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1. Introduction

This is the second part of notes for a lecture course “Introduction to Representation
Theory”.

Around 1970 Peter Gabriel proved that a connected quiver is representation-finite if
and only if the underlying graph is a Dynkin graph of type An(n ≥ 1), Dn(n ≥ 4) or
En(n = 6, 7, 8). He also showed that the dimension vectors of the indecomposable
representations correspond to the positive roots of the corresponding Lie algebra.
This celebrated result can be seen as a starting point of modern representation
theory of finite-dimensional algebras. Equally important was the discovery of almost
split sequences (now called Auslander-Reiten sequences) by Maurice Auslander and
Idun Reiten. We will prove both results. Furthermore, we will explain the knitting
algorithm for preprojective components.

1.1. Acknowledgements. The second author thanks his student Tim Eickmann
for typo hunting.
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Part 1. Homological Algebra I: Resolutions and extension groups

2. Homological Algebra

2.1. The Snake Lemma.

Theorem 2.1 (Snake Lemma). Given the following commutative diagram of homo-
morphisms

U1

f1 //

a

��

V1

g1 //

b
��

W1

c

��

// 0

0 // U2

f2 // V2

g2 // W2

such that the two rows are exact. Taken kernels and cokernels of the homomorphisms
a, b, c we obtain a commutative diagram

0

��

0

��

0

��
U0

f0 //

a0

��

V0

g0 //

b0
��

W0

c0
��

U1
f1 //

a

��

V1
g1 //

b
��

W1

c

��

// 0

0 // U2

f2 //

a2

��

V2

g2 //

b2
��

W2

c2
��

U3

f3 //

��

V3

g3 //

��

W3

��
0 0 0

with exact rows and columns. Then

δ(x) := (a2 ◦ f−1
2 ◦ b ◦ g−1

1 ◦ c0)(x)
defines a homomorphism (the “connecting homomorphism”)

δ : Ker(c) → Cok(a)

such that the sequence

Ker(a)
f0−→ Ker(b)

g0−→ Ker(c)
δ−→ Cok(a)

f3−→ Cok(b)
g3−→ Cok(c)

is exact.

Proof. The proof is divided into two steps: First, we define the map δ, second we
verify the exactness.

Relations
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We need some preliminary remarks on relations: Let V and W be modules. A
submodule ρ ⊆ V ×W is called a relation. If f : V → W is a homomorphism, then
the graph

Γ(f) = {(v, f(v)) | v ∈ V }
of f is a relation. Vice versa, a relation ρ ⊆ V ×W is the graph of a homomorphism,
if for every v ∈ V there exists exactly one w ∈W such that (v, w) ∈ ρ.

If ρ ⊆ V ×W is a relation, then the opposite relation is defined as ρ−1 = {(w, v) |
(v, w) ∈ ρ}. Obviously this is a submodule again, namely of W × V .

If V1, V2, V3 are modules and ρ ⊆ V1 × V2 and σ ⊆ V2 × V3 are relations, then

σ ◦ρ := {(v1, v3) ∈ V1×V3 | there exists some v2 ∈ V2 with (v1, v2) ∈ ρ, (v2, v3) ∈ σ}

is the composition of ρ and σ. It is easy to check that σ ◦ ρ is a submodule of
V1 × V3.

For homomorphisms f : V1 → V2 and g : V2 → V3 we have Γ(g) ◦ Γ(f) = Γ(gf).

The composition of relations is associative: If ρ ⊆ V1×V2, σ ⊆ V2×V3 and τ ⊆ V3×V4

are relations, then (τ ◦ σ) ◦ ρ = τ ◦ (σ ◦ ρ).

Let ρ ⊆ V ×W be a relation. For a subset X of V define ρ(X) = {w ∈W | (x, w) ∈
ρ for some x ∈ X}. If x ∈ V , then set ρ(x) = ρ({x}).

For example, if f : V → W is a homomorphism and X a subset of V , then

(Γ(f))(X) = f(X).

Similarly, (Γ(f)−1)(Y ) = f−1(Y ) for any subset Y of W .

Thus in our situation, a2f
−1
2 bg−1

1 c0 stands for

Γ(a2) ◦ Γ(f2)
−1 ◦ Γ(b) ◦ Γ(g1)

−1 ◦ Γ(c0).

First, we claim that this is indeed the graph of some homomorphism δ.

δ is a homomorphism

We show that a2f
−1
2 bg−1

1 c0 is a homomorphism: Let S be the set of tuples

(w0, w1, v1, v2, u2, u3) ∈W0 ×W1 × V1 × V2 × U2 × U3

such that

w1 = c0(w0) = g1(v1),

v2 = b(v1) = f2(u2),

u3 = a2(u2).



8 CLAUS MICHAEL RINGEL AND JAN SCHRÖER

w0_

c0
��

v1
� g1 //

_

b
��

w1

u2
� f2 //

_

a2

��

v2

u3

We have to show that for every w0 ∈W0 there exists a tuple

(w0, w1, v1, v2, u2, u3)

in S, and that for two tuples (w0, w1, v1, v2, u2, u3) and (w′
0, w

′
1, v

′
1, v

′
2, u

′
2, u

′
3) with

w0 = w′
0 we always have u3 = u′3.

Thus, let w ∈W0. Since g1 is surjective, there exists some v ∈ V1 with g1(v) = c0(w).
We have

g2b(v) = cg1(v) = cc0(w) = 0.

Therefore b(v) belongs to the kernel of g2 and also to the image of f2. Thus there
exists some u ∈ U2 with f2(u) = b(v). So we see that

(w, c0(w), v, b(v), u, a2(u)) ∈ S.

Now let (w, c0(w), v′, b(v′), u′, x) also be in S. We get

g1(v − v′) = c0(w) − c0(w) = 0.

Thus v − v′ belongs to the kernel of g1, and therefore to the image of f1. So there
exists some y ∈ U1 with f1(y) = v − v′. This implies

f2(u− u′) = b(v − v′) = bf1(y) = f2a(y).

Since f2 is injective, we get u− u′ = a(y). But this yields

a2(u) − x = a2(u− u′) = a2a(y) = 0.

Thus we see that a2(u) = x, and this implies that δ is a homomorphism.

Exactness

Next, we want to show that Ker(δ) = Im(g0): Let x ∈ V0. To compute δg0(x)
we need a tuple (g0(x), w1, v1, v2, u2, u3) ∈ S. Since g1b0 = c0g0 and bb0 = 0 we
can choose (g0(x), c0g0(x), b0(x), 0, 0, 0). This implies δg0(x) = 0. Vice versa, let
w ∈ Ker(δ). So there exists some (w,w1, v1, v2, u2, 0) ∈ S. Since u2 belongs to the
kernel of a2 and therefore to the image of a, there exists some y ∈ U1 with a(y) = u2.
We have

bf1(y) = f2a(y) = f2(u2) = b(v1).

Thus v1 − f1(y) is contained in Ker(b). This implies that there exists some x ∈ V0

with b0(x) = v1 − f1(y). We get

c0g0(x) = g1b0(x) = g1(v1 − f1(y)) = g1(v1) = c0(w).
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Since c0 is injective, we have g0(x) = w. So we see that w belongs to the image of
g0.

Finally, we want to show that Ker(f3) = Im(δ): Let (w0, w1, v1, v2, u2, u3) ∈ S, in
other words δ(w0) = u3. We have

f3(u3) = f3a2(u2) = b2f2(u2).

Since f2(u2) = v2 = b(v1), we get b2f2(u2) = b2b(v1) = 0. This shows that the
image of δ is contained in the kernel of f3. Vice versa, let u3 be an element in U3,
which belongs to the kernel of f3. Since a2 is surjective, there exists some u2 ∈ U2

with a2(u2) = u3. We have b2f2(u2) = f3a2(u2) = f3(u3) = 0, and therefore f2(u2)
belongs to the kernel of b2 and also to the image of b. Let f2(u2) = b(v1) =: v2.
This implies cg1(v1) = g2b(v1) = g2f2(u2) = 0. We see that g1(v1) is in the kernel
of c and therefore in the image of c0. So there exists some w0 ∈ W0 with c0(w0) =
g1(v1). Altogether, we constructed a tuple (w0, w1, v1, v2, u2, u3) in S. This implies
u3 = δ(w0). This finishes the proof of the Snake Lemma. �

Next, we want to show that the connecting homomorphism is “natural”: Assume
we have two commutative diagrams with exact rows:

U1

f1 //

a

��

V1

g1 //

b
��

W1

c

��

// 0

0 // U2
f2 // V2

g2 // W2,

U ′
1

f ′

1 //

a′

��

V ′
1

g′1 //

b′

��

W ′
1

c′

��

// 0

0 // U ′
2

f ′

2 // V ′
2

g′2 // W ′
2.

Let δ : Ker(c) → Cok(a) and δ′ : Ker(c′) → Cok(a′) be the corresponding connecting
homomorphisms.

Additionally, for i = 1, 2 let pi : Ui → U ′
i , qi : Vi → V ′

i and ri : Wi → W ′
i be homo-

morphisms such that the following diagram is commutative:

U1

��

//
p1

  A
AA

A
V1

��

//
q1

  @
@@

@
W1

��

//
r1

!!D
DD

D 0

U ′
1

��

// V ′
1

��

// W ′
1

//

��

0

0 // U2
p2

  A
AA

A
// V2

q2

  @
@@

@
// W2

r2

!!D
DD

D

0 // U ′
2

// V ′
2

// W ′
2

The homomorphisms pi : Ui → U ′
i induce a homomorphism p3 : Cok(a) → Cok(a′),

and the homomorphisms ri : Wi → W ′
i induce a homomorphism r0 : Ker(c) →

Ker(c′).
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Lemma 2.2. The diagram

Ker(c)

r0

��

δ // Cok(a)

p3

��
Ker(c′)

δ′ // Cok(a′)

is commutative.

Proof. Again, let S be the set of tuples

(w0, w1, v1, v2, u2, u3) ∈W0 ×W1 × V1 × V2 × U2 × U3

such that

w1 = c0(w0) = g1(v1),

v2 = b(v1) = f2(u2),

u3 = a2(u2),

and let S ′ be the correspondingly defined subset of W ′
0 ×W ′

1 × V ′
1 × V ′

2 × U ′
2 × U ′

3.
Now one easily checks that for a tuple (w0, w1, v1, v2, u2, u3) in S the tuple

(r0(w0), r1(w1), q1(v1), q2(v2), p2(u2), p3(u3))

belongs to S ′. The claim follows. �

2.2. Complexes. A complex of A-modules is a tuple C• = (Cn, dn)n∈Z (we often
just write (Cn, dn)n or (Cn, dn)) where the Cn are A-modules and the dn : Cn → Cn−1

are homomorphisms such that

Im(dn) ⊆ Ker(dn−1)

for all n, or equivalently, such that dn−1dn = 0 for all n.

· · · dn+2−−−→ Cn+1
dn+1−−−→ Cn

dn−→ Cn−1
dn−1−−−→ · · ·

A cocomplex is a tuple C• = (Cn, dn)n∈Z where the Cn are A-modules and the
dn : Cn → Cn+1 are homomorphisms such that dn+1dn = 0 for all n.

· · · dn−2

−−−→ Cn−1 dn−1

−−−→ Cn dn

−→ Cn+1 dn+1

−−−→ · · ·

Remark: We will mainly formulate results and definitions by using complexes, but
there are always corresponding results and definitions for cocomplexes. We leave it
to the reader to perform the necessary reformulations.

In this lecture course we will deal only with (co)complexes of modules over a K-
algebra A and with (co)complexes of vector spaces over the field K.

A complex C• = (Cn, dn)n∈Z is an exact sequence of A-modules if

Im(dn) = Ker(dn−1)
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for all n. In this case, for a > b we also call

Ca
da−→ Ca−1

da−1−→ · · · db+1−→ Cb,

· · · db+2−→ Cb+1
db+1−→ Cb,

Ca
da−→ Ca−1

da−1−→ · · ·
exact sequences. An exact sequence of the form

0 −→ X
f−→ Y

g−→ Z → 0

is a short exact sequence. We denote such a sequence by (f, g). Note that this
implies that f is a monomorphism and g is an epimorphism.

Example: Let M be an A-module, and let C• = (Cn, dn)n∈Z be a complex of
A-modules. Then

HomA(M,C•) = (HomA(M,Cn),HomA(M, dn))n∈Z

is a complex of K-vector spaces and

HomA(C•,M) = (HomA(Cn,M),HomA(dn+1,M))n∈Z

is a cocomplex of K-vector spaces. (Of course, K is a K-algebra, and the K-modules
are just the K-vector spaces.)

End of Lecture 32

Given two complexes C• = (Cn, dn)n∈Z and C ′
• = (C ′

n, d
′
n)n∈Z, a homomorphism

of complexes (or just map of complexes) is given by f• = (fn)n∈Z : C• → C ′
•

where the fn : Cn → C ′
n are homomorphisms with d′nfn = fn−1dn for all n.

· · · // Cn+1
dn+1 //

fn+1

��

Cn
dn //

fn

��

Cn−1

fn−1

��

// · · ·

· · · // C ′
n+1

d′n+1 // C ′
n

d′n // C ′
n−1

// · · ·

The maps C• → C ′
• of complexes form a vector space: Let f•, g• : C• → C ′

• be such
maps, and let λ ∈ K. Define f• + g• := (fn + gn)n∈Z, and let λf• := (λfn)n∈Z.

If f• = (fn)n : C• → C ′
• and g• = (gn)n : C ′

• → C ′′
• are maps of complexes, then the

composition

g•f• = g• ◦ f• : C• → C ′′
•

is defined by g•f• := (gnfn)n.

Let C• = (Cn, dn)n be a complex. A subcomplex C ′
• = (C ′

n, d
′
n)n of C• is given by

submodules C ′
n ⊆ Cn such that d′n is obtain via the restriction of dn to C ′

n. (Thus we
require that dn(C ′

n) ⊆ C ′
n−1 for all n.) The corresponding factor complex C•/C

′
•

is of the form (Cn/C
′
n, d

′′
n)n where d′′n is the homomorphism Cn/C

′
n → Cn−1/C

′
n−1

induced by dn.
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Let f• = (fn)n : C ′
• → C• and g• = (gn)n : C• → C ′′

• be homomorphisms of com-
plexes. Then

0 → C ′
•

f•−→ C•
g•−→ C ′′

• → 0

is a short exact sequence of complexes provided

0 → C ′
n

fn−→ Cn
gn−→ C ′′

n → 0

is a short exact sequence for all n.

2.3. From complexes to modules. We can interpret complexes of J-modules
(here we use our terminology from the first part of the lecture course) as J ′-modules
where

J ′ := J ∪ Z ∪ {d}.
(We assume that J , Z and {d} are pairwise disjoint sets.)

If C• = (Cn, dn)n is a complex of J-modules, then we consider the J-module

C :=
⊕

n∈Z

Cn.

We add some further endomorphisms of the vector space C, namely for n ∈ Z

take the projection φn : C → C onto Cn and additionally take φd : C → C whose
restriction to Cn is just dn. This converts C into a J ′-module.

Now if f• = (fn)n : C• → C ′
• is a homomorphism of complexes, then
⊕

n∈Z

fn :
⊕

n∈Z

Cn →
⊕

n∈Z

C ′
n

defines a homomorphism of J ′-modules, and one obtains all homomorphisms of J ′-
modules in such a way.

We can use this identification of complexes of J-modules with J ′-modules for trans-
ferring the terminology we developed for modules to complexes: For example sub-
complexes or factor complexes can be defined as J ′-submodules or J ′-factor modules.

2.4. Homology of complexes. Given a complex C• = (Cn, dn)n define

Hn(C•) = Ker(dn)/ Im(dn+1),

the nth homology module (or homology group) of C•. Set H•(C•) = (Hn(C•))n.

Similarly, for a cocomplex C• = (Cn, dn) let

Hn(C•) = Ker(dn)/ Im(dn−1)

be the nth cohomology group of C•.

Each homomorphism f• : C• → C ′
• of complexes induces homomorphisms

Hn(f•) : Hn(C•) → Hn(C
′
•).
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(One has to check that fn(Im(dn+1)) ⊆ Im(d′n+1) and fn(Ker(dn)) ⊆ Ker(d′n).)

Cn+1

dn+1

��

fn+1 // C ′
n+1

d′n+1

��
Cn

dn

��

fn // C ′
n

d′n
��

Cn−1
fn−1 // C ′

n−1

It follows that Hn defines a functor from the category of complexes of A-modules to
the category of A-modules.

Let C• = (Cn, dn) be a complex. We consider the homomorphisms

Cn+1
dn+1−−−→ Cn

dn−→ Cn−1
dn−1−−−→ Cn−2.

By assumption we have Im(di+1) ⊆ Ker(di) for all i.

The following picture illustrates the situation. Observe that the homology groups

Hi(C•) = Ker(di)/ Im(di+1)

are highlighted by the thick vertical lines. The marked regions indicate which parts
of Ci and Ci−1 get identified by the map di. Namely di induces an isomorphism

Ci/Ker(di) → Im(di).

0

Im(di+1)

Ker(di)

Ci

Cn+1 Cn Cn−1 Cn−2
-

dn+1
-

dn
-

dn−1

r

r

r

r

H
H

H
H

H
H

H
H

H
H

H

H
H

H
H

H
H

H
H

H
H

H
r

r

r

r

H
H

H
H

H
H

H
H

H
H

H

H
H

H
H

H
H

H
H

H
H

H
r

r

r

r

H
H

H
H

H
H

H
H

H
H

H

H
H

H
H

H
H

H
H

H
H

H
r

r

r

r

The map dn factors through Ker(dn−1) and the map Cn → Ker(dn−1) factors through
Cok(dn+1). Thus we get an induced homomorphism dn : Cok(dn+1) → Ker(dn−1).
The following picture describes the situation:
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Cok(dn+1) Ker(dn−1)-
dn

r

r

r

H
H

H
H

H
H

H
H

H
H

H

H
H

H
H

H
H

H
H

H
H

H
r

r

r

So we obtain a commutative diagram

Cn
dn //

��

Cn−1

Cok(dn+1)
dn // Ker(dn−1)

OO

The kernel of dn is just Hn(C•) and its cokernel is Hn−1(C•). Thus we obtain an
exact sequence

0 → Hn(C•)
iCn−→ Cok(dn+1)

dn−→ Ker(dn−1)
pC

n−1−−−→ Hn−1(C•) → 0

where iCn and pC
n−1 denote the inclusion and the projection, respectively. The inclu-

sion Ker(dC
n ) → Cn is denoted by uC

n .

2.5. Homotopy of morphisms of complexes. Let C• = (Cn, dn) and C ′
• =

(C ′
n, d

′
n) be complexes, and let f•, g• : C• → C ′

• be homomorphisms of complexes.
Then f• and g• are called homotopic if for all n ∈ Z there exist homomorphisms
sn : Cn → C ′

n+1 such that

hn := fn − gn = d′n+1sn + sn−1dn.

In this case we write f• ∼ g•. (This defines an equivalence relation.) The sequence
s = (sn)n is a homotopy from f• to g•.

· · · // Cn+1
//

��

dn+1 // Cn
dn //

sn

}}zz
zz

zz
zz
hn

��

Cn−1
//

��

sn−1

}}zz
zz

zz
zz

· · ·

· · · // C ′
n+1

d′n+1

// C ′
n

// C ′
n−1

// · · ·

The morphism f• : C• → C ′
• is zero homotopic if f• and the zero homomorphism

0: C• → C ′
• are homotopic. The class of zero homotopic homomorphisms forms an

ideal in the category of complexes of A-modules.

Proposition 2.3. If f•, g• : C• → C ′
• are homomorphisms of complexes such that

f• and g• are homotopic, then Hn(f•) = Hn(g•) for all n ∈ Z.
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Proof. Let C• = (Cn, dn) and C ′
• = (C ′

n, d
′
n), and let x ∈ Ker(dn). We get

fn(x) − gn(x) = (fn − gn)(x)

= (d′n+1sn + sn−1dn)(x)

= d′n+1sn(x)

since dn(x) = 0. This shows that fn(x) and gn(x) only differ by an element in
Im(d′n+1). Thus they belong to the same residue class modulo Im(d′n+1). �

Corollary 2.4. Let f• : C• → C ′
• be a homomorphism of complexes. Then the

following hold:

(i) If f• is zero homotopic, then Hn(f•) = 0 for all n;
(ii) If there exists a homomorphism g• : C ′

• → C• such that g•f• ∼ 1C•
and

f•g• ∼ 1C′

•
, then Hn(f•) is an isomorphism for all n.

Proof. As in the proof of Proposition 2.3 we show that fn(x) ∈ Im(d′n+1). This
implies (i). We have Hn(g•)Hn(f•) = Hn(g•f•) = Hn(1C•

) and Hn(f•)Hn(g•) =
Hn(f•g•) = Hn(1′C•

). Thus Hn(f•) is an isomorphism. �

2.6. The long exact homology sequence. Let

0 → A•
f•−→ B•

g•−→ C• → 0

be a short exact sequence of complexes. We would like to construct a homomorphism

δn : Hn(C•) → Hn−1(A•).

