y) is a skew field, which implies
F(Y) =2 Enda(Y). Thus, x4(Y) =1 in case F(Y) =2 K.

Furthermore, we know that any two non-isomorphic indecomposable A-modules Y
and Z satisfy dim(Y") # dim(Z). So the map dim is injective.

Assume additionally that z is a root of y4. Now

1 = xa(r) = dim End4(X) + dim Ext? (X, X)
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shows that End4(X) = K. This implies that X is indecomposable.

It follows that the map dim from the set of isomorphism classes of indecomposable
A-modules to the set of positive roots is surjective. O

Note that a sincere directed algebra A always satisfies gl. dim(A) < 2.

Corollary 10.8. If Q) is a representation-finite quiver, then x k¢ is weakly positive.

Proof. It K@ is representation-finite, then I'x consists of a union of preprojective
components. Therefore all K@Q-modules are directed. Furthermore, gl. dim(KQ) <
1. Now one can apply the above theorem. O

Proposition 10.9 (Drozd). A weakly positive integral quadratic form x has only
finitely many positive roots.

Proof. Use partial derivations of y and some standard results from Analysis. For
details we refer to [Ril]. O

From now on we assume that K is a splitting field for A.

10.2. Cartan matrix. As before, we denote the transpose of a matrix M by M7.
For a ring or field R we denote the elements in R™ as row vectors.

The Cartan matrix Cy = (¢;;);; of A is the n x n-matrix with ijth entry equal to
¢ij o= [P; + §;] = dim(P;);.

Thus the jth column of Cy is given by dim(P;)”.

Recall that the Nakayama functor v = v4 = D Homy(—, 4A) induces an equivalence

v: proj(A) — inj(A)
where v(P;) = I;. It follows that
dim(/;); = dim Homyu(1;, I;) = dim Homa (P}, P;) = ¢;j.

(Here we used our assumption that K is a splitting field for A.)

Thus the ith row of Cy is equal to dim(/;). So we get

(11) dim(P) = ¢;,C%  and dim([;) = ;C.

Lemma 10.10. If gl. dim(A) < oo, then Cy is invertible over Z.

Proof. Copy the proof of Lemma 10.1. U

But note that there are algebras A where C is invertible over O, but not over Z,
for example if A is a local algebra with non-zero radical.
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Assume now that the Cartan matrix C'4 of A is invertible. We get a (not necesssarily
symmetric) bilinear form

(== Q"xQ"—Q
defined by
(@, y) = 2Cy"y"

Here ;7 denote the inverse of the transpose C%) of C. Furthermore, we define a
symmetric bilinear form

(= =)4: Q" xQ"—=Q
by
(@,9)s = (2, y)a + (. 2)s = 2(C1 + Oy
Set Xy (x) := (x,z)’,. This defines a quadratic form
Xa: Q' — Q.
It follows that
(@, y)a = Xalz +y) = Xalx) = Xaly).

The radical of y/, is defined by

rad(x}y) = {w € Q" | (w, —)); = 0}.
The following lemma shows that the form (—, —); we just defined using the Cartan
matrix, coincides with the Ringel form we defined earlier:

Lemma 10.11. Assume that Cy4 is invertible. If X and Y are A-modules with
proj. dim(X) < oo or inj. dim(Y') < oo, then

(dim(X), dim(Y)), = (X, V)4 = 3 (~1)'dim Ext’y(X, V).

>0
In particular, x'y(dim(X)) = ya(X).
Proof. Assume proj. dim(X) = d < co. (The case inj. dim(Y’) < oo is done dually.)
We use induction on d.

If d = 0, then X is projective. Without loss of generality we assume that X is
indecomposable. Thus X = P; for some 7. Let y = dim(Y). We get

(dim(X), dim(Y))y = (dim(P,), y)y = dim(P;)C;"y" = esy” = dim Homu(P;,Y).
Furthermore, we have Ext’(P;,Y) = 0 for all ¢ > 0.