Recall that the elements in Hn(C•) are residue classes of the form x+Im(dC
n+1) with

x ∈ Ker(dC
n ). Here we write A• = (An, d

A
n ), B• = (Bn, d

B
n ) and C• = (Cn, d

C
n ).

For x ∈ Ker(dC
n ) set

δn(x+ Im(dC
n+1)) := z + Im(dA

n )

where z ∈ (f−1
n−1d

B
n g

−1
n )(x).

Theorem 2.5 (Long Exact Homology Sequence). With the notation above, we ob-
tain a well defined homomorphism

δn : Hn(C•) → Hn−1(A•)

and the sequence

· · · δn+1−−→ Hn(A•)
Hn(f•)−−−−→ Hn(B•)

Hn(g•)−−−−→ Hn(C•)
δn−→ Hn−1(A•)

Hn−1(f•)−−−−−→ · · ·

is exact.
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Proof. Taking kernels and cokernels of the maps dA
n , dB

n and dB
n we obtain the fol-

lowing commutative diagram with exact rows and columns:

0

��

0

��

0

��

0 // Ker(dA
n )

��

f ′

n // Ker(dB
n )

��

g′n // Ker(dC
n )

��
0 // An

dA
n

��

fn // Bn

dB
n

��

gn // Cn

dC
n

��

// 0

0 // An−1

��

fn−1 // Bn−1

��

gn−1 // Cn−1

��

// 0

Cok(dA
n )

��

f ′′

n−1 // Cok(dB
n )

��

g′′n−1 // Cok(dC
n )

��

// 0

0 0 0

(The arrows without label are just the canonical inclusions and projections, re-
spectively. By f ′

n, g
′
n and f ′′

n−1, g
′′
n−1 we denote the induced homomorphisms on the

kernels and cokernels of the maps dA
n , dB

n and dC
n , respectively.)

The map f ′
n is a restriction of the monomorphism fn, thus f ′

n is also a monomor-
phism. Since gn−1 is an epimorphism and gn−1(Im(dB

n )) ⊆ Im(dC
n ), we know that

g′′n−1 is an epimorphism as well.

We have seen above that the homomorphism dA
n : An → An−1 induces a homomor-

phism

a = dA
n : Cok(dA

n+1) → Ker(dA
n−1).
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Similarly, we obtain b = dB
n and c = dC

n . The kernels and cokernels of these homo-
morphisms are homology groups. We obtain the following commutative diagram:

0

��

0

��

0

��
Hn(A•)

iAn
��

Hn(f•)
// Hn(B•)

iBn
��

Hn(g•)
// Hn(C•)

iCn
��

Cok(dA
n+1)

a

��

f ′′

n // Cok(dB
n+1)

b
��

g′′n // Cok(dC
n+1)

c

��

// 0

0 // Ker(dA
n−1)

pA
n−1

��

f ′

n−1 // Ker(dB
n−1)

pB
n−1

��

g′n−1 // Ker(dC
n−1)

pC
n−1

��
Hn−1(A•)

��

Hn−1(f•)
// Hn−1(B•)

��

Hn−1(g•)
// Hn−1(C•)

��
0 0 0

Now we can apply the Snake Lemma: For our n we obtain a connecting homomor-
phism

δ : Hn(C•) → Hn−1(A•)

which yields the required exact sequence. It remains to show that δ = δn.

Let T be the set of all triples (x, y, z) with x ∈ Ker(dC
n ), y ∈ Bn, z ∈ An−1 such that

gn(y) = x and fn−1(z) = dB
n (y).

(1) For every x ∈ Ker(dC
n ) there exists a triple (x, y, z) ∈ T :

Let x ∈ Ker(dC
n ). Since gn is surjective, there exists some y ∈ Bn with gn(y) = x.

We have
gn−1d

B
n (y) = dC

n gn(y) = dC
n (x) = 0.

Thus dB
n (y) belongs to the kernel of gn−1 and therefore to the image of fn−1. Thus

there exists some z ∈ An−1 with fn−1(z) = dB
n (y).

(2) If (x, y1, z1, ), (x, y2, z2) ∈ T , then z1 − z2 ∈ Im(dA
n ):

We have gn(y1−y2) = x−x = 0. Since Ker(gn) = Im(fn) there exists some an ∈ An

such that fn(an) = y1 − y2. It follows that

fn−1d
A
n (an) = dB

n fn(an) = dB
n (y1 − y2) = fn−1(z1 − z2).

Since fn−1 is a monomorphism, we get dA
n (an) = z1 − z2. Thus z1 − z2 ∈ Im(dA

n ).

(3) If (x, y, z) ∈ T and x ∈ Im(dC
n+1), then z ∈ Im(dA

n ):

Let x = dC
n+1(r) for some r ∈ Cn+1. Since gn+1 is surjective there exists some

s ∈ Bn+1 with gn+1(s) = r. We have

gn(y) = x = dC
n+1(r) = dC

n+1gn+1(s) = gnd
B
n+1(s).
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Therefore y−dB
n+1(s) is an element in Ker(gn) and thus also in the image of fn. Let

y − dB
n+1(s) = fn(t) for some t ∈ An. We get

fn−1d
A
n (t) = dB

n fn(t) = dB
n (y) − dB

n d
B
n+1(s) = dB

n (y) = fn−1(z).

Since fn−1 is injective, this implies dA
n (t) = z. Thus z is an element in Im(dA

n ).

(4) If (x, y, z) ∈ T , then z ∈ Ker(dA
n−1):

We have
fn−2d

A
n−1(z) = dB

n−1fn−1(z) = dB
n−1d

B
n (y) = 0.

Since fn−2 is injective, we get dA
n−1(z) = 0.

Combining (1),(2),(3) and (4) yields a homomorphism δn : Hn(C•) → Hn−1(A•)
defined by

δn(x+ Im(dC
n+1)) := z + Im(dA

n )

for each (x, y, z) ∈ T .

The set of all pairs (pC
n (x), pA

n−1(z)) such that there exists a triple (x, y, z) ∈ T is
given by the relation

Γ(pA
n−1) ◦ Γ(uA

n−1)
−1 ◦ Γ(fn−1)

−1 ◦ Γ(dB
n ) ◦ Γ(gn)

−1 ◦ Γ(uC
n ) ◦ Γ(pC

n )−1.

This is the graph of our homomorphism δn.

Ker(dC
n )

uC
n

��

pC
n // Hn(C•)

Bn

dB
n

��

gn // Cn

Hn−1(A•) Ker(dA
n−1)

pA
n−1oo

uA
n−1 // An−1

fn−1 // Bn−1

Now it is not difficult to show that this relation coincides with the relation

Γ(pA
n−1) ◦ Γ(f ′

n−1)
−1 ◦ Γ(b) ◦ Γ(g′′n)−1 ◦ Γ(iCn )

which is the graph of δ.

Hn(C•)

iCn
��

Cok(dB
n+1)

g′′n //

b
��

Cok(dC
n+1)

Ker(dA
n−1)

pA
n−1

��

f ′

n−1 // Ker(dB
n−1)

Hn−1(A•)

This implies δ = δn. �
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The exact sequence in the above theorem is called the long exact homology
sequence associated to the given short exact sequence of complexes. The homo-
morphisms δn are called connecting homomorphisms.

The connecting homomorphisms are “natural”: Let

0 // A•

f• //

p•
��

B•

g• //

q•
��

C•
//

r•
��

0

0 // A′
•

f ′

• // B′
•

g′
• // C ′

•
// 0

be a commutative diagram with exact rows. Then the diagram

Hn(C•)
δn //

Hn(r•)
��

Hn−1(A•)

Hn−1(p•)
��

Hn(C ′
•)

δ′n // Hn−1(A
′
•)

commutes, where δn and δ′n are the connecting homomorphisms coming from the
two exact rows.

————————————————————————————-

3. Projective resolutions and extension groups

3.1. Projective resolutions. Let Pi, i ≥ 0 be projective modules, and let M be
an arbitrary module. Let pi : Pi → Pi−1, i ≥ 1 and ε : P0 → M be homomorphisms
such that

· · · → Pi+1
pi+1−−→ Pi

pi−→ · · · p2−→ P1
p1−→ P0

ε−→ M → 0

is an exact sequence. Then we call

P• := (· · · → Pi+1
pi+1−−→ Pi

pi−→ · · · p2−→ P1
p1−→ P0)

a projective resolution of M . We think of P• as a complex of A-modules: Just
set Pi = 0 and pi+1 = 0 for all i < 0.

Define

ΩP•
(M) := Ω1

P•
(M) := Ker(ε),

and let Ωi
P•

(M) = Ker(pi−1), i ≥ 2. These are called the syzygy modules of M
with respect to P•. Note that they depend on the chosen projective resolution.

End of Lecture 33

If all Pi are free modules, we call P• a free resolution of M .
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The resolution P• is a minimal projective resolution of M if the homomorphisms
Pi → Ωi

P•
(M), i ≥ 1 and also ε : P0 → M are projective covers. In this case, we call

Ωn(M) := Ωn
P•

(M)

the nth syzygy module of M . This does not depend on the chosen minimal
projective resolution.

Lemma 3.1. If

0 → U → P →M → 0

is a short exact sequence of A-modules with P projective, then U ∼= Ω(M) ⊕ P ′ for
some projective module P ′.

Proof. Exercise. �

Sometimes we are a bit sloppy when we deal with syzygy modules: If there exists
a short exact sequence 0 → U → P → M → 0 with P projective, we just write
Ω(M) = U , knowing that this is not at all well defined and depends on the choice
of P .

Lemma 3.2. For every module M there is a projective resolution.

Proof. Define the modules Pi inductively. Let ε = ε0 : P0 → M be an epimorphism
with P0 a projective module. Such an epimorphism exists, since every module is
isomorphic to a factor module of a free module. Let µ1 : Ker(ε0) → P0 be the
inclusion. Let ε1 : P1 → Ker(ε0) be an epimorphism with P1 projective, and define
p1 = µ1 ◦ ε1 : P1 → P0. Now let ε2 : P2 → Ker(ε1) be an epimorphism with P2

projective, etc.

The first row of the resulting diagram

· · · p3 // P2

ε2 ##G
GG

GG
GG

GG

p2 // P1

ε1 ##G
GG

GG
GG

GG

p1 // P0
ε // M // 0

· · ·
µ3

>>}}}}}}}}
Ker(ε1)

µ2

;;wwwwwwwww
Ker(ε0)

µ1

;;wwwwwwwww

is exact, and we get a projective resolution

· · · p3−→ P2
p2−→ P1

p1−→ P0

of Cok(p1) = M . �

Theorem 3.3. Given a diagram of homomorphisms with exact rows

· · · p3 // P2

p2 // P1

p1 // P0
ε // M //

f

��

0

· · · p′3 // P ′
2

p′2 // P ′
1

p′1 // P ′
0

ε′ // N // 0

where the Pi and P ′
i are projective. Then the following hold:
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(i) There exists a “lifting” of f , i.e. there are homomorphisms fi : Pi → P ′
i such

that

p′ifi = fi−1pi and ε′f0 = fε

for all i;
(ii) Any two liftings f• = (fi)i≥0 and f ′

• = (f ′
i)i≥0 are homotopic.

Proof. (i): The map ε′ : P ′
0 → N is an epimorphism, and the composition fε : P0 →

N is a homomorphism starting in a projective module. Thus there exists a homo-
morphism f0 : P0 → P ′

0 such that ε′f0 = fε.

We have Im(p1) = Ker(ε) and Im(p′1) = Ker(ε′). So we obtain a diagram with exact
rows of the following form:

· · · p3 // P2

p2 // P1

p1 // Im(p1) //

ef0

��

0

· · · p′3 // P ′
2

p′2 // P ′
1

p′1 // Im(p′1) // 0

The homomorphism f̃0 is obtained from f0 by restriction to Im(p1). Since P1 is
projective, and since p′1 is an epimorphism there exists a homomorphism f1 : P1 → P ′

1

such that p′1f1 = f̃0p1, and this implies p′1f1 = f0p1. Now we continue inductively
to obtain the required lifting (fi)i≥0.

(ii): Assume we have two liftings, say f• = (fi)i≥0 and f ′
• = (f ′

i)i≥0. This implies

fε = ε′f0 = ε′f ′
0

and therefore ε′(f0 − f ′
0) = 0.

Let ιi : Im(p′i) → P ′
i−1 be the inclusion and let πi : P

′
i → Im(p′i) be the obvious

projection. Thus p′i = ιi ◦ πi.

The image of f0 − f ′
0 clearly is contained in Ker(ε′) = Im(p′1). Now let s′0 : P0 →

Im(p′1) be the map defined by s′0(m) = (f0−f ′
0)(m). The map π1 is an epimorphism,

and s′0 is a map from a projective module to Im(p′1). Thus by the projectivity of P0

there exists a homomorphism s0 : P0 → P ′
1 such that π1 ◦ s0 = s′0.

We obtain the following commutative diagram:

P0

s′0{{xx
xx

xx
xx

x

f0−f ′

0
��

ε //

s0

uukkkkkkkkkkkkkkkkkkk M

0

��
P ′

1 π1

// Im(p′1) ι1
// P ′

0 ε′
// N

Now assume si−1 : Pi−1 → P ′
i is already defined such that

fi−1 − f ′
i−1 = p′isi−1 + si−2pi−1.
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We claim that p′i(fi − f ′
i − si−1pi) = 0: We have

p′i(fi − f ′
i − si−1pi) = p′ifi − p′if

′
i − p′isi−1pi

= fi−1pi − f ′
i−1pi − p′isi−1pi

= (fi−1 − f ′
i−1)pi − p′isi−1pi

= (p′isi−1 + si−2pi−1)pi − p′isi−1pi

= si−2pi−1pi

= 0

(since pi−1pi = 0).

Pi

pi //

fi

��

Pi−1

pi−1 //

fi−1

��si−1}}||
||

||
||

Pi−2

fi−2

��si−2||yy
yy

yy
yy

P ′
i p′i

// P ′
i−1

p′i−1

// P ′
i−1

Therefore

Im(fi − f ′
i − si−1pi) ⊆ Ker(p′i) = Im(p′i+1).

Let s′i : Pi → Im(p′i+1) be defined by s′i(m) = (fi − f ′
i − si−1pi)(m).

Since Pi is projective there exists a homomorphism si : Pi → P ′
i+1 such that πi+1◦si =

s′i. Thus we get a commutative diagram

Pi

fi−f ′

i−si−1pi

��s′i{{vvvvvvvvv
si

uujjjjjjjjjjjjjjjjjjjjj

P ′
i+1 πi+1

// Im(p′i+1) ιi+1

// P ′
i

Thus p′i+1si = fi − f ′
i − si−1pi and therefore fi − f ′

i = p′i+1si + si−1pi, as required.
This shows that f• − f ′

• is zero homotopic. Therefore f• = (fi)i and f ′
• = (f ′

i)i are
homotopic. �

3.2. Ext. Let

P• = (· · · pn+1−−→ Pn
pn−→ · · · p2−→ P1

p1−→ P0)

be a projective resolution of M = Cok(p1), and let N be any A-module. Define

Extn
A(M,N) := Hn(HomA(P•, N)),

the nth cohomology group of extensions of M and N . This definition does not
depend on the projective resolution we started with:

Lemma 3.4. If P• and P ′
• are projective resolutions of M , then for all modules N

we have

Hn(HomA(P•, N)) ∼= Hn(HomA(P ′
•, N)).
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Proof. Let f• = (fi)i≥0 and g• = (gi)i≥0 be liftings associated to

· · · p3 // P2

p2 // P1

p1 // P0
ε // M //

1M

��

0

· · · p′3 // P ′
2

p′2 // P ′
1

p′1 // P ′
0

ε′ // M // 0

and

· · · p′3 // P ′
2

p′2 // P ′
1

p′1 // P ′
0

ε′ // M //

1M

��

0

· · · p3 // P2
p2 // P1

p1 // P0
ε // M // 0.