Next, let d > 0. Let P — X be a projective cover of X and let X’ be its kernel. It
follows that proj. dim(X’) = d — 1. We apply Hom,(—,Y") to the exact sequence

0-X —-P—X—0.
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Using the long exact homology sequence we obtain

D (—1)idim Exty(X,Y) = > (=1)'dim Ext,(P,Y) = > (=1)"dim Ext,(X",Y)
_ — (dim(P), YY) — (dim(X"), dim(Y)Y,
= (dim(X), dim(Y)),.

Here the second equality is obtained by induction. This finishes the proof. U

Let 9;; be the Kronecker function.

Corollary 10.12. If A is hereditary, then

(ei,ei)a = ! ifi=J,
v —dim Ext}y(S;,S;) otherwise.

Proof. This holds since gl. dim(A) < 1 and since K is a splitting field for A. O

Lemma 10.13. Let A = KQ be a finite-dimensional path algebra. Then for any
simple A-module S; and S; we have dim Ext!(S;,S;) is equal to the number of
arrows 1 — j in Q.

Proof. Let a;; be the number of arrows ¢ — j. Since A is finite-dimensional we have
a;; = 0 for all <. The minimal projective resolution of the simple A-module S; is of
the form

0P —P—5 -0
j=1
Applying Hom 4(—, S;) yields an exact sequence
0— HOH’IA(SZ‘, SJ) — HOH’IA(PZ‘, SJ) — HOH’IA(P;U, SJ) — EXth(SZ, SJ) — 0.
Corollary 10.14. Let A = KQ be a finite-dimensional path algebra, and let X and
Y be A-modules with dim(X) = a and dim(Y') = 3. Then
(X, YV)ko= (0. B kg =D aiBi— > )b
1€Qo acQ1
and
xke(X) = (o, a)kg =Y o] =Y g
i=1 i<j

where q;; is the number of arrows a € Q1 with {s(a),t(a)} = {7, j}.
Lemma 10.15. Assume that Cy4 is invertible. Then

b,y =-C7C,.
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Proof. For each 1 <14 < n we have to show that

(12) dim(P;) @ = —dim(Z;).

We have

dim(P)(=C;"Cs) = —dim([;) if and only if ~ —dim(Z;)" = —C4C;'dim(P)".
Clearly, C'dim(P,)" = eI, and —C%el’ = —dim(I;)". O

Example: Let () be the quiver
2

and let A = K. Then

and

Lemma 10.16. For all x,y € Q" we have
<$,y>i4 = _<y7x(1>A>i4 - <"L‘(I>A7y(1>z4>i4

Proof. We have
(@, y)y = 2CTy" = (2O Ty = yCyla”
= yCTCRC 2" = —yCT®ha” = —(y, 20,4)),.

This proves the first equality. Repeating this calculation we obtain the second
equality. ([

Lemma 10.17. If there exists some x > 0 such that x®4 = x, then x 4 is not weakly
positive.

Proof. We have (z,y)", = 0 for all y if and only if z(C;* + C;7) = 0 if and only if
xCyt = —xC T if and only if 2@, = . O

Corollary 10.18. If there exists some x > 0 such that x®, = x, then X'y is not
weakly positive.

Proof. If x € rad(x/4), then x/;(z) = 0. O
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Assume there exists an indecomposable K@Q-module X with 7i,(X) = X and
assume m > 1 is minimal with this property. Set

Y = P mio(X).
=1

Then 7xq(Y) = Y which implies
dim(Y) = dim(Y)®icq.
We get
Y, Z)kq = (Y, Z)kq + (£, Y )Kq

= —(dim(Z), dim(Y)Pxq) — (dim(Y) Py, dim(Z))

==Y, Z)kq + (2, Y)kq)-
This implies dim(Y’) € rad(xxq)-
Lemma 10.19. For an A-module M the following hold:

(i) If proj.dim(M) < 1, then
Ta(M) = D Ext! (M, 4A).
(i) If inj.dim(M) < 1, then
7 (M) 2 Extlo, (D(M), Ay).