By Theorem 3.3 these liftings exist and we have g•f• ∼ 1P•
and f•g• ∼ 1P ′

•
. Thus,

we get a diagram

· · · p3 // P2

s2

~~~~
~~

~~
~~

~~
~~

~~
~~

~
g2f2−1P2

��

p2 // P1

s1

��~~
~~

~~
~~

~~
~~

~~
~~

g1f1−1P1

��

p1 // P0

s0

��~~
~~

~~
~~

~~
~~

~~
~~

g0f0−1P0

��
· · · p3 // P2

p2 // P1
p1 // P0

such that gifi − 1Pi
= pi+1si + si−1pi for all i. (Again we think of P• as a complex

with Pi = 0 for all i < 0.)

Next we apply HomA(−, N) to all maps in the previous diagram and get

HomA(g•f•, N) ∼ HomA(1P•
, N).

Similarly, one can show that HomA(f•g•, N) ∼ HomA(1P ′

•
, N). Now Corollary 2.4

tells us that Hn(HomA(g•f•, N)) = Hn(HomA(1P•
, N)) and Hn(HomA(f•g•, N)) =

Hn(HomA(1P ′

•
, N)). Thus

Hn(HomA(f•, N)) : Hn(HomA(P ′
•, N)) → Hn(HomA(P•, N))

is an isomorphism. �

End of Lecture 34

3.3. Induced maps between extension groups. Let P• be a projective resolu-
tion of a module M , and let g : N → N ′ be a homomorphism. Then we obtain an
induced map

Extn
A(M, g) : Hn(HomA(P•, N)) → Hn(HomA(P•, N

′))

defined by [α] 7→ [g ◦ α]. Here α : Pn → N is a homomorphism with α ◦ pn+1 = 0.

There is also a contravariant version of this: Let f : M → M ′ be a homomorphism,
and let P• and P ′

• be projective resolutions of M and M ′, respectively. Then for any
module N we obtain an induced map

Extn
A(f,N) : Hn(HomA(P ′

•, N)) → Hn(HomA(P•, N))
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defined by [β] 7→ [β ◦ fn]. Here β : P ′
n → N is a homomorphism with β ◦ p′n+1 = 0

and fn : Pn → P ′
n is part of a lifting of f .

3.4. Some properties of extension groups. Obviously, we have Extn
A(M,N) = 0

for all n < 0.

Lemma 3.5. Ext0
A(M,N) = HomA(M,N).

Proof. The sequence P1 → P0 → M → 0 is exact. Applying HomA(−, N) yields an
exact sequence

0 → HomA(M,N) → HomA(P0, N)
HomA(p1,N)−−−−−−−→ HomA(P1, N).

By definition Ext0
A(M,N) = Ker(HomA(p1, N)) = HomA(M,N). �

Let M be a module and

0 → Ω(M)
µ1−→ P0

ε−→M → 0

a short exact sequences with P0 projective.

Lemma 3.6. Ext1
A(M,N) ∼= HomA(Ω(M), N)/{s ◦ µ1 | s : P0 → N}.

Proof. It is easy to check that HomA(Ω(M), N) ∼= Ker(HomA(p2, N)) and {s ◦ µ1 |
s : P0 → N} ∼= Im(HomA(p1, N)). �

Lemma 3.7. For all n ≥ 1 we have Extn+1
A (M,N) ∼= Extn

A(ΩM,N).

Proof. If P• = (Pi, pi)i≥0 is a projective resolution of M , then · · ·P3
p3−→ P2

p2−→ P1 is
a projective resolution of Ω(M). �

3.5. Long exact Ext-sequences. Let

0 → X → Y → Z → 0

be a short exact sequence of A-modules, and letM be any module and P• a projective
resolution of M . Then there exists an exact sequence of cocomplexes

0 → HomA(P•, X) → HomA(P•, Y ) → HomA(P•, Z) → 0.

This induces an exact sequence

0 // HomA(M,X) // HomA(M,Y ) // HomA(M,Z)

ssffffffffffffffffffffffffff

Ext1
A(M,X) // Ext1

A(M,Y ) // Ext1
A(M,Z)

ssfffffffffffffffffffffffffff

Ext2
A(M,X) // Ext2

A(M,Y ) // Ext2
A(M,Z)

ssfffffffffffffffffffffffffff

Ext3
A(M,X) // · · ·
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which is called a long exact Ext-sequence.

To obtain a “contravariant long exact Ext-sequence”, we need the following result:

Lemma 3.8 (Horseshoe Lemma). Let

0 → X
f−→ Y

g−→ Z → 0

be a short exact sequence of A-module. Then there exists a short exact sequence of
complexes

η : 0 → P ′
• → P• → P ′′

• → 0

where P ′
•, P• and P ′′

• are projective resolutions of X, Y and Z, respectively. We
also have P•

∼= P ′
• ⊕ P ′

•.

Proof. ... �

Let N be any A-module. In the situation of the above lemma, we can apply
HomA(−, N) to the exact sequence η. Since η splits, we obtain an exact sequence
of cocomplexes

0 → HomA(P ′′
• , N) → HomA(P•, N) → HomA(P ′

•, N) → 0.

Thus we get an exact sequence

0 // HomA(Z,N) // HomA(Y,N) // HomA(X,N)

ssfffffffffffffffffffffffff

Ext1
A(Z,N) // Ext1

A(Y,N) // Ext1
A(X,N)

ssffffffffffffffffffffffffff

Ext2
A(Z,N) // Ext2

A(Y,N) // Ext2
A(X,N)

ssffffffffffffffffffffffffff

Ext3
A(Z,N) // · · ·

which is again called a (contravariant) long exact Ext-sequence.

3.6. Short exact sequences and the first extension group. Let M and N be
modules, and let

P• = (· · · pn+1−→ Pn
pn−→ · · · p2−→ P1

p1−→ P0)

be a projective resolution of M = Cok(p1). Let P0
ε−→ M be the cokernel map of

p1, i.e.

P1
p1−→ P0

ε−→ M −→ 0

is an exact sequence.

We have

Hn(HomA(P•, N)) := Ker(HomA(pn+1, N))/ Im(HomA(pn, N)).
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Let [α] := α + Im(HomA(pn, N)) be the residue class of some homomorphism
α : Pn → N with α ◦ pn+1 = 0.

Clearly, we have

Im(HomA(pn, N)) = {s ◦ pn | s : Pn−1 → N} ⊆ HomA(Pn, N).

For an exact sequence

0 → N
f−→ E

g−→M → 0

let
ψ(f, g)

be the set of homomorphisms α : P1 → N such that there exists some β : P0 → E
with f ◦ α = β ◦ p1 and g ◦ β = ε.

P2

p2 // P1

p1 //

α

��

P0
ε //

β

���
�
� M // 0

0 // N
f // E

g // M // 0

Observe that ψ(f, g) ⊆ HomA(P1, N).

Lemma 3.9. The set ψ(f, g) is a cohomology class, i.e. it is the residue class of
some element α ∈ Ker(HomA(p2, N)) modulo Im(HomA(p1, N)).

Proof. (a): If α ∈ ψ(f, g), then α ∈ Ker(HomA(p2, N)):

We have
f ◦ α ◦ p2 = β ◦ p1 ◦ p2 = 0.

Since f is a monomorphism, this implies α ◦ p2 = 0.

(b): Next, let α, α′ ∈ ψ(f, g). We have to show that α− α′ ∈ Im(HomA(p1, N)):

There exist β and β ′ with g ◦β = ε = g ◦β ′, f ◦α = β ◦ p1 and f ◦α′ = β ′ ◦ p1. This
implies g(β − β ′) = 0. Since P0 is projective and Im(f) = Ker(g), there exists some
s : P0 → N with f ◦ s = β − β ′. We get

f(α− α′) = (β − β ′)p1 = f ◦ s ◦ p1.

Since f is a monomorphism, this implies α− α′ = s ◦ p1. In other words, α − α′ ∈
Im(HomA(p1, N)).

(c): Again, let α ∈ ψ(f, g), and let γ ∈ Im(HomA(p1, N)). We claim that α + γ ∈
ψ(f, g):

Clearly, γ = s ◦ p1 for some homomorphism s : P0 → N . There exists some β with
g ◦ β = ε and f ◦ α = β ◦ p1. This implies

f(α+ γ) = βp1 + fsp1 = (β + fs)p1.

Set β ′ := β + fs. We get

gβ ′ = g(β + fs) = gβ + gfs = gβ = ε.

Here we used that g ◦ f = 0. Thus α + γ ∈ ψ(f, g). �
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End of Lecture 35

Theorem 3.10. The map

ψ : {0 → N → ⋆→M → 0}/∼ −→ Ext1
A(M,N)

(f, g) 7→ ψ(f, g)

defines a bijection between the set of equivalence classes of short exact sequences

0 → N
f−→ ⋆

g−→ M → 0

and Ext1
A(M,N).

Proof. First we show that ψ is surjective: Let α : P1 → N be a homomorphism with
α ◦ p2 = 0. Let

P2
p2−→ P1

p1−→ P0
ε−→M → 0

be a projective presentation of M . Set Ω(M) := Ker(ε).

Thus p1 = µ1 ◦ ε1 where ε1 : P1 → Ω(M) is the projection, and µ1 : Ω(M) → P0 is
the inclusion. Since α ◦ p2 = 0, there exists some α′ : Ω(M) → N with α = α′ ◦ ε1.
Let (f, g) := α′

∗(µ1, ε) be the short exact sequence induced by α′. Thus we have a
commutative diagram

P2

p2 // P1

α

��

p1 //

ε1

��

P0
ε // M // 0

0 // Ω(M)
µ1 //

α′

��

P0

β

��

ε // M // 0

0 // N
f // E

g // M // 0

This implies α ∈ ψ(f, g).

Next, we will show that ψ is injective: Assume that ψ(f1, g1) = ψ(f2, g2) for two
short exact sequence (f1, g1) and (f2, g2), and let α ∈ ψ(f1, g1). Let α′ : Ω(M) → N
and µ1 : Ω(M) → P0 be as before. the restriction of α to Ω(M) and let p′′1 : Ω(M) →
P0 be the obvious inclusion.

We obtain a diagram

0 // Ω(M)
µ1 //

α′

��

P0

β1

��
β2

��

ε // M // 0

0 // N
f1 // E1

γ

���
�
�

g1 // M // 0

0 // N
f2 // E2

g2 // M // 0

with exact rows and where all squares made from solid arrows commute.

By the universal property of the pushout there is a homomorphism γ : E1 → E2

with γ ◦ f1 = f2 and γ ◦ β1 = β2. Now as in the proof of Skript 1, Lemma 10.10
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we also get g2 ◦ γ = g1. Thus the sequences (f1, g1) and (f2, g2) are equivalent. This
finishes the proof. �

Let 0 → X
f−→ Y

g−→ Z → 0 be a short exact sequence, and let M and N be modules.
Then the connecting homomorphism

HomA(M,Z) → Ext1
A(M,X)

is given by h 7→ [η] where η is the short exact sequence h∗(f, g) induced by h via a
pullback.

η : 0 // X // ⋆

���
�
�

// M //

h
��

0

0 // X
f // Y

g // Z // 0

Similarly, the connecting homomorphism

HomA(X,N) → Ext1
A(Z,N)

is given by h 7→ [η] and where η is the short exact sequence h∗(f, g) induced by h
via a pushout.

0 // X

h
��

f // Y

���
�
�

g // Z // 0

η : 0 // N // ⋆ // Z // 0

If (f, g) is a split short exact sequence, then ψ(f, g) = 0 + Im(HomA(p1, N)) is the
zero element in Ext1

A(M,N): Obviously, the diagram

P1

p1 //

0

���
�
�

P0
ε //

[ 0
ε ]

���
�
� M // 0

0 // N
[ 1
0 ]
// N ⊕M

[ 0 1 ]
// M // 0

is commutative. This implies

ψ([ 1
0 ] , [ 0 1 ]) = 0 + Im(HomA(p1, N)).

In fact, Ext1
A(M,N) is a K-vector space and ψ is an isomorphism of K-vector spaces.

So we obtain the following fact:

Lemma 3.11. For an A-module M we have Ext1
A(M,M) = 0 if and only if each

short exact sequence

0 → M → E →M → 0

splits. In other words, E ∼= M ⊕M .
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3.7. The vector space structure on the first extension group. Let

ηM : 0 → Ω(M) → P0 →M → 0

be a short exact sequence with P0 projective. For i = 1, 2 let

ηi : 0 → N
fi−→ Ei

gi−→ M → 0

be short exact sequences.

Take the direct sum η1⊕η2 and construct the pullback along the diagonal embedding
M →M ⊕M . This yields a short exact sequence η′.

We know that every short exact sequence 0 → X → ⋆→M → 0 is induced by ηM .
Thus we get a homomorphism [ α1

α2 ] : Ω(M) → N ⊕N such that the diagram

ηM : 0 // Ω(M)
u //

[α1
α2 ]

��

P0
ε //

��

M // 0

η′ : 0 // N ⊕N // E ′ //

��

M //

[ 1
1 ]

��

0

η1 ⊕ η2 : 0 // N ⊕N h
f1 0
0 f2

i// E1 ⊕E2h
g1 0
0 g2

i// M ⊕M // 0

commutes. Taking the pushout of η′ along [1, 1] : N ⊕N → N we get the following
commutative diagram:

ηM : 0 // Ω(M)
u //

[α1
α2 ]

��

P0
ε //

��

M // 0

η′ : 0 // N ⊕N //

[1,1]

��

E ′ //

��

M // 0

η′′ : 0 // N // E ′′ // M // 0

In other words,

η′ = [ α1
α2 ]∗(ηM),

η′′ = [1, 1]∗(η
′).

This implies η′′ = (α1 + α2)∗(ηM). Define

η1 + η2 := η′′.

Note that there exists some βi, i = 1, 2 such that the diagram

ηM : 0 // Ω(M)
u //

αi

��

P0

βi

��

ε // M // 0

ηi : 0 // N
fi // Ei

gi // M // 0

commutes. Thus ηi = (αi)∗(ηM).
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Similarly, let η : 0 → N → E → M → 0 be a short exact sequence. For λ ∈ K let
Let η′ := (λ·)∗(η) be the short exact sequence induced by the multiplication map
with λ. We also know that there exists some α : Ω(M) → N which induces η. Thus
we obtain a commutative diagram

ηM : 0 // Ω(M) //

α

��

P0
//

��

M // 0

η : 0 // N //

λ·
��

E //

��

M // 0

η′ : 0 // N // E ′ // M // 0

Define λη := η′.

Thus, we defined an addition and a scalar multiplication on the set of equivalence
classes of short exact sequences. We leave it as an (easy) exercice to show that this
really defines a K-vector space structure on Ext1

A(M,N).

————————————————————————————-

4. Injective modules

A module I is called injective if the following is satisfied: For any monomor-
phism f : X → Y , and any homomorphism h : X → I there exists a homomorphism
g : Y → I such that gf = h.

Y
g

���
�

�
�

I X
h

oo

f

OO

Lemma 4.1. The following are equivalent:

(i) I is injective;
(ii) The functor HomA(−, I) is exact;
(iii) Every monomorphism I → N splits;
(iv) For all A-modules M we have Ext1

A(M, I) = 0.

Proof. (i) ⇐⇒ (ii): By (i) we know that for all monomorphisms f : X → Y
the map HomA(f, I) : HomA(Y, I) → HomA(X, I) is surjective. This implies that
HomA(−, I) is an exact contravariant functor. The converse is also true.
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(i) =⇒ (iii): Let f : I → N be a monomorphism. Thus there exists some g : N → I
such that the diagram

N
g

���
�

�
�

I I
1I

oo

f

OO

commutes. Thus f is a split monomorphism.

(iii) =⇒ (i): Let f : X → Y be a monomorphism, and let h : X → I be an arbitrary
homomorphism. Taking the pushout along h we obtain a commutative diagram

0 // X
f //

h

��

Y //

h′

��

Cok(f) // 0

0 // I
f ′

// E // Cok(f) // 0

with exact rows. By (iii) we know that f ′ is a split monomorphism. Thus there
exists some f ′′ : E → I with f ′′ ◦ f ′ = 1I . Observe that Im(h′ ◦ f) ⊆ Im(f ′). Set
g := f ′′ ◦ h′. This implies g ◦ f = h. In other words, I is injective.

(iii) ⇐⇒ (iv): We have Ext1
A(X, I) = 0 if and only if each short exact sequence

0 → I → E → X → 0 splits. This is obviously equivalent to (iii). �

Lemma 4.2. For an algebra A the following are equivalent:

(i) A is semisimple;
(ii) Every A-module is projective;
(iii) Every A-module is injective.

Proof. Recall that A is semisimple if and only if all A-modules are semisimple. A
module M is semisimple if and only if every submodule of M is a direct summand.
Thus A is semisimple if and only if each short exact sequence

0 → X → Y → Z → 0

of A-modules splits. Now the lemma follows from the basic properties of projective
and injective modules. �

For any left A-module AM let D(AM) = HomK(AM,K) be the dual module of

AM . This is a right A-module, or equivalently, a left Aop-module: For α ∈ D(AM),
a ∈ Aop and x ∈ AM define (aα)(x) := α(ax). It follows that ((ab)α)(x)α(abx) =
(aα)(bx) = (b(aα))(x). Thus (b ⋆ a)α = (ab)α = b(aα) for all x ∈M and a, b ∈ A.

Similarly, let MA now be a right A-module. Then D(MA) becomes an A-module
as follows: For α ∈ D(MA) and a ∈ A set (aα)(x) := α(xa). Thus we have
((ab)α)(x) = α(xab) = (bα)(xa) = (a(bα))(x) for all x ∈ M and a, b ∈ A.

Lemma 4.3. The A-module D(AA) = D(AopA) is injective.
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Proof. Let f : X → Y be a monomorphism of A-modules, and let

e : HomK(AA, K) → K

be the map defined by α 7→ α(1). Clearly, e is K-linear, but in general it will not
be A-linear. Let h : X → HomK(AA, K) be a homomorphism of A-modules.

Let us now just think of K-linear maps: There exists a K-linear map e′ : Y → K
such that e′ ◦ f = e ◦ h. Define a map h′ : Y → HomK(AA, K) by h′(y)(a) := e′(ay)
for all y ∈ Y and a ∈ A.

X

f

��

h // HomA(AA, K)
e // K

Y

h′

88q
q

qq
qq

e′

44hhhhhhhhhhhhhhhhhhhhhhhhhhh

It is easy to see that h′ is K-linear. We want to show that h′ is A-linear. (In other
words, h′ is a homomorphism of A-modules.)

For y ∈ Y and a, b ∈ A we have h′(by)(a) = e′(aby). Furthermore, (bh′(y))(a) =
h′(y)(ab) = e′(aby). This finishes the proof. �

Lemma 4.4. There are natural isomorphisms

HomA

(
−,
∏

i∈I

Mi

)
∼=
∏

i∈I

HomA(−,Mi)

and

HomA

(
⊕

i∈I

Mi,−
)

∼=
∏

i∈I

HomA(Mi,−).

Proof. Exercise. �

Lemma 4.5. The following hold:

(i) Direct summands of injective modules are injective;
(ii) Direct products of injective modules are injective;
(iii) Finite direct sums of injective modules are injective.

Proof. Let I = I1 ⊕ I2 be a direct sum decomposition of an injective A-module
I, and let f : X → Y be a monomorphism. If h : X → I1 is a homomorphism,
then [ h

0 ] : X → I1 ⊕ I2 is a homomorphism, and since I is injective, we get some
g = [ g1

g2 ] : Y → I1 ⊕ I2 such that

g ◦ f =
[

g1f
g2f

]
◦ f = [ h

0 ] .

Thus g1 ◦ f = h and therefore I1 is injective. This proves (i).

Let Ii, i ∈ I be injective A-modules, let f : X → Y be a monomorphism, and
suppose that h : X → ∏

i∈I Ii is any homomorphism. Clearly, h = (hi)i∈I where
hi is obtained by composing h with the obvious projection

∏
i∈I Ii → Ii. Since
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Ii is injective, there exists a homomorphism gi : Y → Ii with gi ◦ f = hi. Set
g := (gi)i∈I : Y → ∏

i∈I Ii. It follows that g ◦ f = h. This proves (ii).

The statement (iii) follows obviously form (ii). �

Warning: Infinite direct sums of injective modules are often not injective. The
reason is that in general we have

⊕

i∈I

HomA(−,Mi) 6∼=
⊕

i∈I

HomA(Mi,−) 6∼= HomA

(
⊕

i∈I

Mi,−
)
.

Lemma 4.6. If PA is a projective Aop-module, then D(PA) is an injective A-module.

Proof. First assume that PA =
⊕

i∈I AA is a free Aop-module. We know already by
Lemma 4.3 that D(AA) is an injective A-module. By Lemma 4.4 we have

D(PA) = HomK

(
⊕

i∈I

AA, K

)
∼=
∏

i∈I

HomK(AA, K) =
∏

i∈I

D(AA).

Now Lemma 4.5 (ii) implies that D(PA) is projective. Any projective module is
a direct summand of a free module. Thus Lemma 4.5 (i) yields that D(PA) is an
injective A-module for all projective Aop-module PA. �

Lemma 4.7. Every A-module can be embedded into an injective A-module.

Proof. Let AM be an A-module. There exists a projective Aop-module PA and
an epimorphism PA → D(AM). Applying the duality D = HomK(−, K) gives a
monomorphism DD(AM) → D(PA). Lemma 4.6 says that D(PA) is an injective
A-module. It is also clear that there exists a monomorphism AM → DD(AM).
This finishes the proof. �

One can now define injective resolutions, and develop Homological Algebra with
injective instead of projective modules.

Recall that a submodule U of a module M is called large if for any non-zero sub-
module V of M the intersection U ∩ V is non-zero.

A homomorphism f : M → I is called an injective envelope if the following hold:

(i) I is injective;
(ii) f is a monomorphism;
(iii) f(M) is a large submodule of I.

End of Lecture 36

Lemma 4.8. Let U1 and U2 be large submodules of M1 and M2, respectively. Then
U1 ⊕ U2 is large in M1 ⊕M2.
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Proof. Let W be a non-zero submodule of M1 ⊕M2. For i = 1, 2 let πi : M1 ⊕M2 →
Mi be the obvious projection. Without loss of generality assume π1(W ) 6= 0. Since
U1 is large in M1 and π1(W ) is a non-zero submodule of M1, there exists some
w = (w1, w2) ∈ W with w1 6= 0 and w1 ∈ U1. If w2 = 0, then w ∈ (U1 ⊕ U2) ∩W .
If w2 6= 0, then we look at the submodule Aw2 of U2. Again there has to be some
a ∈ A with 0 6= aw2 ∈ U2. This implies 0 6= (aw1, aw2) ∈ (U1 ⊕ U2) ∩W . �

Lemma 4.9. Let I be an injective module, and let U and V be submodules of I
such that U ∩ V = 0. Assume that U and V are maximal with this property (i.e.
if U ⊆ U ′ with U ′ ∩ V = 0, then U = U ′, and if V ⊆ V ′ with U ∩ V ′ = 0, then
V = V ′). Then I = U ⊕ V .

Proof. It is easy to check that the map

f : I → I/U ⊕ I/V

defined by m 7→ (m+ U,m+ V ) is a monomorphism: Namely, m ∈ Ker(f) implies
m ∈ U ∩ V = 0.

There is an embedding (U + V )/U → I/U . We claim that (U + V )/U is large in
I/U : Let U ′/U be a submodule of I/U (thus U ⊆ U ′ ⊆ I) with

(U + V )/U ∩ (U ′/U) = 0 = U/U.

In other words, (U + V ) ∩ U ′ = U + (V ∩ U ′) = U . This implies (V ∩ U ′) ⊆ U and
(obviously) (V ∩U ′) ⊆ V . Thus V ∩U ′ = 0. By the maximality of U we get U = U ′

and therefore U ′/U = 0.

Similarly one shows that (U + V )/V is a large submodule of I/V .

We get

(U + V )/U ⊕ (U + V )/V ∼= V ⊕ U ⊆M ⊆M/U ⊕M/V.

By Lemma 4.8 we know that M is large in M/U ⊕M/V . But M is injective and
therefore a direct summand of M/U ⊕M/V . Thus M ⊕C = M/U ⊕M/V for some
C. Since M is large, we get C = 0. So M = M/U ⊕M/V . By the maximality of U
and V we get V = M/U and U = M/V and therefore U ⊕ V = M . �

The dual statement for projective modules is also true:

Lemma 4.10. Let P be a projective module, and let U and V be submodules of P
such that U + V = P . Assume that U and V are minimal with this property (i.e.
if U ′ ⊆ U with U ′ + V = P , then U = U ′, and if V ′ ⊆ V with U + V ′ = P , then
V = V ′). Then P = U ⊕ V .

Lemma 4.11. Let U be a submodule of a module M . Then there exists a submodule
V of M which is maximal with the property U ∩ V = 0.

Proof. Let

V := {W ⊆M | U ∩W = 0}.
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Take a chain (Vi)i∈J in V. (Thus for all Vi and Vj we have Vi ⊆ Vj or Vj ⊆ Vi.) Set
V =

⋃
i Vi. We get

U ∩ V = U ∩
(
⋃

i

Vi

)
=
⋃

i

(U ∩ Vi) = 0.

Now the claim follows from Zorn’s Lemma. �

Warning: For a submodule U of a module M there does not necessarily exist a
minimal V such that U + V = M .

Example: Let M = K[T ] and U = (T ). Then for each n ≥ 1 we have (T ) + (T +
1)n = M .

Theorem 4.12. Every A-module has an injective envelope.

Proof. Let X be an A-module, and let X → I be a monomorphism with I injective.
Let V be a submodule of I with X ∩ V = 0 and we assume that V is maximal with
this property. Such a V exists by the previous lemma.

Next, let
U := {U ⊆ I | U ∩ V = 0 and X ⊆ U}.

Again, by Zorn’s Lemma we obtain a submodule U of I which is maximal with
U ∩ V = 0 and X ⊆ U .

Thus, U and V are as in the assumptions of the previous lemma, and we obtain
I = U ⊕ V and X ⊆ U . We know that U is injective, and we have our embedding
X → U .

We claim that X is a large submodule of U :

Let U ′ be a submodule of U with X ∩ U ′ = 0. We have to show that U ′ = 0. We
have X ∩ (U ′ ⊕ V ) = 0: If x = u′ + v, then x − u′ = v and therefore v = 0. Thus
x = u′ ∈ X∩U ′ = 0. By the maximality of V we have U ′⊕V = V . Thus U ′ = 0. �

Warning: Projective covers do not exist in general.

If X is an A-module, we denote its injective hull by I(X).

Lemma 4.13. Injective envelopes are uniquely determined up to isomorphism.

Proof. Exercise. �

Recall that a module M is uniform, if for all non-zero submodules U and V of M
we have U ∩ V 6= 0.

Lemma 4.14. Let I be an indecomposable injective A-module. Then the following
hold:

(i) I is uniform (i.e. if U and V are non-zero submodules of I, then U ∩V 6= 0);
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(ii) Each injective endomorphism of I is an automorphism;