Proof. Assume proj. dim(M) < 1. Then in Equation (3) we have M” = 0. Applying
Hom4(—, 4A) yields an exact sequence

0Homy (M, 4A) — Hom,(P®, 4 A) — Hom(PW, 4A) — Ext! (M, 4A) — 0

of right A-modules. Keeping in mind that vy = D Homa(—, 4A4) we dualize the
above sequence get an exact sequence

0D Ext! (M, 4A) — va(PY) — v (PO) — vy (M) — 0.
This implies (i). Part (ii) is proved dually. O

10.3. Exercises. 1: Show the following: If the Cartan matrix C4 is an upper
triangular matrix, then C'y is invertible over Q. In this case, C'4 is invertible over Z
if and only if Enda(F;) = K for all i.

11. Representation theory of quivers

Parts of this section are copied from Crawley-Boevey’s lecture notes “Lectures on
representations of quivers”, which you can find on his homepage.
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11.1. Bilinear and quadratic forms. Let Q = (Qo, @1, s,t) be a finite quiver
with vertices Qo = {1,...,n}, and let A = K@ be the path algebra of Q.

For vertices i, j € Qo let ¢;; = g;; be the number of arrows a € @; with {s(a),t(a)} =
{i,7}. Note that the numbers ¢;; do not depend on the orientation of Q.

For a = (aq,...,q,) € Z™ define
qola) = Z ol — Z Qij 0Ly
i=1 i<j
We call the quadratic form gg: Z" — Z the Tits form of Q.

The symmetric bilinear form (—, —)g: Z" x Z™ — 7Z of () is defined by
—Gij if i # 7,
(€1, €5)q = ’ .
2 — 2q;; otherwise.

As before, e; denotes the canonical basis vector of Z" with ¢th entry 1 and all other
entries 0.

We have
(aa a)Q = QQQ(Q),
(a,8)q = qola+ B) — gq(a) — q(B).
Note that gg and (—, —)g do not depend on the orientation of the quiver Q.

For a, 8 € Z™ define
<aaﬁa >Q = Z O‘iﬁi - Z as(a)ﬁt(a)~

1€Qo a€Q1

This defines a (not necessarily symmetric) bilinear form
(—, =)o :Z"xXZ" - Z
which is called the Euler form of (). Clearly, we have

qo(a) = (o, @)q;
(OQB)Q = <Oé7ﬁ>Q + <5705>Q'

The bilinear form (—, —)¢ does depend on the orientation of Q.

The Tits form ¢g is positive definite if gg(a) > 0 for all 0 # o € Z", and qq is
positive semi-definite if gg(a) > 0 for all a € Z".

The radical of ¢ is defined by
rad(gq) = {a € Z" | (a, —)q = 0}.
For a, B € Z" set 0 > « if § — a € N™. This defines a partial ordering on Z".

An element o = (ay,...,qy,) € Z™ is sincere if a; # 0 for all i. We write a@ > 0 if
a; > 0 for all 4, and a > 0 if @ > 0 and «a; > 0 for some 1.
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Let Sy, ..., S, be the simple K @Q-modules corresponding to the vertices of Q). (These
are the only simple K'Q-modules if and only if ) has no oriented cycles.) It is easy
to check that dim Exty(S;, S;) equals the number of arrows i — j in Q. (Just
construct the minimal projective resolution

o DR R s
JEQo
of S;, where a;; is the number of arrows ¢ — j in ). Then apply the functor
Hompq(—, 5;).)