(iii) If f, g ∈ EndA(I) are both not invertible, then f + g is not invertible;
(iv) EndA(I) is a local ring.

Proof. (i): Let U and V be non-zero submodules of I. Assume U ∩ V = 0. Let
U ′ and V ′ be submodules which are maximal with the properties U ⊆ U ′, V ⊆ V ′

and U ′ ∩ V ′ = 0. Lemma 4.9 implies that I = U ′ ⊕ V ′. But I is indecomposable, a
contradiction.

(ii): Let f : I → I be an injective homomorphism. Since I is injective, f is a split
monomorphism. Thus I = f(I)⊕Cok(f). Since I is indecomposable and f(I) 6= 0,
we get Cok(f) = 0. Thus f is also surjective and therefore an automorphism.

(iii): Let f and g be non-invertible elements in EndA(I). by (ii) we know that f and
g are not injective. Thus Ker(f) 6= 0 6= Ker(g). By (i) we get Ker(f)∩Ker(g) 6= 0.
This implies Ker(f + g) 6= 0.

We know already from the theory of local rings that (iii) and (iv) are equivalent
statements. �

injective resolution

...

minimal injective resolution

...

Theorem 4.15. Let I• be an injective resolution of an A-module N . Then for any
A-module M we have an isomorphism

Ext1
A(M,N) ∼= Hn(HomA(M, I•)).

which is “natural in M and N”.

Proof. Exercise. �

————————————————————————————-

5. Digression: Homological dimensions

5.1. Projective, injective and global dimension. Let A be a K-algebra. For
an A-module M let proj. dim(M) be the minimal j ≥ 0 such that there exists a
projective resolution (Pi, di)i of M with Pj = 0, if such a minimum exists, and
define proj. dim(M) = ∞, otherwise.
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We call proj. dim(M) the projective dimension of M . The global dimension of
A is by definition

gl. dim(A) = sup{proj. dim(M) |M ∈ mod(A)}.
Here sup denote the supremum of a set.

It often happens that the global dimension of an algebra A is infinite, for example
if we take A = K[X]/(X2). One proves this by constructing the minimal projective
resolution of the simple A-module S. Inductively one shows that Ωi(S) ∼= S for all
i ≥ 1.

Proposition 5.1. Assume that A is finite-dimensional. Then we have

gl. dim(A) = max{proj. dim(S) | S a simple A-module}.

Proof. Use the Horseshoe Lemma. �

Similarly, let inj. dim(M) be the minimal j ≥ 0 such that there exists an injec-
tive resolution (Ii, di)i of M with Ij = 0, if such a minimum exists, and define
inj. dim(M) = ∞, otherwise.

We call inj. dim(M) the injective dimension of M .

Theorem 5.2 (No loop conjecture). Let A be a finite-dimensional K-algebra. If
Ext1

A(S, S) 6= 0 for some simple A-module S, then gl. dim(A) = ∞.

Conjecture 5.3 (Strong no loop conjecture). Let A be a finite-dimensional K-
algebra. If Ext1

A(S, S) 6= 0 for some simple A-module S, then proj. dim(S) = ∞.

5.2. Hereditary algebras. A K-algebra A is hereditary if gl. dim(A) ≤ 1.

5.3. Selfinjective algebras.

5.4. Finitistic dimension. For an algebra A let

fin.dim(A) := sup{proj. dim(M) |M ∈ mod(A), proj. dim(M) <∞}
be the finitistic dimension of A. The following conjecture is unsolved for several
decades and remains wide open:

Conjecture 5.4 (Finitistic dimension conjecture). If A is finite-dimensional, then
fin.dim(A) <∞.

5.5. Representation dimension. The representation dimension of a finite-
dimensional K-algebra A is the infimum over all gl. dim(C) where C is a generator-
cogenerator of A, i.e. each indecomposable projective module and each indecom-
posable injective module occurs (up to isomorphism) as a direct summand of C.

Theorem 5.5 (Auslander). For a finite-dimensionalK-algebra A the following hold:

(i) rep.dim(A) = 0 if and only if A is semisimple;
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(ii) rep.dim(A) 6= 1;
(iii) rep.dim(A) = 2 if and only if A is representation-finite, but not semisimple.

Theorem 5.6 (Iyama). If A is a finite-dimensional algebra, then rep.dim(A) <∞.

Theorem 5.7 (Rouquier). For each n ≥ 3 there exists a finite-dimensional algebra
A with rep.dim(A) = n.

5.6. Dominant dimension. dominant dimension of A

5.7. Auslander algebras. Let A be a finite-dimensional representation-finite K-
algebra. The Auslander algebra of A is defined as EndA(M) where M is the
direct sum of a complete set of representatives of isomorphism classes of the inde-
composable A-modules.

Theorem 5.8 (Auslander). ...

5.8. Gorenstein algebras.

————————————————————————————-

6. Tensor products, adjunction formulas and Tor-functors

6.1. Tensor products of modules. Let A be a K-algebra. Let X be an Aop-
module, and let Y be an A-module. Recall that X can be seen as a right A-module
as well. For x ∈ X and a ∈ A we denote the action of Aop and A onX by a⋆x = x·a.

By V (X, Y ) we denote a K-vector space with basis

X × Y = {(x, y) | x ∈ X, y ∈ Y }.

Let R(X, Y ) be the subspace of V (X, Y ) which is generated by all vectors of the
form

(1) ((x+ x′), y) − (x, y) − (x′, y),
(2) (x, (y + y′)) − (x, y) − (x, y′),
(3) (xa, y) − (x, ay),
(4) λ(x, y) − (λx, y).

where x ∈ X, y ∈ Y , a ∈ A and λ ∈ K. The vector space

X ⊗A Y := V (X, Y )/R(X, Y )

is the tensor product of XA and AY . The elements z in X ⊗A Y are of the form
m∑

i=1

xi ⊗ yi,

where x⊗ y := (x, y)+R(X, Y ). But note that this expression of z is in general not
unique.
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End of Lecture 37

Warning
From here on there are only fragments, incomplete proofs or no proofs

at all, typos, wrong statements and other horrible things...

A map β : X × Y → V where V is a vector space is called balanced if for all
x, x′ ∈ X, y, y′ ∈ Y , a ∈ A and λ ∈ K the following hold:

(1) β(x+ x′, y) = β(x, y) + β(x′, y),
(2) β(x, y + y′) = β(x, y) + β(x, y′),
(3) β(xa, y) = β(x, ay),
(4) β(λx, y) = λβ(x, y).

In particular, a balanced map is K-bilinear.

For example, the map
ω : X × Y → X ⊗A Y

defined by (x, y) 7→ x⊗y is balanced. This map has the following universal property:

Lemma 6.1. For each balanced map β : X × Y → V there exists a unique K-linear
map γ : X ⊗A Y → V with β = γ ◦ ω.

X × Y

β

��

ω // X ⊗A Y

γ
xxr r r

r r
r

V

Furthermore, this property characterizes X ⊗A Y up to isomorphism.

Proof. We can extend β and ω (uniquely) to K-linear maps β ′ : V (X, Y ) → V and
ω′ : V (X, Y ) → X ⊗A Y , respectively. We have R(X, Y ) ⊆ Ker(β ′), since β is
balanced. Let ι : R(X, Y ) → Ker(β ′) be the inclusion map. Now it follows easily
that there is a unique K-linear map γ : X⊗A Y → V with β = γ ◦ω and β ′ = γ ◦ω′.

0 // R(X, Y ) //

ι

��

V (X, Y )
ω′

// X ⊗A Y //

γ

���
�
� 0

0 // Ker(β ′) // V (X, Y )
β′

// V // 0

�

Let A,B,C be K-algebras, and let AXB be an A-Bop-bimodule and BYC a B-Cop-
bimodule. We claim that X⊗B Y is an A-Cop-bimodule with the bimodule structure
defined by

a(x⊗ y) = (ax) ⊗ y,

(x⊗ y)c = x⊗ (yc)
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where a ∈ A, c ∈ C and x ⊗ y ∈ X ⊗B Y : One has to check that everything is
well defined. It is clear that we obtain an A-module structure and a Cop-module
structure. Furthermore, we have

(a(x⊗ y))c = ((ax) ⊗ y)c = (ax) ⊗ (yc) = a((x⊗ y)c).

Thus we get a bimodule structure on X ⊗B Y .

Lemma 6.2. For any A-module M , we have

AAA ⊗A M ∼= M

as A-modules.

Proof. The A-module homomorphisms η : A⊗AM →M , a⊗m 7→ am and φ : M →
A⊗A M , m 7→ 1 ⊗m are mutual inverses. �

Let f : XA → X ′
A and g : AY → AY

′ be homomorphisms. Then the map β : X×Y →
X ′ ⊗A Y

′ defined by (x, y) 7→ f(x) ⊗ g(y) is balanced. Thus there exists a unique
K-linear map

f ⊗ g : X ⊗A Y → X ′ ⊗A Y
′

with (f ⊗ g)(x⊗ y) = f(x) ⊗ g(y).

X × Y

β
��

ω // X ⊗A Y

f⊗gxxq q q q q q

X ′ ⊗A Y
′

Now let f = 1X , and let g be as above. We obtain a K-linear map

X ⊗ g := 1X ⊗ g : X ⊗A Y → X ⊗A Y
′

Lemma 6.3. (i) For any right A-module XA we get an additive right exact
functor

X ⊗A − : Mod(A) → Mod(K)

defined by Y 7→ X ⊗A Y and g 7→ X ⊗ g.
(ii) For any A-module AY we get an additive right exact functor

−⊗A Y : Mod(A) → Mod(K)

defined by X 7→ X ⊗A Y and f 7→ f ⊗ Y .

Proof. We just prove (i) and leave (ii) as an exercise. Clearly, X ⊗A − is a functor:
We have X ⊗A (g ◦ f) = (X ⊗A g) ◦ (X ⊗A f). In particular, X ⊗A 1Y = 1X⊗AY .

Additivity:

(X ⊗A (f + g))(x⊗ y) = x⊗ (f + g)(y)

= x⊗ (f(y) + g(y))

= (x⊗ f(y)) + (x⊗ g(y))

= (X ⊗ f)(x⊗ y) + (X ⊗ g)(x⊗ y).
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Right exactness:

...

�

Lemma 6.4. (i) Let XA be a right A-module. If (Yi)i is a family of A-modules,
then

X ⊗A

(
⊕

i

Yi

)
∼=
⊕

i

(X ⊗A Yi)

where an isomorphism is defined by x⊗ (yi)i 7→ (x⊗ yi)i.
(ii) Let AY be an A-module. If (Xi)i is a family of right A-modules, then

(
⊕

i

Xi

)
⊗A Y ∼=

⊕

i

(Xi ⊗A Y )

where an isomorphism is defined by (xi)i ⊗ y 7→ (xi ⊗ y)i.

Proof. Again, we just prove (i).

...

�

Corollary 6.5. If PA is a projective right A-module and AQ a projective left A-
module, then

P ⊗A − : Mod(A) → Mod(K)

and
−⊗A Q : Mod(Aop) → Mod(K)

are exact functor.

Proof. We know that A ⊗A − is exact. It follows that
⊕

iA ⊗A − is exact. Since
PA ⊕ QA =

⊕
iA for some QA, we use the additivity of ⊗ and get that PA ⊗ − is

exact as well. The exactness of −⊗A Q is proved in the same way. �

Lemma 6.6. Let A be a finite-dimensional algebra, and let XA be a right A-module.
If X ⊗A − is exact, then XA is projective.

Proof. Exercise. �

End of Lecture 38

6.2. Adjoint functors. Let A and B be categories, and let F : A → B and G : B →
A be functors. If

HomB(F (X), Y )) ∼= HomA(X,G(Y ))

for all X ∈ A and Y ∈ B and if this isomorphism is “natural”, then F and G are
adjoint functors. One calls F the left adjoint of G, and G is the right adjoint
of F .
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Theorem 6.7 (Adjunction formula). Let A and B be K-algebras, let AXB be an A-
Bop-bimodule, BY a B-module and AZ an A-module. Then there is an isomorphism

Adj := η : HomA(X ⊗B Y, Z) → HomB(Y,HomA(X,Z))

where η is defined by η(f)(y)(x) := f(x⊗y). Furthermore, η is “natural in X, Y, Z”.

Proof. ...

�

6.3. Tor. We will not need any Tor-functors, but at least we will define them and
acknowledge their existence.

Let P• be a projective resolution of AY , and let XA be a right A-module. This yields
a complex

· · · → X ⊗A P1 → X ⊗A P0 → X ⊗A 0 → · · ·
For n ∈ Z define

TorA
n (X, Y ) := Hn(X ⊗A P•).

Let P• be a projective resolution of a right A-module XA. Then one can show that
for all A-modules AY we have

TorA
n (X, Y ) ∼= Hn(P• ⊗A Y ).

Similarly as for Ext1
A(−,−) one can prove that TorA

n (X, Y ) does not depend on the
choice of the projective resolution of Y .

The following hold:

(i) TorA
n (X, Y ) = 0 for all n < 0;

(ii) TorA
0 (X, Y ) = X ⊗A Y ;

(iii) If AP is projective, then TorA
n (X,P ) = 0 for all n ≥ 1.

(iv)

Again, similarly as for Ext1
A(−,−) we get long exact Tor-sequences:

(i) Let
η : 0 → X ′

A → XA → X ′′
A → 0

be a short exact sequence of right A-modules. For every A-module AY this induces
an exact sequence

· · · // TorA
2 (X ′′, Y )

ssgggggggggggggggggggggggg

TorA
1 (X ′, Y ) // TorA

1 (X, Y ) // TorA
1 (X ′′, Y )

ssgggggggggggggggggggggggggg

X ′ ⊗A Y // X ⊗A Y // X ′′ ⊗A Y // 0
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(ii) Let
η : 0 → AY

′ → AY → AY
′′ → 0

be a short exact sequence of A-modules. For every right A-module XA this induces
an exact sequence

· · · // TorA
2 (X, Y ′′)

ssgggggggggggggggggggggggg

TorA
1 (X, Y ′) // TorA

1 (X, Y ) // TorA
1 (X, Y ′′)

ssgggggggggggggggggggggggggg

X ⊗A Y
′ // X ⊗A Y // X ⊗A Y

′′ // 0

Note that the bifunctor TorA
n (−,−) is covariant in both arguments. This is not true

for Extn
A(−,−).

Theorem 6.8 (General adjunction formula). Let A and B be K-algebras, let AXB

be an A-Bop-bimodule, BY a B-module and AZ an A-module. If AZ is injective,
then there is an isomorphism

HomA(TorB
n (X, Y ), Z) ∼= Extn

B(Y,HomA(X,Z))

for all n ≥ 1.

***********************************************************************
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Part 2. Homological Algebra II: Auslander-Reiten Theory

7. Auslander-Reiten Theory

7.1. The transpose of a module. ...

7.2. The Auslander-Reiten formula. An A-module M is finitely presented if
there exists an exact sequence

P1
p−→ P0

q−→M → 0

with P0 and P1 are finitely generated projective A-modules. Our aim is to prove the
following result:

Theorem 7.1 (Auslander-Reiten formula). For a finitely presented A-module M
we have

Ext1
A(N, τ(M)) ∼= DHomA(M,N).

Before we can prove Theorem 7.1 we need some preparatory results:

Lemma 7.2. Let X → Y
p−→ Z → 0 be exact, and let

X //

ξx

��

Y
p //

ξy

��

Z //

ξ
��

0

X ′
f // Y ′

g // Z ′

be a commutative diagram where ξx and ξy are isomorphisms and Im(f) ⊆ Ker(g).
Then

Ker(g)/ Im(f) ∼= Ker(ξ).

Proof. ...

�

End of Lecture 39

Lemma 7.3. Let f : X → Y be a homomorphism, and let u : Y → Z be a monomor-
phism. Then

Ker(HomA(N, f)) = Ker(HomA(N, u ◦ f)).

Proof. Let h : N → X be a homomorphism. Then h ∈ Ker(HomA(N, f)) if and only
if f ◦ h = 0. This is equivalent to u ◦ f ◦ h = 0, since u is injective. Furthermore
u ◦ f ◦ h = 0 if and only if h ∈ Ker(HomA(N, u ◦ f)). �

Let A be a K-algebra, and let X be an A-module. Set

X∗ := HomA(X, AA).

Observe that X∗ is a right A-module.
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For an A-module Y define

ηXY : X∗ ⊗A Y → HomA(X, Y )

by (α⊗ y)(x) := α(x) · y. In other words

ηXY (α⊗ y) := ρy ◦ α

where ρy is the right multiplication with y.

X
α−→ AA

ρy−→ Y

Clearly, X∗ is a right A-module: For α ∈ X∗ and a ∈ A set (α · a)(x) := α(x) · a.

The map X∗ × Y → HomA(X, Y ), (α, y) 7→ ρy ◦ α is bilinear, and we have

(αa, y) 7→ ρy ◦ (αa)

(α, ay) 7→ ρay ◦ α.

We also know that

(ρy ◦ (αa))(x) = ρy(α(x) · a) = α(x) · ay = (ρay ◦ α)(x).

In other words, the map (α, y) 7→ ρy ◦ α is balanced.

X∗ × Y

��

ω // X∗ ⊗A Y

ηXYwwnnnnnnnnnnn

HomA(X, Y )

Lemma 7.4. The image of ηXY consists of the homomorphisms X → Y which
factor through finitely generated projective modules.

Proof. We have

ηXY

(
n∑

i=1

αi ⊗ yi

)
=

n∑

i=1

ηXY (αi ⊗ yi)

=

n∑

i=1

ρyi
◦ αi.

X

2
4

α1

...
αn

3
5

−−−→
n⊕

i=1

AA
[ρy1 ,...,ρyn ]−−−−−−→ Y

To prove the other direction, let P be a finitely generated projective module, and
assume h = g ◦ f for some homomorphisms h : X → Y , f : X → P and g : P → Y .
There exists a module C such that P ⊕ C is a free module of finite rank. Thus
without loss of generality we can assume that P is free of finite rank. Let e1, . . . , en
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be a free generating set of P . Then f(x) =
∑

i αi(x)ei for some αi(x) ∈ A. This
defines some homomorphisms αi : X → AA. Set yi := g(ei). It follows that

ηXY

(
∑

i

αi ⊗ yi

)
(x) =

∑

i

αi(x)yi

=
∑

i

αi(x)g(ei)

= g

(
∑

i

αi(x)ei

)

= (g ◦ f)(x) = h(x).

This finishes the proof. �

Lemma 7.5. Assume that X is finitely generated, and let f : X → Y be a homo-
morphism. Then the following are equivalent:

(i) f factors through a projective module;
(ii) f factors through a finitely generated projective module;
(iii) f factors through a free module of finite rank.

Proof. Exercise. �

Let HomA(X, Y )P := PA(X, Y ) be the set of homomorphisms X → Y which factor
through a projective module. Clearly, this is a subspace of HomA(X, Y ). As before,
define

HomA(X, Y ) := HomA(X, Y )/PA(X, Y ).

Lemma 7.6. If X is a finitely generated projective A-module, then ηXY is bijective.

Proof. It is enough to show that

η
AA,Y : (AA)∗ ⊗A Y → HomA(AA, Y )

is bijective. (Note that ηX⊕X′,Y is bijective if and only if ηXY and ηX′Y are bijective.)

Recall that (AA)∗ = HomA(AA, AA) ∼= AA, AA ⊗A Y ∼= AY and HomA(AA, AY ) ∼=
AY .

Thus we have isomorphisms AA ⊗A Y → Y , α⊗y 7→ α(1)y and Y → HomA(AA, Y ),
y 7→ ρy. Composing these yields a map α⊗ y 7→ ρα(1)y = ρy ◦ α. We have

ρα(1)y(a) = aα(1)y = α(a)y = (ρy ◦ α)(a).

�
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7.3. The Nakayama functor. Let

ν : Mod(A) → Mod(A)

be the Nakayama functor defined by

ν(X) := D(X∗) = HomK(X∗, K) = HomK(HomA(X, AA), K).

Since X∗ is a right A-module, we know that ν(X) is an A-module.

Lemma 7.7. The functor ν is right exact, and it maps finitely generated projective
modules to injective modules.

Proof. We know that for all modules N the functor HomA(−, N) is left exact. It is
also clear that D is contravariant and exact. Thus ν is right exact.

Now let P be finitely generated projective. It follows that D(P ∗) is injective: With-
out loss of generality assume P = AA. Then P ∗ = AA and HomK(AA, K) is injec-
tive. �

Set ν−1 := HomA(D(AA),−).

7.4. Proof of the Auslander-Reiten formula. Now we can prove Theorem 7.1:
Let M be a finitely presented module. Thus there exists an exact sequence

P1
p−→ P0

q−→M → 0

where P0 and P1 are finitely generated projective modules. Applying ν yields an
exact sequence

ν(P1)
ν(p)−−→ ν(P0)

ν(q)−−→ ν(M) → 0

where ν(P0) and ν(P1) are now injective modules. Define

τ(M) := Ker(ν(p)).

We obtain an exact sequence

0 → τ(M) → ν(P1)
ν(p)−−→ ν(P0)

ν(q)−−→ ν(M) → 0.

Warning: τ(M) is not uniquely determined by M , since it depends on the chosen
projective presentation of M . But if Mod(A) has projective covers, then we take a
minimal projective presentation of M . In this case, τ(M) is uniquely determined
up to isomorphism.

Notation: If X
f−→ Y

g−→ Z are homomorphisms with Im(f) ⊆ Ker(g), then set

H(X
f−→ Y

g−→ Z) := Ker(g)/ Im(f).

We know that Ext1
A(N, τ(M)) is equal to

H
(
HomA(N, ν(P1))

HomA(N,ν(p))−−−−−−−−→ HomA(N, ν(P0))
HomA(N,ν(q))−−−−−−−−→ HomA(N, ν(M))

)
.



48 CLAUS MICHAEL RINGEL AND JAN SCHRÖER

Let u : ν(M) → I be a monomorphism where I is injective. We get

Ext1
A(N, τ(M)) = Ker(HomA(N, ν(q)))/ Im(HomA(N, ν(p)))

= Ker(HomA(N, u) ◦ HomA(N, ν(q)))/ Im(HomA(N, ν(p))).

For the last equality we used Lemma 7.3.

Define a map

ξXY := i ◦ D(ηXY : D HomA(X, Y ) → HomA(Y, ν(X))

by

D HomA(X, Y )
D(ηXY )

//

ξXY

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
D(X∗ ⊗A Y ) HomK(X∗ ⊗A Y,K)

i
��

HomA(Y,HomK(X∗, K))

HomA(Y, ν(X))

where i := Adj is the isomorphism given by the adjunction formula Theorem 6.7.
We know by Lemma 7.6 that ξXY is bijective, provided X is finitely generated
projective.

Using this, we obtain a commutative diagram

D HomA(P1, N) //

ξP1N

��

D HomA(P0, N) //

ξP0N

��

D HomA(M,N) //

ξMN

��

0

µ : HomA(N, ν(P1)) // HomA(N, ν(P0)) // HomA(N, ν(M))

whose first row is exact and whose second row is a complex. This is based on the
facts that the functor D is exact, and the functor HomA(−, N) is left exact.

Thus we can apply Lemma 7.2 to this situation and obtain

H(µ) = Ker(ξMN)

= Ker(D(ηMN))

= {α ∈ D HomA(M,N) | α(Im(ηMN)) = 0}.
(If f : V → W is a K-linear map, then the kernel of f ∗ : DW → DV consists of all
g : W → K such that g ◦ f = 0. This is equivalent to g(Im(f)) = 0.)

Recall that
ξMN = Adj ◦ D(ηMN).

If M is finitely generated, then Lemma 7.4 and Lemma 7.5 yield that

Im(ηMN) = HomA(M,N)P .

This implies

{α ∈ D HomA(M,N) | α(Im(ηMN)) = 0} = DHomA(M,N).

This finishes the proof of Theorem 7.1.
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The isomorphism
DHomA(M,N) → Ext1

A(N, τ(M))

is “natural in M and N”:

Let M be a finitely presented A-module, and let f : M → M ′ be a homomorphism.
This yields a map

D HomA(f,N) : D HomA(M,N) → D HomA(M ′, N)

and a homomorphism τ(f) : τ(M) → τ(M ′). Now one easily checks that the diagram

Ext1
A(N, τ(M))

Ext1A(N,τ(f))
��

DHomA(M,N)oo

DHomA(f,N)

��
Ext1

A(N, τ(M ′)) DHomA(M ′, N)oo

commutes, and that Ext1
A(N, τ(f)) is uniquely determined by f .

Similarly, if g : N → N ′ is a homomorphism, we get a commutative diagram

Ext1
A(N, τ(M)) DHomA(M,N)oo

Ext1
A(N ′, τ(M))

Ext1A(g,τ(M))

OO

DHomA(M,N ′)oo

DHomA(M,g)

OO

Explicit construction of the isomorphism

φMN : DHomA(M,N) → Ext1
A(N, τ(M)).

...

7.5. Existence of Auslander-Reiten sequences. Now we use the Auslander-
Reiten formula to prove the existence of Auslander-Reiten sequences:

Let M = N be a finitely presented A-module, and assume that EndA(M) is a local
ring. We have EndA(M) := HomA(M,M) = EndA(M)/I where

I := EndA(M)P := {f ∈ EndA(M) | f factors through a projective module}.
If M is projective, then HomA(M,M) = 0. Thus, assume M is not projective.
The identity 1M does not factor through a projective module: If 1M = g ◦ f for
some homomorphisms f : M → P and g : P → M with P projective, then f is a
split monomorphism. Since M is indecomposable, it follows that M is projective, a
contradiction.

Note that EndA(M)P is an ideal in EndA(M). It follows that

EndA(M)P ⊆ rad(EndA(M)).

Thus we get a surjective homomorphism of rings

HomA(M,M) → EndA(M)/ rad(EndA(M)).
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Recall that EndA(M)/ rad(EndA(M)) is a skew field.

Set

U := {α ∈ DEndA(M) | α(rad(EndA(M))) = 0},
and let ε be a non-zero element in U .

Now our isomorphism

φMM : DHomA(M,M) → Ext1
A(M, τ(M))

sends ε to a non-split short exact sequence

η : 0 → τ(M)
f−→ Y

g−→M → 0.

Let

0 → X
f−→ Y

g−→ Z → 0

be a short exact sequence of A-modules. Then g is a right almost split homo-
morphism if for every homomorphism h : N → Z which is not a split epimorphism
there exists some h′ : N → Y with g ◦ h′ = h.

N

h
��

h′