Lemma 11.1. Let Q) be a connected quiver, and let 3 > 0 be a non-zero element in
rad(qg). Then the following hold:

(i) B is sincere;
(i) qg is positive semi-definite;
(i) For a € Z™ the following are equivalent:
(a) gqla) = 0;
(b) € QB;
(c) a € rad(qg)-

Proof. (a): By assumption we have

(ﬁa ez)Q - 2 - 2qu % Zqz]ﬁ] = 0.
J#i

> a8 =0

J#i
and since ¢;; > 0 for all 4,7 and 8 > 0, we get 3; = 0 whenever ¢;; > 0. Since () is
connected, we get § = 0, a contradiction. Thus we proved that 3 is sincere.

If 5; =0, then

(b): The following calculation shows that gg is positive semi-definite:

ZQU@ (_:__) ZqZJQﬁ Zqz]OZOZJ+ZQz]

1<j J 1<j 1<j 1<j
_ Z Qijoy 2@ Z iy
i#] l<J
_Z 2(]22 ﬁl2ﬁa _Zqz]aaj_qQ( )
1<J

For the last equality we used n times the equation

( 2%@ ﬁz Z %]ﬁ]

J#i

(c): If go(o) = 0, then the calculation above shows that «;/3; = a;/8; whenever
¢ij > 0. Since @ is connected it follows that o € Qf.

(d): If @ € QB, then a € rad(qq), since [ € rad(qg).
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(e): Clearly, if a € rad(qq), then gg(a) = 0. m

Theorem 11.2. Suppose that ) is connected.

(i) If Q is a Dynkin quiver, then qq 1is positive definite;
(i) If Q is an Euclidean quiver, then qq is positive semi-definite and rad(qq) =
7.6, where § is the dimension vector for Q) listed in Figure 2;
(iii) If Q is not a Dynkin and not an Euclidean quiver, then there exists some
a>01in Z" with qg(a) < 0 and (o, e;)q < 0 for all i.

Proof. (ii): It is easy to check that § € rad(qg): If there are no loops or multiple
edges we have to check that for all vertices ¢ we have

J

where 7 runs over the set of neighbours of 7 in (). By Lemma 11.1 this implies that
qq is positive semi-definite.

In each case there exists some vertex i such that §; = 1. Thus rad(gg) = QINZ" =
Z5.

(i): Any Dynkin quiver ) with n vertices can be seen as a full subquiver of some
Euclidean quiver @ with n + 1 vertices. We have qé(a:) > 0 for all non-sincere
elements in Z"™! since the x with a5 (x) = 0 are all multiples of the sincere element
d. So qq is positive definite. (The form ¢g is obtained from qp via restriction to the

subquiver @ of @)
(iii): Let @ be a quiver which is not Dynkin and not Euclidean. Then ) contains
a (not necessarily full) subquiver )’ such that )’ is a Euclidean quiver. Note that

any dimension vector of ()’ can be seen as a dimension vector of () by just adding
some zeros in case ) has more vertices than @)’

Let ¢ be the radical vector associated to @)'. If the vertex sets of Q)" and @ coincide,
then a := 0 satisfies gg(a) < 0.

Otherwise, if 7 is a vertex of () which is not a vertex of )’ but which is connected
to a vertex in )’ by an edge, then a := 26 + e; satisfies ¢g(a) < 0. O

Let @ be a Euclidean quiver. If i is a vertex of @) with §; = 1, then i is called
an extending vertex. Observe that there always exists such an extending vertex.
Furthermore, if we delete an extending vertex (and the arrows attached to it), then
we will obtain a corresponding Dynkin diagram.

For ) a Dynkin or an Euclidean quiver, let
Agi={a € Z"|a £0,q0(a) <1}
be the set of roots of Q.
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A root aof Q) isreal if gg(a) = 1. Otherwise, if go(a) = 0, it is called an imaginary
root. Let Afj and Aién be the set of real and imaginary roots, respectively.

Proposition 11.3. Let QQ be a Dynkin or a Euclidean quiver. Then the following
hold:

(i) Each e; is a root;
(ii) If « € Ag U {0}, then —a and a+ B are in Ag U {0} where 8 € rad(qq);
(i) We have

Al 0 if Q is Dynkin,
© T N{rd|0#£r € Z} if Q is Euclidean;
(iv) Every root a € Ag is either positive or negative;
(v) If Q is Euclidean, then the set (Ag U{0})/Zé of residue classes modulo 70
18 finite;
(vi) If Q is Dynkin, then Ag is finite.
Proof. (i): Clearly, we have gg(e;) = 1, so e; is a root.
(ii): Let a € Ag U {0} and ( € rad(qg). Since (5, a)g = 0 = go(3), we have
do(@) = 4o(f + @) = qo(B) + go(a) + (B, a)q
= qo(B — a) = qq(B) + aqla) — (B, a)q
Thus —a and a + (§ are in Ag U{0}. (The case § = 0 yields ¢o(—a) = go(«@).)

(iii): This follows directly from Lemma 11.1.

(iv): Let o be a root. So we can write @« = o™ — a~ where a™,a~ > 0 and have
disjoint supports. Assume that both o™ and o~ are non-zero. It follows immediately
that (o™, a™)g < 0. This implies

12 go(a) = go(a™) +ag(a™) — (@™, a7)q = go(a’) + qo(a”).
Thus one of ™ and o~ is an imaginary root and is therefore sincere. So the other
one is zero, a contradiction.

(v): Let @ be an Euclidean quiver, and let e be an extending vertex of Q. If a is a
root with a, = 0, then § — @ and ¢ + a are roots which are positive at the vertex e.
Thus both are positive roots. This implies

{ae AU{0} | a.=0}C{aecZ"| - <a<i},
and obviously this is a finite set.
If 5 € AU{0}, then 8 — (.6 belongs to the finite set
{a € AU{0} | a. = 0}.

(vi): If @ is a Dynkin quiver, we can consider @) as a full subquiver of the cor-
responding Euclidean quiver ) with extending vertex e. (Thus, we obtain @ by
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deleting e from @) We can now view a root a of () as a root of @ with o, = 0.
Thus by the proof of (v) we get that A is a finite set. O

11.2. Gabriel’s Theorem. Combining our results obtained so far, we obtain the
following famous theorem:

Theorem 11.4 (Gabriel). Let Q) be a connected quiver. Then KQ is representation-
finite if and only if Q) is a Dynkin quiver. In this case dim yields a bijection between
the set of isomorphism classes of indecomposable K Q-modules and the set of positive
roots of qq.

Proof. (a): We know that there is a unique preprojective component P of the
Auslander-Reiten quiver I'kq.

(b): We have xxq(X) = go(dim(X)) for all K@Q-modules X.

(c): Assume K() is representation-finite. This is the case if and only if Pxg =
I'kg. Since all indecomposable preprojective modules are directed, we know that
K@ is a directed algebra. Furthermore, we have gl.dim(KQ) < 1 < 2. So we
can apply Theorem xx and obtain a bijection between the isomorphism classes of
indecomposable K ()-modules and the set of positive roots of xx¢q. Furthermore, an
element oo € N" is a positive root of k¢ if and only if o € Ay. We also know that
Xkq = qq is weakly positive. But this implies that () has to be a Dynkin quiver.
(For all quivers () which are not Dynkin we found some a > 0 with g (a) <0.)

(d): If K@ is representation-infinite, the component Pk is infinite. Each indecom-
posable module X in Pk is directed, and K is a splitting field for Q. Thus

xro(X) = qo(dim(X)) = 1.

Furthermore, we know that there is no other indecomposable K(Q-module Y with
dim(X) = dim(Y"). So we found infinitely many a € Z" with gg(«) = 1.