~~~
~

~
~

0 // X
f // Y

g // Z // 0

Dually, f is a left almost split homomorphism if for every homomorphism
h : X → M which is not a split monomorphism there exists some h′ : Y → M with
h′ ◦ f = h.

0 // X

h
��

f // Y

h′~~}
}

}
}

g // Z // 0

M

Now let

η : 0 → τ(M)
f−→ Y

g−→M → 0.

be the short exact sequence we constructed above.

Lemma 7.8. g is a right almost split homomorphism.

Proof. Let h : N → M be a homomorphism, which is not a split epimorphism. We
have to show that there exists some h′ : N → Y such that gh′ = h, or equivalently
that the induced short exact sequence h∗(f, g) splits.

Since h is not a split epimorphism, the map

HomA(M,h) : HomA(M,N) → HomA(M,M)

defined by f 7→ hf is not surjective: If hf = 1M , then h is a split epimorphism, a
contradiction.
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The induced map

HomA(M,h) : HomA(M,N) → HomA(M,M)

is also not surjective, since its image is contained in rad(EndA(M)). We obtain a
commutative diagram

DHomA(M,M)

DHomA(M,h)

��

φMM // Ext1
A(M, τ(M))

Ext1A(h,τ(M))
��

DHomA(M,N)
φMN // Ext1

A(N, τ(M))

where φMM(ε) = η and DHomA(M,h)(ε) = 0. This implies Ext1
A(h, τ(M))(η) = 0.

Note that the map Ext1
A(h, τ(M)) sends a short exact sequence ψ to the short exact

sequence h∗(ψ) induced by h via a pullback.

So we get h∗(η) = 0 for all h : N → M which are not split epimorphisms. In other
words, g is a right almost split morphism. �

End of Lecture 40

Lemma 7.9. Let 0 → X
f−→ Y

g−→ Z → 0 be a non-split short exact sequence.
Assume that g is right almost split and that EndA(X) is a local ring. Then f is left
almost split.

Proof. Let h : X → X ′ be a homomorphism which is not a split monomorphism.
Taking the pushout we obtain a commutative diagram

0 // X
f //

h
��

Y
g //

h′

��

Z // 0

ψ : 0 // X ′
f ′

// Y ′
g′ // Z // 0

whose rows are exact. Assume ψ does not split. Thus g′ is not a split epimorphism.

Since g is right almost split, there exists some g′′ : Y ′ → Y with g ◦ g′′ = g′. It
follows that g(g′′f ′) = g′f ′ = 0.

0 // X // Y
g // Z // 0

Y ′

g′

OO

g′′

``A
A

A
A

Since Im(f) = Ker(g) this implies g′′f ′ = ff ′′ for some homomorphism f ′′ : X ′ → X.
Thus

g(g′′h′) = (gg′′)h′ = g′h′ = g.
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In other words, g(g′′h′ − 1Y ) = 0. Again, since Im(f) = Ker(g), there exists some
p : Y → X with g′′h′ − 1Y = fp. This implies

ff ′′h = g′′f ′h

= g′′h′f

= (fp+ 1Y )f

= fpf + f

and therefore f(f ′′h − pf − 1X) = 0. Since f is injective, f ′′h − pf − 1X = 0. In
other words, 1X = f ′′h − pf . By assumption, EndA(X) is a local ring. So f ′′h
or pf is invertible in EndA(X). Thus f is a split monomorphism or h is a split
monomorphism. In both cases, we have a contradiction. �

Recall the following result:

Lemma 7.10 (Fitting Lemma). Let M be a module of length m, and let h ∈
EndA(M). Then M = Im(hm) ⊕ Ker(hm).

A homomorphism g : M → N is right minimal if all h ∈ EndA(M) with gh = g
are automorphisms. Dually, a homomorphism f : M → N is left minimal if all
h ∈ EndA(N) with hf = f are automorphisms.

Lemma 7.11. Let g : M → N be a homomorphism, and assume that M has length
m. Then there exists a decomposition M = M1 ⊕ M2 with g(M2) = 0, and the
restriction g : M1 → N is right minimal.

Proof. Let M = M1 ⊕M2 with M2 ⊆ Ker(g) and M2 is of maximal length with this
property. If now M1 = M ′

1 ⊕M ′′
1 with M ′′

1 ⊆ Ker(g), then M ′′
1 ⊕M2 ⊆ Ker(g). Thus

M ′′
1 = 0.

So without loss of generality assume that g(M ′) 6= 0 for each non-zero direct sum-
mand M ′ of M . Assume that gh = g for some h ∈ EndA(M).

By the Fitting Lemma we have M = Im(hm) ⊕ Ker(hm) for some m. If Ker(hm) 6=
0, then g(Ker(hm)) 6= 0, and therefore there exists some 0 6= x ∈ Ker(hm) with
g(x) 6= 0. We get g(x) = ghm(x) = 0, a contradiction. Thus Ker(hm) = 0. This
implies M = Im(hm), which implies that h is surjective. It follows that h is an
isomorphism. �

Lemma 7.12. Let 0 → X
f−→ Y

g−→ Z → 0 be a non-split short exact sequence. If X
is indecomposable, then g is right minimal.

Proof. Without loss of generality we assume that f is an inclusion map. By Lemma
7.11 We have a decomposition Y = Y1⊕Y2 such that Y2 ⊆ Ker(g) and the restriction
g : Y1 → Z is right minimal. It follows that X = Ker(g) = (Ker(g) ∩ Y1) ⊕ Y2.

Case 1: Ker(g) ∩ Y1 = 0. This implies X = Y2, thus f is a split monomorphism, a
contradiction since our sequence does not split.
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Case 2: Y2 = 0. Then Y = Y1 and the restriction g : Y1 → Z coincides with g. �

We leave it as an exercise to formulate and prove the dual statements of Lemma
7.11 and 7.12.

Theorem 7.13. Let

0 → X
f−→ Y

g−→ Z → 0

be a short exact sequence of A-modules. Then the following are equivalent:

(i) g is right almost split, and X is indecomposable;
(ii) f is left almost split, and Z is indecomposable;
(iii) f and g are irreducible.

Proof. Use Skript 1, Cor. 11.5 and the dual statement Cor. 11.10 and
Skript 1, Lemma 11.6 (Converse Bottleneck Lemma) and the dual state-
ment Lemma 11.11. Furthermore, we need Skript 1, Cor. 11.3 and Cor.
11.8. �

7.6. Properties of τ , Tr and ν.

Lemma 7.14. For any indecomposable A-module M we have

ν−1(τ(M)) ∼= Ω2(M).

Proof. Let P1 → P0 → M → 0 be a minimal projective presentation of M . Thus we
get ab exact sequence

0 → Ω2(M) → P1
p−→ P0 →M → 0.

Applying ν yields an exact sequence

0 → τ(M) → ν(P1)
ν(p)−−→ ν(P0).

Now we apply ν−1 and obtain an exact sequence

0 → ν−1(τ(M)) → P1
p−→ P0.

Here we use that ν−1(ν(P )) ∼= P , which comes from the fact that ν induces an equiv-
alence between the category of projective A-modules and the category of injective
A-modules. This implies ν−1(τ(M)) ∼= Ω2(M). �

Here is the dual statement:

Lemma 7.15. For any indecomposable A-module M we have

ν(τ−1(M)) ∼= Σ2(M).

Lemma 7.16. Let A be a finite-dimensional K-algebra. For an A-module M the
following are equivalent:

(i) proj. dim(M) ≤ 1;
(ii) For each injective A-module I we have HomA(I, τ(M)) = 0.
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Proof. Clearly, proj. dim(M) ≤ 1 if and only if Ω2(M) = 0. By the Lemma above
this is equivalent to HomA(D(AA), τ(M)) = 0. But we know that each indecom-
posable injective A-module is isomorphic to a direct summand of D(AA). (Let I be
an indecomposable injective A-module. Then D(I) is an indecomposable projective
right A-module. It follows that D(I) is isomorphic to a direct summand of AA. Thus
I ∼= DD(I) is a direct summand of D(AA).) This finishes the proof. �

Here is the dual statement, which can be proved accordingly:

Lemma 7.17. Let A be a finite-dimensional K-algebra. For an A-module M the
following are equivalent:

(i) inj. dim(M) ≤ 1;
(ii) For each projective A-module P we have HomA(τ−1(M), P ) = 0.

7.7. Properties of Auslander-Reiten sequences. Let A be a finite-dimensional
K-algebra. In this section, by a “module” we mean a finite-dimensional module. A
homomorphism f : X → Y is a source map for X if the following hold:

(i) f is not a split monomorphism;
(ii) For each homomorphism f ′ : X → Y ′ which is not a split monomorphism

there exists a homomorphism f ′′ : Y → Y ′ with f ′ = f ′′ ◦ f ;

X
f //

f ′

��

Y

f ′′~~}
}

}
}

Y ′

(iii) If h : Y → Y is a homomorphism with f = h ◦ f , then h is an isomorphism.

X
f // Y hhh

Dually, a homomorphism g : Y → Z is a sink map for Z if the following hold:

(i)∗ g is not a split epimorphism;
(ii)∗ For each homomorphism g′ : Y ′ → Z which is not a split epimorphism there

exists a homomorphism g′′ : Y ′ → Y with g′ = g ◦ g′′;

Y ′

g′

��

g′′

~~}
}

}
}

Y
g // Z

(iii)∗ If h : Y → Y is a homomorphism with g = g ◦ h, then h is an isomorphism.

Yh 66
g // Z

We know already the following facts:
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• If

0 → X
f−→ Y

g−→ Z → 0

is an Auslander-Reiten sequence, then f is a source map for X, and g is a
sink map for Z.

• If X is an indecomposable module which is not injective, then there exists a
source map for X.

• If Z is an indecomposable module which is not projective, then there exists
a sink map for Z.

Lemma 7.18. (i) If f : X → Y is a source map, then X is indecomposable;
(ii) If g : Y → Z is a sink map, then Z is indecomposable.

Proof. We just prove (i): Let X = X1 ⊕X2 with X1 6= 0 6= X2, and let π : X → Xi,
i = 1, 2 be the projection. Clearly, πi is not a split monomorphism, thus there exists
some giY → Xi with gi ◦ f = πi. This implies 1X = [π1, π2]

t = [g1, g
t
2] ◦ f . Thus f

is a split monomorphism, a contradiction. �

Lemma 7.19. Let P be an indecomposable projective module. Then the embedding

rad(P ) → P

is a sink map.

Proof. Denote the embedding rad(P ) → P by g. Clearly, g is not a split epimor-
phism. This proves (i)∗. Let g′ : Y ′ → P be a homomorphism which is not a split
epimorphism. Since P is projective, we can conclude that g′ is not an epimorphism.
Thus Im(g′) ⊂ P which implies Im(g′) ⊆ rad(P ). Here we use that P is a local
module. So we proved (ii)∗. Finally, assume g = gh for some h ∈ EndA(rad(P )).
Since g is injective, this implies that h is the identity 1rad(P ). This proves (iii)∗. �

Lemma 7.20. Let I be an indecomposable injective module. Then the projection

Q→ Q/ soc(Q)

is a source map.

Proof. Dualize the proof of Lemma 7.19. �

Corollary 7.21. There a source map and a sink map for every indecomposable
module.

Lemma 7.22. Let f : X → Y be a source map, and let f ′ : X → Y ′ be an arbitrary
homomorphism. Then the following are equivalent:

(i) There exists a homomorphism f ′′ : X → Y ′′ and an isomorphism h : Y →
Y ′ ⊕ Y ′′ such that the diagram

X
f //

»
f ′

f ′′

–

��

Y

hzzvvvvvvvvv

Y ′ ⊕ Y ′′

commutes.
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(ii) f ′ is irreducible or Y ′ = 0.

Proof. (ii) =⇒ (i): If Y ′ = 0, then choose f ′′ = f . Thus, let f ′ be irreducible. It
follows that f ′ is not a split monomorphism. Thus there exists some h′ : Y → Y ′

with f ′ = h′f .

X

f ′

��

f // Y

h′~~}
}

}
}

Y ′

Now f ′ is irreducible and f is not a split monomorphism. Thus h′ is a split epimor-
phism. Let Y ′′ = Ker(h′). This is a direct summand of of Y . Let p : Y → Y ′′ be the
corresponding projection. We obtain a commutative diagram

X
f //

»
f ′

f ′′

–
$$I

IIIIIIII Y
h

h′

p

i

��
Y ′ ⊕ Y ′′

Clearly,
[

h′

p

]
is an isomorphism. Now set f ′′ := pf .

(i) =⇒ (ii): Without loss of generality we assume h = 1. Thus f =
[

f ′

f ′′

]
: X →

Y = Y ′ ⊕ Y ′′. We have to show: If Y ′ 6= 0, then f ′ is irreducible.

(a): f ′ is not a split monomorphism: Otherwise f would be a split monomorphism,
a contradiction.

(b): f ′ is not a split epimorphism: We know that Y ′ 6= 0 and X is indecomposable.
If f ′ is a split epimorphism, we get that f ′ is an isomorphism and therefore a split
monomorphism, a contradiction.

(c): Let f ′ = hg.

X
f ′

//

g

��

Y ′

C
h

>>}}}}}}}}

There is a source map
[

f ′

f ′′

]
: X → Y ′⊕Y ′′. Assume g is not a split monomorphism.

Then there exists some [g′, g′′] : Y ′ ⊕ Y ′′ such that the diagram

X

»
f ′

f ′′

–

//

g

��

Y ′ ⊕ Y ′′

[g′,g′′]zzuuuuuuuuu

C



REPRESENTATION THEORY OF ALGEBRAS II: AUSLANDER-REITEN THEORY 57

commutes. Thus g = g′f ′ + g′′f ′′. It follows that the diagram

X

»
f ′

f ′′

–

//
»

f ′

f ′′

–

��

Y ′ ⊕ Y ′′

h
hg′ hg′′

0 1

i
xxqqqqqqqqqq

Y ′ ⊕ Y ′′

commutes. Since
[

f ′

f ′′

]
is left minimal, the map

[
hg′ hg′′

0 1

]
is an automorphism. Thus

hg′ is an automorphism. This implies that h is a split epimorphism. So we have
shown that f ′ is irreducible. �

Corollary 7.23. Let f : X → Y be a source map, and let h : Y → M be a split
epimorphism. Then h ◦ f : X → M is irreducible.

Here is the dual statement which is proved accordingly:

Lemma 7.24. Let g : Y → Z be a sink map, and let g′ : Y ′ → Z be an arbitrary
homomorphism. Then the following are equivalent:

(i) There exists a homomorphism g′′ : Y ′′ → Z and an isomorphism h : Y ′ ⊕
Y ′′ → Y such that the diagram

Y ′ ⊕ Y ′′

»
g′

g′′

–

��

h

zzvvvvvvvvv

Y
g // Z

commutes.
(ii) g′ is irreducible or Y ′ = 0.

Corollary 7.25. Let g : Y → Z be a sink map, and let h : M → Y be a split
monomorphism. Then g ◦ h : M → Z is irreducible.

Here is again the (preliminary) definition of the Auslander-Reiten quiver ΓA

of A: The vertices are the isomorphism classes of indecomposable A-modules, and
there is an arrow [X] → [Y ] if and only if there exists an irreducible map X →
Y . Furthermore, we draw a dotted arrow [τ(X)] [X]oo_ _ _ for each non-projective

indecomposable A-module X.

A (connected) component of ΓA is a full subquiver Γ = (Γ0,Γ1) of ΓA such that
the following hold:

(i) For each arrow [X] → [Y ] in ΓA with {[X], [Y ]}∩Γ0 6= ∅ we have {[X], [Y ]} ⊆
Γ0;

(ii) If [X] and [Y ] are vertices in Γ, then there exists a sequence

([X1], [X2], . . . , [Xt])

of vertices in Γ with [X] = [X1], [Y ] = [Xt], and for each 1 ≤ i ≤ t− 1 there
is an arrow [Xi] → [Xi+1] or an arrow [Xi+1] → [Xi].
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Corollary 7.26. Let X → Y be a source map, and let Y =
⊕t

i=1 Y
ni

i where Yi is
indecomposable, ni ≥ 1 and Yi 6∼= Yj for all i 6= j. Then there are precisely t arrows
in ΓA starting at [X], namely [X] → [Yi], 1 ≤ i ≤ t.

Lemma 7.27. A vertex [X] is a source in ΓA if and only if X is simple projective.

Proof. Assume P is a simple projective module. Then any non-zero homomorphism
X → P is a split epimorphism. So [P ] has to be a source in ΓA. Now assume P
is projective, but not simple. Then the embedding rad(P ) → P is a non-zero sink
map. It follows that [P ] cannot be a source in ΓA. Finally, if Z is an indecomposable
non-projective A-module, then again there exists a non-zero sink map Y → Z. So
[Z] cannot be a source. This finishes the proof. �

Lemma 7.28. A source map X → Y is not a monomorphism if and only if X is
injective.

We leave it to the reader to formulate the dual statements.

Corollary 7.29. ΓA is a locally finite quiver.

Let 0 → X
f−→ Y

g−→ Z → 0 be an Auslander-Reiten sequence in mod(A). Thus,
by definition f and g are irreducible. We proved already that X and Z have to be
indecomposable (Skript 1). It follows that we get a commutative diagram

0 // X
f ′

// E
g′ //

h

��

τ−1(X) //

h′

��

0

0 // X
f // Y

g // Z // 0

where h and h′ are isomorphisms.

Here τ−1(X) := TrD(X).

Source maps are unique in the following sense: Let X be an indecomposable A-
module which is not injective, and let f : X → Y and f : X → Y ′ be source maps.
By g : Y → Z and g′ : Y ′ → Z ′ we denote the projections onto the cokernel of f and
f ′, respectively. Then we get a cimmutative diagram

0 // X
f ′

// Y ′
g′ //

h
��

Z ′ //

h′

��

0

0 // X
f // Y

g // Z // 0

where h and h′ are isomorphisms.

Dually, sink maps are unique as well.

End of Lecture 41
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7.8. Digression: The Brauer-Thrall Conjectures. Assume that A is a finite-
dimensional K-algebra, and let S1, . . . , Sn be a set of representatives of isomorphism
classes of simple A-modules. Then the quiver of A has vertices 1, . . . , n and there
are exactly dim Ext1

A(Si, Sj) arrows from i to j.

The algebra A is connected if the quiver of A is connected.

Lemma 7.30. For a finite-dimensional algebra A the following are equivalent:

(i) A is connected;
(ii) For any indecomposable projective A-modules P 6∼= P ′ there exists a tu-

ple (P1, P2, . . . , Pm) of indecomposable projective modules such that P1 =
P , Pm = P ′ and for each 1 ≤ i ≤ m − 1 we have HomA(Pi, Pi+1) ⊕
HomA(Pi+1, Pi) 6= 0;

(iii) For any simple A-modules S and S ′ there exists a tuple (S1, S2, . . . , Sm) of
simple modules such that S1 = S, Sm = S ′ and for each 1 ≤ i ≤ m − 1 we
have Ext1

A(Si, Si+1) ⊕ Ext1
A(Si+1, Si) 6= 0;

(iv) If A = A1 ×A2 then A1 = 0 or A2 = 0;
(v) 0 and 1 are the only central idempotents in A.

Proof. Exercise. Hint: If ExtA(Si, Sj) 6= 0, then there exists a non-split short exact
sequence

0 → Sj
f−→ E

g−→ Si → 0.

Then there exists an epimorphism pi : Pi → Si. This yields a homomorphism
p′i : Pi → E such that gp′i = pi. Clearly, h′ has to be an epimorphism. (Why?)
Let pj : Pj → Sj be the obvious epimorphism. Then there exists an epimorphism
p′j : Pj → E such that fpj = p′j . Next, there exists a non-zero homomorphism
q : Pj → Pi such that piq = fpj . �

Theorem 7.31 (Auslander). Let A be a finite-dimensional connected K-algebra,
and let C be a component of the Auslander-Reiten quiver of A. Assume that there
exists some b such that all indecomposable modules in C have length at most b. Then
C is a finite component and it contains all indecomposable A-modules. In particular,
A is representation-finite.

Proof. (a): Let X be an indecomposable A-module such that there exists a non-zero
homomorphism h : X → Y for some [Y ] ∈ C. We claim that [X] ∈ C: Let

g(1) = [g
(1)
1 , . . . , g

(1)
t1 ] :

t1⊕

i=1

Y
(1)
i → Y

be the sink map ending in Y , where Y
(1)
i is indecomposable for all 1 ≤ i ≤ t1. If h

is a split epimorphism, then h is an isomorphism and we are done. Thus, assume
h0 := h is not a split epimorphism. It follows that there exists a homomorphism

f (1) =



f

(1)
1
...

f
(1)
t1


 : X →

t1⊕

i=1

Y
(1)
i
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such that

h0 = g(1)f (1) =

t1∑

i=1

g
(1)
i f

(1)
i : X → Y.

Since h0 6= 0, there exists some 1 ≤ i1 ≤ t1 such that g
(1)
i1

◦ f (1)
i1

6= 0. Set h1 := f
(1)
i1

and h′1 := g
(1)
i1

. Next, assume that for each 1 ≤ k ≤ n− 1 we already constructed a
non-invertible homomorphism

h′k : Y
(k)
ik

→ Y
(k−1)
ik−1

,

where [Y
(k)
ik

] ∈ C and Y
(0)
i0

:= Y , and a homomorphism

hk : X → Y
(k)
ik

such that h′1 ◦ · · · ◦ h′k ◦ hk 6= 0. So we get the following diagram:

X

hn−1
��

X

hn−2
��

· · · X

h1
��

X

h0

��
Y

(n−1)
in−1 h′

n−1

// Y
(n−2)
in−2 h′

n−2

// · · ·
h′

2

// Y
(1)
i1 h′

1

// Y

with h′1 ◦ h′2 ◦ · · · ◦ h′n−1 ◦ hn−1 6= 0.

If hn−1 is an isomorphism, then X ∼= Y
(n−1)
in−1

and therefore [X] ∈ C.

Thus assume that hn−1 : X → Y
(n−1)
in−1

is non-invertible. Let

g(n) = [g
(n)
1 , . . . , g

(n)
tn ] :

tn⊕

i=1

Y
(n)
i → Y

(n−1)
in−1

be the sink map ending in Y
(n−1)
in−1

, where Y
(n)
i is indecomposable for all 1 ≤ i ≤ tn.

Since hn−1 is not a split epimorphism, there exists a homomorphism

f (n) =



f

(n)
1
...

f
(n)
tn


 : X →

tn⊕

i=1

Y
(n)
i

such that

hn−1 = g(n)f (n) =
tn∑

i=1

g
(n)
i f

(n)
i : X → Y

(n−1)
in−1

.

Since h′1 ◦ h′2 ◦ · · · ◦ h′n−1 ◦ hn−1 6= 0, there exists some 1 ≤ in ≤ tn such that

h′1 ◦ h′2 ◦ · · · ◦ h′n−1 ◦ g(n)
in

◦ f (n)
in

6= 0.

Set hn := f
(n)
in

and h′n := g
(n)
in

. Thus

h′1 ◦ h′2 ◦ · · · ◦ h′n−1 ◦ h′n ◦ hn 6= 0.

Clearly, h′n is non-invertible, since h′n is irreducible.

If n ≥ 2b −2 we know by the Harada-Sai Lemma that hn has to be an isomorphism.
This finishes the proof of (a).
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(b): Dually, if Z is an indecomposable A-module such that there exists a non-zero
homomorphism Y → Z for some [Y ] ∈ C, then [Z] ∈ C.

(c): Let Y be an indecomposable A-module with [Y ] ∈ C, and let S be a composition
factor of Y . Then there exists a non-zero homomorphism PS → Y where PS is
the indecomposable projective module with top S. By (a) we know that [PS] ∈
C. Now we use Lemma 7.30, (iii) in combination with (a) and (b) to show that
all indecomposable projective A-modules lie in C. Finally, if Z is an arbitrary
indecomposable A-module, then again there exists an indecomposable projective
module P and a non-zero homomorphism P → Z. Now (b) implies that [Z] ∈ C.
It follows that C = (ΓA, dA). By the proof of (a) and (b) we know that there is a
path of length at most 2b − 2 in C which starts in [P ] and ends in [Z]. It is also
clear that C has only finitely many vertices: Since ΓA is a locally finite quiver, for
each projective vertex [P ] there are only finitely many paths of length at most 2b−2
starting in [P ]. �

Corollary 7.32 (1st Brauer-Thrall Conjecture). Let A be a finite-dimensional K-
algebra. Assume there exists some b such that all indecomposable A-modules have
length at most b. Then A is representation-finite.

Thus the 1st Brauer-Thrall Conjecture says that bounded representation type implies
finite representation type. There exists a completely different proof of the 1st Brauer-
Thrall conjecture due to Roiter, using the Gabriel-Roiter measure.

Conjecture 7.33 (2nd Brauer-Thrall Conjeture). Let A be a finite-dimensional
algebra over an infinite field K. If A is representation-infinite, then there exists
some d ∈ N such that the following hold: For each n ≥ 1 there are infinitely many
isomorphism classes of indecomposable A-modules of dimension nd.

Theorem 7.34 (Smalø). Let A be a finite-dimensional algebra over an infinite field
K. Assume there exists some d ∈ N such that there are infinitely many isomorphism
classes of indecomposable A-modules of dimension d. Then for each n ≥ 1 there are
infinitely many isomorphism classes of indecomposable A-modules of dimension nd.

Thus to prove Conjecture 7.33, the induction step is already known by Theorem
7.34. Just the beginning of the induction is missing...

Conjecture 7.33 is true if K is algebraically closed. This was proved by Bautista
using the well developed theory of representation-finite algebras over algebraically
closed fields.

7.9. The bimodule of irreducible morphisms. Let A be a finite-dimensional K-
algebra, and as before let mod(A) be the category of finitely generated A-modules.
All modules are assumed to be finitely generated.

For indecomposable A-modules X and Y let

radA(X, Y ) := {f ∈ HomA(X, Y ) | f is not invertible}.
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In particular, if X 6∼= Y , then radA(X, Y ) = HomA(X, Y ). If X = Y , then

radA(X,X) = rad(EndA(X)) := J(EndA(X)).

Now let X =
⊕s

i=1Xi and Y =
⊕t

j=1 Yj be A-modules with Xi and Yj indecompos-
able for all i and j. Recall that we can think of an endomorphism f : X → Y as a
matrix

f =



f11 · · · fs1
...

...
f1t · · · fst




where fij : Xi → Yj is an homomorphism for all i and j. Set

radA(X, Y ) :=




radA(X1, Y1) · · · radA(Xs, Y1)
...

...
radA(X1, Yt) · · · radA(Xs, Yt)


 .

Thus radA(X, Y ) ⊆ HomA(X, Y ).

Lemma 7.35. For A-modules X and Y we have f /∈ radA(X, Y ) if and only if there
exists a split monomorphism u : X ′ → X and a split epimorphism p : Y → Y ′ such
that p ◦ f ◦ u : X ′ → Y ′ is an isomorphism and X ′ 6= 0.

Proof. Exercise. �

For A-modules X and Y let rad2
A(X, Y ) be the set of homomorphisms f : X → Y

with f = h ◦ g for some g ∈ radA(X,M), h ∈ radA(M,Y ) and M .

Lemma 7.36. Let X and Y be indecomposable A-modules. For a homomorphism
f : X → Y the following are equivalent:

(i) f is irreducible;
(ii) f ∈ radA(X, Y ) \ rad2

A(X, Y ).

Proof. Assume f : X → Y is irreducible. Since X and Y are indecomposable we
know that f is an isomorphism if and only if f is a split monomorphism if and only
if f is a split epimorphism. Thus f ∈ radA(X, Y ). Assume f ∈ rad2

A(X, Y ).

...

�

End of Lecture 42

For indecomposable A-modules X and Y define

IrrA(X, Y ) := radA(X, Y )/ rad2
A(X, Y ).

We call IrrA(X, Y ) the bimodule of irreducible maps from X to Y .

Set F (X) := EndA(X)/ rad(EndA(X)) and F (Y ) := EndA(Y )/ rad(EndA(X)).
Since X and Y are indecomposable, we know that F (X) and F (Y ) are skew fields.
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Lemma 7.37. IrrA(X, Y ) is an F (X)op-F (Y )-bimodule.

Proof. Let f ∈ IrrA(X, Y ), g ∈ F (X) and h ∈ F (Y ), where f ∈ radA(X, Y ),
g ∈ EndA(X) and h ∈ EndA(Y ). Define

g ⋆ f := fg,

h · f := hf.

We have to check that this is well defined: We have a map

EndA(Y ) × HomA(X, Y ) × EndA(X) → HomA(X, Y )

defined by (h, f, g) 7→ hfg. Clearly, if f ∈ radA(X, Y ), then hf and fg are in
radA(X, Y ). It follows that radA(X, Y ) is an EndA(X)op-EndA(Y )-bimodule. It is
also clear that rad2

A(X, Y ) is a subbimodule: Let f = f2f1 ∈ rad2
A(X, Y ) where f1 ∈

radA(X,C) and f2 ∈ radA(C, Y ) for some C. Then hf = (hf2)f1 and fg = f2(f1g),
so they are both in rad2

A(X, Y ). Furthermore, the images of the maps radA(X, Y )×
rad(EndA(X)) → radA(X, Y ), (f, g) 7→ fg and radA(X, Y ) × rad(EndA(Y )) →
radA(X, Y ), (h, f) 7→ hf are both contained in rad2

A(X, Y ). Thus IrrA(X, Y ) is
annihilated by rad(EndA(X)op) and rad(EndA(Y )). This implies that IrrA(X, Y ) is
an F (X)op-F (Y )-bimodule. �

Lemma 7.38. Let Z be indecomposable and non-projective. Then F (Z) ∼= F (τ(Z)).

Proof. Exercise. �

Lemma 7.39. Assume K is algebraically closed. If X is an indecomposable A-
module, then F (X) ∼= K.

Proof. Exercise. �

Theorem 7.40. Let M and N be indecomposable A-modules. Let g : Y → N be a
sink map for N . Write

Y = M t ⊕ Y ′

with t maximal. Thus g = [g1, . . . , gt, g
′] where gi : M → N , 1 ≤ i ≤ t and g′ : Y ′ →

N are homomorphisms. Then the following hold:

(i) The residue classes of g1, . . . , gt in IrrA(M,N) form a basis of the F (M)op-
vector space IrrA(M,N);

(ii) We have

t = dimF (M)op(IrrA(M,N)) =
dimK(IrrA(M,N))

dimK(F (M))
.

Dually, let f : M → X be a source map for M . Write

X = N s ⊕X ′

with s maximal. Thus f = t[f1, . . . , fs, f
′] where fi : M → N , 1 ≤ i ≤ s and

f ′ : M → X ′ are homomorphisms. Then the following hold:
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(iii) The residue classes of f1, . . . , fs in IrrA(M,N) form a basis of the F (N)-
vector space IrrA(M,N);

(iv) We have

s = dimF (N)(IrrA(M,N)) =
dimK(IrrA(M,N))

dimK(F (N))
.

We have s = t if and only if dimK(F (M)) = dimK(F (N)) or s = t = 0.

Proof. (a): First we show that the set {g1, . . . , gt} is linearly independent in the
F (M)op-vector space IrrA(M,N):

Assume

(1)

t∑

i=1

λi ⋆ gi = 0

where λi ∈ EndA(M), gi ∈ radA(M,N), λi = λi + rad(EndA(M)), gi = gi +
rad2

A(M,N) and 0 = 0 + rad2
A(M,N). By definition λi ⋆ gi = giλi. We have to show

that λi = 0, i.e. λi ∈ rad(EndA(M)) for all i.

Assume λ1 /∈ rad(EndA(M)). In other words, λ1 is invertible. We get

t∑

i=1

giλi = [g1, . . . , gt, g
′] ◦
[ λ1

...
λt
0

]
= g ◦

[ λ1

...
λt
0

]
: M → N.

By Equation (1) we know that this map is contained in rad2
A(M,N).

Clearly,

[ λ1

...
λt
0

]
is a split monomorphism, since

[λ−1
1 , 0, . . . , 0] ◦

[ λ1

...
λt
0

]
= 1M .

Using Lemma 7.24 this implies that
∑t

i=1 giλi is irreducible and can therefore not
be contained in rad2

A(M,N), a contradiction.

(b): Next, we show that {g1, . . . , gt} generates the F (M)op-vector space IrrA(M,N):

Let u : M → N be a homomorphism with u ∈ radA(M,N). We have to show that
u := u+ rad2

A(M,N) is a linear combination of g1, . . . , gt.

Since g is a sink map and u is not a split epimorphism, we get a commutative
diagram

M

u

��

2
64

u1

...
ut

u′

3
75

vvm m m m m m m

M t ⊕ Y ′
[g1,...,gt,g′]

// N
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such that u =
∑t

i=1 giui + g′u′.

We know that g′ ∈ radA(Y ′, N), since g′ is just the restriction of the sink map g
to a direct summand Y ′ of Y . Thus g′ is irreducible or g′ = 0. Furthermore, M is
indecomposable and Y ′ does not contain any direct summand isomorphic to M . So
u′ ∈ radA(M,Y ′). Thus implies g′u′ ∈ rad2

A and therefore g′u′ = 0. It follows that

u =
t∑

i=1

ui ⋆ gi + g′u′ =
t∑

i=1

ui ⋆ gi.

This finishes the proof.

The second part of the theorem is proved dually. �

Corollary 7.41. Let
0 → τ(Z) → Y → Z → 0

be an Auslander-Reiten sequence, and let M be indecomposable. Then

dim K IrrA(M,Z) = dim K IrrA(τ(Z),M).

Proof. Let t be maximal such that Y = M t ⊕ Y ′ for some module Y ′. Then we get

t =
dimK IrrA(M,Z)

dimKF (M)
=

dimK IrrA(τ(Z),M)

dimKF (M)
.

�

End of Lecture 43

It is often quite difficult to construct Auslander-Reiten sequences. But if there exists
a projective-injective module, one gets one such sequence for free:

Lemma 7.42. Let I be an indecomposable projective-injective A-module, and as-
sume that I is not simple. Then there is an Auslander-Reiten sequence of the form

0 → rad(I) → rad(I)/ soc(I) ⊕ I → I/ soc(I) → 0.

Proof. ...

�

7.10. Translation quivers and mesh categories. Let Γ = (Γ0,Γ1, s, t) be a
quiver (now we allow Γ0 and Γ1 to be infinite sets).

We call Γ locally finite if for each vertex y there are at most finitely many arrows
ending at y and there are are most finitely many arrows starting at y.

If there is an arrow x→ y then x is called a direct predecessor of y, and if there
is an arrow y → z then z is a direct successor of y.

Let y− be the set of direct predecessors of y, and let y+ be the set of direct successors
of y. Note that we do not assume that y− and y+ are disjoint.
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A path of length n ≥ 1 in Γ is of the form w = (α1, . . . , αn) where the αi are arrows
such that s(αi) = t(αi+1) for 1 ≤ i ≤ n− 1. We say that w starts in s(w) := s(αn),
and w ends in t(w) := t(α1). In this case, s(w) is a predecessor of t(w), and t(w)
is a successor of s(w).

Additionally, for each vertex x of Γ there is a path 1x of length 0 with s(1x) =
t(1x) = x. For vertices x and y let W (x, y) be the set of paths from x to y. If a
path w in Γ starts in x and ends in y, we say that x is a predecessor of y, and y is a
successor of x. If w = (α1, . . . , αn) has length n ≥ 1, and if s(w) = t(w), then w is
called a cycle in Γ. In this case, we say that s(α1), . . . , s(αn) lie on the cycle w.

A vertex x in a quiver Γ is reachable if there are just finitely many paths in Γ
which end in x.