Suppose that @ is a Dynkin quiver. Then
AQ = {a e 7" | QQ(Q) = 1}

is a finite set, a contradiction. O

12. Cartan matrices and (sub)additive functions

In Figure 1 we define a set of valued graphs called Dynkin graphs. By definition
each of the graphs A,, B,, C,, and D,, has n vertices. The graphs A,, D,,, Es, Er
and FEg are the simply laced Dynkin graphs.
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Fg —

Fy S A

G i

Fi1GURE 1. Dynkin graphs

In Figure 2 we define a set of valued graphs called Euclidean graphs. By definition
each of the graphs An, Bn, Cn, Dn, BCn, BD and CD has n + 1 vertices. The
graphs An, D, Es, E7 and Eg are the simply laced Euclidean graphs. By
definition the graph g@ has one vertex and one loop, and ZI has two vertices joined
by two edges. Our table of Euclidean graphs does not only contain the graphs
themselves, but for each graph we also display a dimension vector which we will
denote by 9.

A quiver @) is a Dynkin quiver or an Euclidean quiver of the underlying graph
of @ (replace each arrow of () by a non-oriented edge) is a simply laced Dynkin
graph or a simply laced Euclidean graph, respectively.
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FiGURE 2. Euclidean graphs and additive functions 9
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Part 3. Extras
13. Classes of modules

simple modules

serial modules

uniserial modules

cyclic modules

cocyclic modules

indecomposable modules

projective modules

injective modules

preprojective modules (which should really be called postprojective modules)
preinjective modules

regular modules

bricks

stones

exceptional modules

Schur modules

tree modules (2 different definitions)
string modules

band modules

(generalized) tilting modules
(generalized) partial tilting modules
torsion modules

torsion free modules

In the world of infinite dimensional modules we find names like the following:
Priifer modules

p-adic modules
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generic modules
pure-injective modules

algebraically compact module

Classifications of modules

For some algebras of infinite representation type, a complete classification of inde-
composable modules is known. We list some of these classes of algebras:

Solved:

tame hereditary algebras
tubular algebras
Gelfand-Ponomarev algebras
dihedral 2-group algebras
quaternion algebra
special biserial algebras
clannish algebras
multicoil algebras

Open:

biserial algebras

However, one still has to be careful what it means to have a classification of all
indecomposable modules over an algebra. For example for tubular algebras, one can
parametrize all indecomposable modules by roots of a quadratic form. But given a
root, it is still very difficult to write down explicitely the corresponding indecom-
posable module(s). In fact, for tubular algebras this remains an open problem.

14. Classes of algebras

We list some names of classes of mostly finite-dimensional algebras which were stud-
ied in the literature:

Basic algebras
Biserial algebras

Canonical algebras
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Clannish algebras
Cluster-tilted algebra
Directed algebras

Dynkin algebras

Euclidean algebras

Gentle algebras

Group algebras

Hereditary algebras

Multicoil algebras

Nakayama algebras

Path algebras

Poset algebras

Preprojective algebras
Quasi-hereditary algebras
Quasi-tilted algebras
Representation-finite algebras
Selfinjective algebras
Semisimple algebras

Simply connected algebras
Special biserial algebras
String algebras

Strongly simply connected algebras
Symmetric algebras

Tame algebras

Tilted algebras

Tree algebras

Triangular algebras
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Trivial extension algebras
Tubular algebras
Wild algebras

Here are some classes of algebras, which are not finite-dimensional, but linked to
the finite-dimensional world:

Repetitive algebras

Enveloping algebras of Lie algebras
Quantized enveloping algebras
Ringel-Hall algebras

Cluster algebras

Hecke algebras

15. Dimensions

The concept of “dimension” occurs frequently and with different meanings in the
representation theory of algebras. Here just some of the most common dimensions:

dimension of a module as a vector space
projective dimension of a module
injective dimension of a modules

global dimension of an algebra

finitistic dimension of an algebra
dominant dimension of an algebra
representation dimension of an algebra
Krull-Gabriel dimension of an algebra
Krull-dimension of a commutative ring

dimension of a variety
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