It follows immediately that a vertex x is reachable if and only if x has only finitely
many predecessors and none of these lies on a cycle. Of course, every predecessor of
a reachable vertex is again reachable. We define a chain

∅ = −1Γ ⊆ 0Γ ⊆ · · · ⊆ n−1Γ ⊆ nΓ ⊆ · · ·
of subsets of Γ0.

By definition −1Γ = ∅. For n ≥ 0, if n−1Γ is already defined, then let nΓ be the set
of all vertices z of Γ such that z− ⊆ n−1Γ.

By nΓ we denote the full subquiver of Γ with vertices nΓ. Set

∞Γ :=
⋃

n≥0

nΓ and ∞Γ :=
⋃

n≥0

nΓ.

Clearly, ∞Γ is the set of all reachable vertices of Γ.

Now let K be a field. We define the path category KΓ as follows:

The objects in KΓ are the vertices of Γ. For vertices x, y ∈ Γ0, we take as morphism
set HomKΓ(x, y), the K-vector space with basis W (x, y).

The composition of morphisms is by definition K-bilinear, so it is enough to define
the composition of two basis elements: First, the path 1x of length 0 is the unit
element for the object x. Next, if w = (α1, . . . , αn) ∈W (x, y) and v = (β1, . . . , βm) ∈
W (y, z), then define

vw := v · w := (β1, . . . , βm, α1, . . . , αn) ∈W (x, z).

This is again a path since s(βm) = t(α1).

We call Γ = (Γ0,Γ1, s, t, τ, σ) a translation quiver if the following hold:

(T1) (Γ0,Γ1, s, t) is a locally finite quiver without loops;
(T2) τ : Γ′

0 → Γ0 is an injective map where Γ′
0 is a subset of Γ0, and for all z ∈ Γ′

0

and every y ∈ Γ0 the number of arrows y → z equals the number of arrows
τ(z) → y;
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(T3) σ : Γ′
1 → Γ1 is an injective map with σ(α) : τ(z) → y for each α : y → z,

where Γ′
1 is the set of all arrows α : y → z with z ∈ Γ′

0.

Note that a translation quiver can have multiple arrows between two vertices.

If Γ = (Γ0,Γ1, s, t, τ, σ) is a translation quiver, then τ is called the translation of Γ.
The vertices in Γ0\Γ′

0 are the projective vertices, and Γ0\τ(Γ′
0) are the injective

vertices. If Γ does not have any projective or injective vertices, then Γ is stable.

A translation quiver Γ is preprojective if the following hold:

(P1) There are no oriented cycles in Γ;
(P2) If z is non-projective vertex, then z− 6= ∅;
(P3) For each vertex z there exists some n ≥ 0 such that τn(z) is a projective

vertex.

A translation quiver Γ is preinjective if the following hold:

(I1) There are no oriented cycles in Γ;
(I2) If z is non-injective vertex, then z+ 6= ∅;
(I3) For each vertex z there exists some n ≥ 0 such that τ−n(z) is an injective

vertex.

Again, let Γ be a translation quiver. A function f : Γ0 → Z is additive if for all
non-projective vertices z we have

f(τ(z)) + f(z) =
∑

y∈z−

f(y).

For example, if C is a component of the Auslander-Reiten quiver of an algebra A
with dimK IrrA(X, Y ) ≤ 1 for all X, Y ∈ C, then f([X]) := l(X) is an additive
function on the translation quiver C.

We will often investigate translation quivers without multiple arrows. In this case,
we do not mention the map σ, since it is uniquely determined by the other data.

By condition (T2) we know that each non-projective vertex z of Γ yields a subquiver
of the form

y1

α1

��=
==

==
==

=

τ(z)

σ(αn) !!B
BB

BB
BB

B

σ(α1)
==||||||||
... z

yn

αn

@@��������

Such a subquiver is called a mesh in Γ. (Recall that there could be more than one
arrow from τ(z) to yi and therefore also from yi to z. In this case, the map σ yields
a bijection between the set of arrows yi → z and the set of arrows τ(z) → yi.)
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Now let K be a field, and let Γ = (Γ0,Γ1, s, t, τ, σ) be a translation quiver. We
look at the path category KΓ := K(Γ0,Γ1, s, t) of the quiver (Γ0,Γ1, s, t). For each
non-projective vertex z we call the linear combination

ρz :=
∑

α : y→z

α · σ(α)

the mesh relation associated to z, where the sum runs over all arrows ending in
z. This is an element in the path category KΓ.

The mesh category K〈Γ〉 of the translation quiver Γ is by definition the factor
category of KΓ modulo the ideal generated by all mesh relations ρz where z runs
through the set Γ′

0 of all non-projective vertices of Γ.

Example: Let Γ be the following translation quiver:

w
δ

��@
@@

@@
@@

@

v

β
??~~~~~~~~

γ

��@
@@

@@
@@

@ yoo_ _ _ _ _ _ _

ξ

��?
??

??
??

u

α
??��������

xoo_ _ _ _ _ _ _

ǫ
??~~~~~~~~

zoo_ _ _ _ _ _ _

This is a translation quiver without multiple arrows. The dashed arrows describe τ ,
they start in some z and end in τ(z). Thus we have three projective vertices u, v, w
and three injective vertices w, y, z. The mesh relations are

γα = 0,

δβ + ǫγ = 0,

ξǫ = 0.

For example, in the path category KΓ we have dim HomKΓ(u, y) = 2. But in the
mesh category K〈Γ〉, we obtain HomK〈Γ〉(u, y) = 0.

Assume that Γ = (Γ0,Γ1, s, t, τ, σ) is a translation quiver without multiple arrows.
A function

d : Γ0 ∪ Γ1 → N1

is a valuation for Γ if the following hold:

(V1) If α : x→ y is an arrow, then d(x) and d(y) divide d(α);
(V2) We have d(τ(z)) = d(z) and d(τ(z) → y) = d(y → z) for every non-projective

vertex z and every arrow y → z.

If d is a valuation for Γ, then we call (Γ, d) a valued translation quiver. If d is a
valuation for Γ with d(x) = 1 for all vertices x of Γ, then d is a split valuation.

Our main and most important examples of valued translation quivers are the fol-
lowing:
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Let A be a finite-dimensionalK-algebra. For an A-moduleX denote its isomorphism
class by [X]. If X and Y are indecomposable A-modules, then as before define

F (X) := EndA(X)/ rad(EndA(X))

and

IrrA(X, Y ) := radA(X, Y )/ rad2
A(X, Y ).

Let τA be the Auslander-Reiten translation of A.

The Auslander-Reiten quiver ΓA of A has as vertices the isomorphism classes
of indecomposable A-modules. If X and Y are indecomposable A-modules, there

is an arrow [X] // [Y ] if and only if IrrA(X, Y ) 6= 0. Define τ([Z]) := [τA(Z)]

if Z is indecomposable and non-projective. In this case, we draw a dotted arrow

[τA(Z)] oo_ _ _ [Z].

For each vertex [X] of ΓA define

dX := dA([X]) := dimKF (X),

and for each arrow [X] → [Y ] let

dXY := dA([X] → [Y ]) := dimK IrrA(X, Y ).

When we display arrows in ΓA we often write [X]
dXY−−→ [Y ].

For an indecomposable projective module P and an indecomposable module X let
rXP be the multiplicity of X in a direct sum decompositions of rad(P ) into inde-
composables, i.e.

rad(P ) = XrXP ⊕ C

for some module C and rXP is maximal with this property.

Lemma 7.43. For a finite-dimensional K-algebra the following hold:

(i) Γ(A) := (ΓA, dA) is a translation quiver;
(ii) The valuation dA is split if and only if for each indecomposable A-module X

we have EndA(X)/ rad(EndA(X)) ∼= K (For example, if K is algebraically
closed, then dA is a split valuation.);

(iii) A vertex [X] of (Γ, dA) is projective (resp. injective) if and only if X is
projective (resp. injective).

Proof. We have IrrA(X,X) = 0 for every indecomposable A-module X. (Recall that
every irreducible map between indecomposable modules is either a monomorphism
or an epimorphism.) Thus the quiver ΓA does not have any loops. If Z is an
indecomposable non-projective module, then the skew fields F (τA(Z)) and F (Z) are
isomorphic, and dimK IrrA(τA(Z), Y ) = dimK IrrA(Y, Z) for each indecomposable
module Y . This shows that ΓA is locally finite, and that the conditions (T1), (T2),
(T3) and (V2) are satisfied. Since IrrA(X, Y ) is an F (X)op-F (Y )-bimodule, also
(V1) holds.

...
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�

If C is a connected component of (ΓA, dA) such that C is a preprojective (resp. prein-
jective) translation quiver, then C is called a preprojective (resp. preinjective)
component of ΓA.

An indecomposable A-module X is preprojective (resp. preinjective) if [X] lies
in a preprojective (resp. preinjective) component of ΓA.

Let Γ be a translation quiver with a split valuation d. Then we define the expansion
(Γ, d)e of Γ as follows:

The quiver (Γ, d)e has the same vertices as (Γ, d), and also the same translation τ .
For every arrow α : x → y in Γ, we get a sequence of d(x → y) arrows αi : x → y
where 1 ≤ i ≤ d(α). (Thus the arrows in (Γ, d)e starting in x and ending in y are
enumerated, there is a first arrow, a second arrow, etc.) Now σ sends the ith arrow
y → z to the ith arrow τ(z) → y provided z is a non-projective vertex.

7.11. Examples of Auslander-Reiten quivers. (a): Let K = R and set

A =

(
R C

0 C

)
⊂M2(C).

Clearly, A is a 5-dimensional K-algebra. Let e11 = ( 1 0
0 0 ) and e22 = ( 0 0

0 1 ). Set

M = Ae11 = [ R
0 ] and N = Ae22 = [ C

C
] .

These are the indecomposable projective A-modules, and we have AA = M ⊕N .

We can identify HomA(M,N) with C since

HomA(M,N) = radA(M,N) ∼= e11Ae22 ∼= C.

Next, we observe that rad(M) = 0 and rad(N) = [ C
0 ] = [ R

0 ] ⊕ [ R
0 ]. It follows that

the obvious map M ⊕M → N is a sink map. Furthermore, it is easy to check that
EndA(M) ∼= R, F (M) ∼= R, EndA(N) ∼= C and F (N) ∼= C.

We have

2 = rMN =
dimK IrrA(M,N)

dimKF (M)
=

dimK IrrA(M,N)

1

This implies dimK IrrA(M,N) = 2. Thus M → N is a source map. We get an
Auslander-Reiten sequence 0 →M → N → Q→ 0 where Q =

[
C/R

C

]
.

Next, we look for the source map starting in N : We have dimK IrrA(N,Q) =
dimK IrrA(M,N) = 2 and dimKF (Q) = 1. Thus N → Q ⊕ Q is a source map.
We obtain an Auslander-Reiten sequence 0 → N → Q ⊕ Q → R → 0 where
R = [ 0

C
].
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The modules τ−1(M) and τ−1(N) are injective, thus the following is the Auslander-
Reiten quiver of A:

dN = 2 [ C
C

]

2

""D
DD

DD
DD

D
[ 0

C
]oo_ _ _ _ _ _ _ _ _

dM = 1 [ R
0 ]

2
>>}}}}}}}} [

C/R

C

]
2

<<zzzzzzzz
oo_ _ _ _ _ _ _ _

So there are just four indecomposable A-modules up to isomorphism. Using dimen-
sion vectors it looks as follows:

2 2
1

��<
<<

<<
<<

<
0
1

oo_ _ _ _ _ _ _

1 1
0

@@��������
1
1

@@��������
oo_ _ _ _ _ _ _

Note that the valuation of the vertices remains constant on τ -orbits (and τ−1-orbits),
so it is enough to display them only once per orbit.

(b): Next, let

A =

(
k K
0 K

)
⊂M2(K)

where k ⊂ K is a field extension of dimension three, e.g. k = Q and K = Q( 3
√

2).
The indecomposable projective A-modules are

M = Ae11 = [ k
0 ] and N = Ae22 = [ K

K ] .

In this case there are 6 indecomposable A-modules, and the Auslander-Reiten quiver
ΓA looks like this:

dN = 3 3
1

3

��<
<<

<<
<<

<
3
2

3

��<
<<

<<
<<

<
oo_ _ _ _ _ _ _ 0

1
oo_ _ _ _ _ _ _

dM = 1 1
0

3

@@��������
2
1

3

@@��������
oo_ _ _ _ _ _ _ 1

1

3

@@��������
oo_ _ _ _ _ _ _

(c): Here is the Auslander-Reiten quiver of the algebra A = KQ/I where Q is the
quiver

1
a

����
��

��
�

c

��=
==

==
==

2

b ��=
==

==
==

3

d����
��

��
�

4

and I is the ideal generated by ba− dc:
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0
1 0

1

  B
BB

BB
BB

B

0
0 1

0

  B
BB

BB
BB

B

oo_ _ _ _ _ _ _ _ 1
1 0

0

  B
BB

BB
BB

B

oo_ _ _ _ _ _ _ _

0
0 0

1

>>||||||||

��0
00

00
00

00
00

00
00

00

0
1 1

1

  B
BB

BB
BB

B

>>||||||||

��0
00

00
00

00
00

00
00

00

oo_ _ _ _ _ _ _ _ 1
1 1

0

>>||||||||

��0
00

00
00

00
00

00
00

00

oo_ _ _ _ _ _ _ _ 1
0 0

0
oo_ _ _ _ _ _ _ _

1
1 1

1

>>||||||||

0
0 1

1

FF�����������������
0

1 0
0

FF�����������������
oo_ _ _ _ _ _ _ _ 1

0 1
0

FF�����������������
oo_ _ _ _ _ _ _ _

End of Lecture 44

7.12. Knitting preprojective components. Let A be a finite-dimensional K-
algebra.

Basic idea: Let X be an indecomposable A-module. Whenever the sink map ending
in X is known, we can construct the source map starting in X. In Γ(A) = (ΓA, dA)
the situation around the vertex [X] looks like this:

[Y1]

��+
++

++
++

++
++

++
++

++
++

++
++

++
[τ−1

A (Y1)]oo_ _ _ _ _ _ _ _

...
...

[Yr]

!!B
BB

BB
BB

B
[τ−1

A (Yr)]oo_ _ _ _ _ _ _ _

[X]

::vvvvvvvvv

$$I
II

II
II

II
I

HH��������������������������

��.
..

..
..

..
..

..
..

..
..

..
..

..

[I1]

=={{{{{{{{
[P1]

...
...

[Is]

II�������������������������
[Pt]
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Here the Yi are non-injective modules, the Ii are injective, and the Pi are projective.
The sink map ending in X is of the form Y → X where

Y =

r⊕

i=1

Y
dYiX/dYi

i ⊕
s⊕

i=1

I
dIiX/dIi

i .

To get the source map X → Z, we have to translate the non-injective modules Yi

using τ−1
A . Note that

dXτ−1
A

(Yi)
= dYiX and dτ−1

A
(Yi)

= dYi

for all i. Furthermore, we have to check if X occurs as a direct summand of rad(P )
where P runs through the set of indecomposable projective modules. In this case,
there is an arrow [X] → [P ] with valuation

dXP = dimK IrrA(X,P ) = rXP · dimKF (X).

We get

Z =
r⊕

i=1

τ−1
A (Yi)

d
Xτ

−1
A

(Yi)
/d

τ
−1
A

(Yi) ⊕
t⊕

i=1

P
dXPi

/dPi

i .

If X is non-injective, we get a mesh

[τ−1
A (Y1)]

��1
11

11
11

11
11

11
11

11
11

11
11

11
11

...

[τ−1
A (Yr)]

&&LLLLLLLLLL

[X]

::vvvvvvvvv

$$I
II

II
II

II
I

HH��������������������������

��.
..

..
..

..
..

..
..

..
..

..
..

..
.

[τ−1
A (X)]oo_ _ _ _ _ _ _ _ _ _ _

[P1]

88rrrrrrrrrrr

...

[Pt]

FF



























in the Auslander-Reiten quiver Γ(A) of A. We have

dτ−1
A

(Yi)τ
−1
A

(X) = dXτ−1
A

(Yi)
and dτ−1

A
(X) = dX .

Knitting preparations

(i) Determine all indecomposable projectives P1, . . . , Pn and all indecomposable
injectives I1, . . . , In.
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(ii) For each 1 ≤ i ≤ n determine rad(Pi) and decompose it into indecomposable
modules, say

rad(Pi) =

ri⊕

j=1

R
rij

ij

where rij ≥ 1, and the Rij are indecomposable such that Rik
∼= Ril if and

only if k = l.
(iii) For each 1 ≤ i ≤ n determine dPi

= dimKF (Pi).

Note that
dRijPi

= dimK IrrA(Rij, Pi) = rij · dRij

where rij = rRijPi
. Furthermore, we know that

F (Pi) = EndA(Pi)/ rad(EndA(Pi)) ∼= EndA(Pi/ rad(Pi)) ∼= EndA(Si)

where Si is the simple A-module with Si
∼= Pi/ rad(Pi).

The knitting algorithm

Let −1∆ be the empty quiver.

We define inductively quivers n∆, n∆′, n∆′′, n ≥ 0 which are subquivers of (ΓA, dA).

For all n ≥ 1 these quivers will satisfy

n−1∆ ⊆ n∆ ⊆ n−1∆
′′ ⊆ n∆′ ⊆ n∆′′.

By n∆, n∆′, n∆′′, we denote the set of vertices of n∆, n∆′, n∆′′, respectively.

(a0) Define 0∆: Let 0∆ be the quiver (without arrows) with vertices [S] where
S is simple projective.

(b0) Add projectives: For each [S] ∈ 0∆, if S ∼= Rij for some i, j, then (if it
wasn’t added already) add the vertex [Pi] with valuation dPi

, and add an
arrow [S] → [Pi] with valuation dSPi

= rSPi
· dS. We denote the resulting

quiver by 0∆
′.

(c0) Translate the non-injectives in 0∆: For each [S] ∈ 0∆ with S non-
injective, add the vertex [τ−1

A (S)] to 0∆
′ with valuation dτ−1

A
(S) = dS, and for

each arrow [S] → [Y ] constructed so far add an arrow [Y ] → [τ−1
A (S)] to 0∆

′

with valuation dY τ−1
A

(S) = dSY . We denote the resulting quiver by 0∆
′′.

Note that any source map starting in a simple projective module S is of the form
S → P where P is projective. (Proof: Assume there is an indecomposable non-
projective module X and an arrow [S] → [X]. Then there has to be an arrow
[τA(X)] → [S], a contradiction since [S] is a source in (ΓA, dA).) Thus we get P
from the data collected in (i), (ii) and (iii). More precisely, we have

P =
n⊕

i=1

P
dSPi

/dPi

i ,

and we know that dSPi
= rSPi

· dS.
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Now assume that for n ≥ 1 the quivers n−1∆, n−1∆
′ and n−1∆

′′ are already defined.
We also assume that for each vertex [X] ∈ n−1∆

′′ and each arrow [X] → [Y ] in

n−1∆
′′ we defined valuations dX and dXY , respectively.

(an) Define n∆: Let n∆ be the full subquiver of n−1∆
′′ with vertices [X] such

that all direct predecessors of [X] in n−1∆
′′ are contained in n−1∆, and if

[X] is a vertex with X ∼= Pi projective, then we require additionally that
[Rij ] ∈ n−1∆ for all j.

(bn) Add projectives: For each [X] ∈ n∆, if X ∼= Rij for some i, j, then (if
it wasn’t added already) add the vertex [Pi] to n−1∆

′′ with valuation dPi
,

and add an arrow [X] → [Pi] to n−1∆
′′ with valuation dXPi

= rXP · dX . We
denote the resulting quiver by n∆′.

(cn) Translate the non-injectives in n∆\n−1∆: For each [X] ∈ n∆\n−1∆ with
X non-injective, add the vertex [τ−1

A (X)] to n∆′ with valuation dτ−1
A

(X) = dX ,

and for each arrow [X] → [Y ] constructed to far add an arrow [Y ] → [τ−1
A (X)]

to n∆′ with valuation dY τ−1
A

(X) = dXY . We denote the resulting quiver by

n∆′′.

The algorithm stops if n∆ \ n−1∆ is empty for some n. It can happen that the
algorithm never stops.

Define

∞∆ =
⋃

n≥0

n∆ and ∞∆ =
⋃

n≥0

n∆.

Let [X] ∈ n∆, and let [X] → [Zi], 1 ≤ i ≤ t be the arrows in n∆′ starting in [X].
Then the corresponding homomorphism

X →
t⊕

i=1

Z
dXZi

/dZi

i

is a source map. Similarly, let [Yi] → [X], 1 ≤ i ≤ s be the arrows in n∆ ending in
[X]. Then the corresponding homomorphism

s⊕

i=1

Y
dYiX/dYi

i → X

is a sink map. The following lemma is now easy to prove:

Lemma 7.44. For all n ≥ −1 we have

n∆ = n(ΓA).

In particular, ∞∆ = ∞(ΓA).

Clearly, ∞∆ is a full subquiver of (ΓA, dA). One easily checks that ∞∆ is a translation
subquiver of (ΓA, dA) in the obvious sense.

The number of connected components of ∞∆ is bounded by the number of simple
projective A-modules.
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If we know the dimension vectors dim(Pi) and dim(Rij) for all i, j, then our knitting
algorithm yields an algorithm to determine dim(X) for any vertex [X] ∈ ∞∆:

Let [X] be a vertex in n∆ \ n−1∆, and let [X] → [Zi], 1 ≤ i ≤ t be the arrows in

n∆′ starting in [X]. Then X is non-injective if and only if

l(X) <
t∑

i=1

dXZi
· l(Zi).

In this case, we have

dim(τ−1(X)) = −dim(X) +
t∑

i=1

dXZi
· dim(Zi).

These considerations provide a knitting algorithm which is only based on dimension
vectors. We will prove the following result:

Theorem 7.45. Let [X], [Y ] ∈ ∞∆. Then [X] = [Y ] if and only if dim(X) =
dim(Y ).

Lemma 7.46. Let C be a connected component of (ΓA, dA). If

C ⊆ ∞∆,

then C is a preprojective component of (ΓA, dA).

Proof. (a): By construction, for each [X] ∈ n∆′′ we have τn
A(X) is projective for

some n ≥ 0.

(b): The quiver n∆ has no oriented cycles: One shows by induction on n that if
[X] → [Y ] is an arrow in n∆, then there exists a unique t ≤ n such that [Y ] ∈
t∆ \ t−1∆ and [X] ∈ t−1∆. The result follows.

(c): Let [X] ∈ n∆. Then [X] has a direct predecessor in n∆ if and only if X is not
in 0∆. �

Often knitting does not work. For example, we cannot even start with the knitting
procedure, if there is no simple projective module. Furthermore, if an indecompos-
able projective module Pi is inserted such that an indecomposable direct summand
of rad(Pi) does not show up in some step of the knitting prodedure, then we are
doomed and cannot continue.

But the good news is that in many interesting situations knitting does work. Here
are the two most important situations: Path algebras and directed algebras. In fact,
using covering theory, one can use knitting to construct the Auslander-Reiten quiver
of any representation-finite algebra (provided the characteristic of the ground field
is not two).

The dual situation: Obviously, there is also a “dual knitting algorithm” by starting
with the simple injective A-modules. As a knitting preparation one needs to de-
compose Ii/ soc(Ii) into a direct sum of indecomposables, and one needs the values
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dIi
= dimKF (Ii). If C is a component of Γ(A) which is obtained by the dual knitting

algorithm, then C is a preinjective component.

Lemma 7.47. Let Q be a finite connected quiver without oriented cycles. Then the
following hold:

(i) Γ(KQ) has a unique preprojective component P and a unique preinjective
component I;

(ii) P = I if and only if KQ is representation-finite.

Proof. Exercise. �

7.13. More examples of Auslander-Reiten quivers. (a): Let Q be the quiver

2

��=
==

==
==

3

��

4

����
��

��
�

1

and let A = KQ. Using the dimension vector notation, ΓA looks as follows:

1 0 0
1

""F
FFF

FFF
F

0 1 1
1

""F
FFF

FF
FF

oo_ _ _ _ _ _ _ _ 1 0 0
0

oo_ _ _ _ _ _ _ _

0 0 0
1

""F
FF

FF
FFF

��3
33

33
33

33
33

33
33

3

<<xxxxxxxx
1 1 1

2

""F
FF

FFF
FF

��3
33

33
33

33
33

33
33

3

<<xxxxxxxx
oo_ _ _ _ _ _ _ _ 1 1 1

1

""F
FF

FF
FF

F

��3
33

33
33

33
33

33
33

3

<<xxxxxxxx
oo_ _ _ _ _ _ _ _

0 1 0
1

<<xxxxxxxx
1 0 1

1

<<xxxxxxxx
oo_ _ _ _ _ _ _ _ 0 1 0

0
oo_ _ _ _ _ _ _ _

0 0 1
1

EE����������������
1 1 0

1

EE����������������
oo_ _ _ _ _ _ _ _ 0 0 1

0
oo_ _ _ _ _ _ _ _

Here is an interesting question: What happens with the Auslander-Reiten quiver of
KQ if we change the orientation of an arrow in Q?

For example, the path algebra of the quiver

2

��=
==

==
==

3

��

4

1

@@�������
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has the following Auslander-Reiten quiver:

1 0 1
1

��3
33

33
33

33
33

33
33

3
0 1 0

1
oo_ _ _ _ _ _ _ _

��3
33

33
33

33
33

33
33

3
1 0 0

0
oo_ _ _ _ _ _ _ _

0 1 1
1

""F
FF

FF
FFF

1 0 0
1

oo_ _ _ _ _ _ _ _

""F
FF

FFF
FF

0 1 0
0

oo_ _ _ _ _ _ _ _

0 0 1
1

<<xxxxxxxx

EE����������������

""F
FF

FFF
FF

1 1 1
2

oo_ _ _ _ _ _ _ _

""F
FF

FF
FF

F

<<xxxxxxxx

EE����������������
1 1 0

1
oo_ _ _ _ _ _ _ _

<<xxxxxxxx

EE����������������

0 0 1
0

<<xxxxxxxx
0 0 0

1
oo_ _ _ _ _ _ _ _

<<xxxxxxxx
1 1 1

1
oo_ _ _ _ _ _ _ _

<<xxxxxxxx

(b): Let Q be the quiver

1 2
boo aff

and let A = KQ/I where I is generated by the path aa. Clearly, A is finite-
dimensional, and has two simple modules, whch we denote by 1 and 2. The
Auslander-Reiten quiver of A looks like this:

2

##G
GG

GG
GG

GG
G

2
1

��<
<<

<<
<<

<
oo_ _ _ _ _ _ _ _ _

2
1

==zzzzzzzzzz

  B
BB

BB
BB

B
2

1 2

>>||||||||

��?
??

??
??

??
oo_ _ _ _ _ _ _ _ _ 2oo_ _ _ _ _ _ _

2
1 2

1

<<yyyyyyyy

!!D
DD

DD
DD

DD
D

2
2

AA���������
oo_ _ _ _ _ _ _ _

1

??��������� 2
2
1

@@����������
oo_ _ _ _ _ _ _ _ _ _

Note that this time, we did not display the dimension vectors of each indecomposable
module. Instead we used the composition factors 1 and 2 to indicate how the modules
look like. For example, the 4-dimensional A-module

2
1 2

1

has a simple top 2, its socle is isomorphic to 1⊕1. Note also that one has to identify
the two vertices on the upper left with the two vertices on the upper right. Thus ΓA

has in fact just 7 vertices. Sometimes one displays certain vertices more than once,
in order to obtain a nicer and easier to understand picture.

Clearly, ΓA does not contain a preprojective component. We have a simple projective
module, namely 1. So 0∆ = {1}. But then we see that 1∆ \ 0∆ = ∅. So there is just
one reachable vertex in ΓA.

We constructed ΓA “by hand”. In other words, our methods are not yet developed
enough to prove that this is really the Auslander-Reiten quiver of A.
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(c): Let A be the path algebra of the quiver

3

����
��
��
��
��
��
��

����
��

��
�

2

��
1

Then there is an infinite preprojective component in (ΓA, dA), which can be ob-
tained from the following picture by identifying the vertices in the first with the
corresponding vertices in the fourth row:

1
1
2

��=
==

==
==

=

2
3
3

��=
==

==
==

=
oo_ _ _ _ _ _ _ _ 4

4
5

��<
<<

<<
<<

<<

oo_ _ _ _ _ _ _ _ · · ·oo_ _ _ _ _ _ _

0
1
1

��=
==

==
==

=

@@��������
2

2
3

��=
==

==
==

=

@@��������
oo_ _ _ _ _ _ _ _ 3

4
4

��=
==

==
==

=

@@��������
oo_ _ _ _ _ _ _ _ · · ·oo_ _ _ _ _ _ _ _

��<
<<

<<
<<

<<
<<

AA�����������

0
0
1

��=
==

==
==

=

@@��������
1

2
2

��=
==

==
==

=

@@��������
oo_ _ _ _ _ _ _ _ 3

3
4

��=
==

==
==

=

@@��������
oo_ _ _ _ _ _ _ _ 4

5
5

��<
<<

<<
<<

<<

@@���������
oo_ _ _ _ _ _ _ _ · · ·oo_ _ _ _ _ _ _

1
1
2

@@��������
2

3
3

@@��������
oo_ _ _ _ _ _ _ _ 4

4
5

@@��������
oo_ _ _ _ _ _ _ _ · · ·oo_ _ _ _ _ _ _ _

AA�����������

Exercise: Determine n∆ for all n ≥ 0.

(d): Let

A =

[
R C

0 R

]
⊂ M2(C).

Using the dimension vector notation, we obtain an infinite preprojective component
of (ΓA, dA):

1 2
1

2

��<
<<

<<
<<

<
4
3

2

��<
<<

<<
<<

<
oo_ _ _ _ _ _ _ 6

5
oo_ _ _ _ _ _ _

2

��>
>>

>>
>>

>>
· · ·oo_ _ _ _ _ _ _

1 1
0

2

@@��������
3
2

2

@@��������
oo_ _ _ _ _ _ _ 5

4

2

@@��������
oo_ _ _ _ _ _ _ · · ·

2

>>~~~~~~~~~
oo_ _ _ _ _ _ _

(e): Let

A =




R C C

0 C C

0 0 R


 ⊂M2(C).
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Again using the dimension vector notation we get an infinite preprojective compo-
nent:

1
2
1
1

2

��7
77

77
7

2
2
1

2

��7
77

77
7

oo_ _ _ _ _ 4
3
3

2

��7
77

77
7

oo_ _ _ _ _ · · ·oo_ _ _ _ _

2
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0

2
CC������

2

��7
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7

4
3
2

2
CC������

2

��7
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7

oo_ _ _ _ _ 6
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4

2
CC������

2

��7
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7
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7
6

2

BB�������

2

��9
99
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oo_ _ _ _ _

1
1
0
0

2
CC������

1
1
0

2
CC������

oo_ _ _ _ _ 3
2
2

2
CC������

oo_ _ _ _ _ 3
3
2

2
CC������

oo_ _ _ _ _ · · ·oo_ _ _ _ _

(f): Let A = KQ/I where Q is the quiver

6

e

��

7
foo

5

d
��

8
goo

4
c // 3

b // 2
a // 1

and the ideal I is generated by abcdef and cdg. It turns out that (ΓA, DA) consists
of a single preprojective component:
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:
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E
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T
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BB
B
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BB
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(g): Let A = KQ/I where Q is the quiver

3

a

��
2

c

��
b
��
1

and I is the ideal generated by ba. The indecomposable projective A-modules are

of the form P1 = 1 , P2 = 2
1 1 , P3 =

3
2
1
. Then ∞∆ consists of a preprojective

component
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2
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oo_ _ _ _ _ _ _

which does not contain P3.

(h): Let A = KQ/I where Q is the quiver
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a

��
d

��

2

c

��
b
��
1

and I is the ideal generated by ba. The indecomposable projective A-modules are of

the form P1 = 1 , P2 = 2
1 1 , P3 =

3
2 1

1
. Then ∞∆ consists of two points, namely

P1 and P2:
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Note that one of the direct summands of the radical of P3 does not show up in the
course of the knitting algorithm. So we get 2∆ \ 1∆ = ∅.
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(i): Let A = KQ/I where Q is the quiver
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1

and I is the ideal generated by ba. The indecomposable projective A-modules are

of the form P1 = 1 , P2 = 2
1 1 , P3 =

3
2 4

1
, P4 = 4 . Then ∞∆ has two connected

components, one is an (infinite) preprojective component, and the other one consists
just of the vertex P4:
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(j): Let A = KQ/I where Q is the quiver

3

a

��
b
��
2

c

��
1

and I is the ideal generated by ca and cb. The indecomposable projective A-modules
are of the form P1 = 1 , P2 = 2

1 1 , P3 = 3
2 2 . Then ∞∆ consists of an infinite
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preprojective component containing an injective module:
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(l): Let A = K[T ]/(T 4). There is just one simple A-modules S, and all indecom-
posable A-modules are uniserial. The Auslander-Reiten quiver looks like this:

S
S
S
S

��
S
S
S

��

OO

hh

W
�

g

S
S

��

OO

hh

W
�

g

S

OO

hh

W
�

g

The only indecomposable projective A-module has length 4. For the other three
indecomposables we have τA(X) ∼= X. For example, the obvious sequence of the
form

0 → S
S → S ⊕ S

S
S
→ S

S → 0

is an Auslander-Reiten sequence.

(m): Let Q be the quiver

4
a

��=
==

==
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����
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��
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==
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3

b����
��

��
�

1

and set A = KQ/(ba).
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Using the socle series notation the Auslander-Reiten quiver of A looks as follows:

3
1

""F
FFFFFFF

2

%%JJJJJJJJJJJ
oo_ _ _ _ _ _ _ _ _ _ _ 4

3

��?
??

??
??

?
oo_ _ _ _ _ _ _ _ _ _ _

1

��=
==

==
==

==

??��������
2 3

1

$$H
HH

HH
HH

HH

::ttttttttttt
oo_ _ _ _ _ _ _ _ 4

3 2

!!D
DD

DD
DD

DD

<<xxxxxxxx
oo_ _ _ _ _ _ _ _ _ _ _ 4oo_ _ _ _ _ _ _ _

2
1

  B
BB

BB
BB

BB

==zzzzzzzzz
4

3 2 3
1

##G
GGGGGGG

::vvvvvvvvv
oo_ _ _ _ _ _ _ _ _ 4

2

@@���������
oo_ _ _ _ _ _ _ _ _

4
2 3

1

##G
GG

GG
GG

GG

;;wwwwwwww
4

2 3
1

  B
BB

BB
BB

BB
B

>>|||||||||
oo_ _ _ _ _ _ _ _ _ _

3

>>|||||||||| 4
2

1

;;wwwwwwwww
oo_ _ _ _ _ _ _ _ _ _ 3oo_ _ _ _ _ _ _ _ _ _

(n): Let Q be the quiver

1
a // 2
c

oo
b // 3
d

oo

and let A = KQ/I where I is generated by ba, cd, ac − db. The (ΓA, dA) looks as
follows (one has to identify the three modules on the left with the three modules on
the right):
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Note that A is a selfinjective algebra, i.e. an A-module is projective if and only if it
is injective.

(o): Let Q be the quiver

1 2oo a // 3
b // 4

c // 5 6oo
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and let A = KQ/I where I is generated by cba. Then (ΓA, dA) looks as follows:
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Next, we display the Auslander-Reiten quiver of KQ:
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————————————————————————————-

8. Grothendieck group and Ringel form

8.1. Grothendieck group. As before, let A be a finite-dimensional K-algebra,
and let S1, . . . , Sn be a complete set of representatives of isomorphism classes of the
simple A-modules. For a finite-dimensional module M let

dim(M) := ([M : S1], . . . , [M : Sn])

be its dimension vector. Here [M : Si] is the Jordan-Hölder multiplicity of Si in M .
Note that dim(M) ∈ Nn

0 ⊂ Zn. Set ei := dim(Si). Then

G(A) := K0(A) := Zn
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is the Grothendieck group of mod(A), and e1, . . . , en is a free generating set of
the abelian group G(A).

We can see dim as a map

dim: {A-modules}/∼= −→ G(A)

which associates to each modules M , or more precisely to each isomorphism class
[M ], the dimension vector dim(M).

Note that
n∑

i=1

[M : Si] = l(X).

Furthermore, dim is additive on short exact sequences , i.e. if 0 → X → Y →
Z → 0 is a short exact sequence, then dim(Y ) = dim(X) + dim(Z).

Lemma 8.1. If
f : {A-modules}/∼= −→ H

is a map which is additive on short exact sequences and H is an abelian group, then
there exists a unique group homomorphism f ′ : G(A) → H such that the diagram

{A-modules}/∼=
f

��

dim // G(A)

f ′

uuj j j j j j j j j j

H

commutes.

Proof. Define a group homomorphism f ′ : G(A) → H by f ′(ei) := f(Si) for 1 ≤ i ≤
n. We have to show that f ′(dim(M)) = f(M) for all finite-dimensional A-modules
M . We proof this by induction on the length l(M) of M . If l(M) = 1, then M ∼= Si

and we are done, since f ′(dim(M)) = f ′(ei) = f(Si).

Next, assume l(M) > 1. Then there exists a submodule U of M such that U 6= 0 6=
M/U . We obtain a short exact sequence

0 → U →M →M/U → 0.

Clearly, l(U) < l(M) and l(M/U) < l(M). Thus by induction f ′(dim(U)) = f(U)
and f ′(dim(M/U)) = f(M/U). Since f is additive on short exact sequences, we get

f(M) = f(U) + f(M/U) = f ′(dim(U)) + f ′(dim(M/U)) = f ′(dim(M)).

It is obvious that f ′ is unique. This finishes the proof. �

Here is an alternative construction of G(A): Let F (A) be the free abelian group
with generators the isomorphism classes of finite-dimensional A-modules. Let U(A)
be the subgroup of F (A) which is generated by the elements of the form

[X] − [Y ] + [Z]

if there is a short exact sequence 0 → X → Y → Z → 0. Define

G(A) := F (A)/U(A).
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For an A-module M set [M ] := [M ] + U(A). It follows that G(A) is isomorphic to

Zn with generators [Si], 1 ≤ i ≤ n. By induction on l(M) one shows that

[M ] =
n∑

i=1

[M : Si] · [Si].

8.2. The Ringel form. We assume now that A is a finite-dimensional K-algebra
with gl. dim(A) = d < ∞. In other words, we assume Extd+1

A (X, Y ) = 0 for all
A-modules X and Y and d is minimal with this property.

Define

〈X, Y 〉A :=
d∑

t=0

(−1)tdim Extt
A(X, Y ).

(If gl. dim(A) = ∞, but proj. dim(X) < ∞ or inj. dim(Y ) < ∞, then we can still
define 〈X, Y 〉A :=

∑
t≥0(−1)tdim Extt

A(X, Y ).)

Recall that Ext0
A(X, Y ) = HomA(X, Y ). We know that for each short exact sequence

0 → X ′ → X → X ′′ → 0

and an A-module Y we get a long exact sequence

0 // Ext0
A(X ′′, Y ) // Ext0

A(X, Y ) // Ext0
A(X ′, Y )

ssgggggggggggggggggggggggg

Ext1
A(X ′′, Y ) // Ext1

A(X, Y ) // Ext1
A(X ′, Y )

ssgggggggggggggggggggggggg

Ext2
A(X ′′, Y ) // Ext2

A(X, Y ) // Ext2
A(X ′, Y )

ssgggggggggggggggggggggggg

Ext3
A(X ′′, Y ) // · · ·

Now one easily checks that this implies

d∑

t=0

(−1)tdim Extt
A(X ′′, Y ) −

d∑

t=0

(−1)tdim Extt
A(X, Y )

+
d∑

t=0

(−1)tdim Extt
A(X ′, Y ) = 0.

In other words,
〈X ′′, Y 〉A − 〈X, Y 〉A + 〈X, Y 〉A = 0.

It follows that
〈−, Y 〉A : {A-modules}/∼= → Z

is a map which is additive (on short exact sequences). Thus 〈dim(X), Y 〉A :=
〈X, Y 〉A is well defined.
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Similarly, we get that

〈X, Y ′〉A − 〈X, Y 〉A + 〈X, Y ′′〉A = 0.

if 0 → Y ′ → Y → Y ′′ → 0 is a short exact sequence.

Thus 〈dim(M), dim(N)〉A := 〈M,N〉A is well defined, and we obtain a bilinear map

〈−,−〉A : G(A) ×G(A) → Z.

This map is determined by the values

〈ei, ej〉A =
d∑

t=0

(−1)tdim Extt
A(Si, Sj)

since dim(M) =
∑n

i=1[M : Si]ei.

————————————————————————————-

9. Reachable and directing modules

Let K be a field, and let A be a finite-dimensional K-algebra. By M = M(A) we
denote the category mod(A) of all finite-dimensional A-modules.

9.1. Reachable modules. A path of length n ≥ 0 in M is a finite sequence
([X0], [X1], . . . , [Xn]) of isomorphism classes of indecomposable A-modules Xi such
that for all 1 ≤ i ≤ n there exists a homomorphism Xi−1 → Xi which is non-zero
and not an isomorphism, in other words we assume radA(Xi−1, Xi) 6= 0. We say
that such a path ([X0], [X1], . . . , [Xn]) starts in X0 and ends in Xn. If n ≥ 1 and
[X0] = [Xn], then ([X0], [X1], . . . , [Xn]) is a cycle in M. In this case, we say that
the modules X0, . . . , Xn−1 lie on a cycle.

If X and Y are indecomposable A-modules, we write X � Y if there exists a path
from X to Y , and we write X ≺ Y if there is such a path of length n ≥ 1.

An indecomposable module X in M is reachable if there are only finitely many
paths in M which end in X. Let

E(A)

be the subcategory of reachable modules in M.

Furthermore, we call X directing if X does not lie on a cycle, or equivalently, if
X 6≺ X.

The following two statements are obvious:

Lemma 9.1. Every reachable module is directing.

Lemma 9.2. If X is a directing module, then rad(EndA(X)) = 0.
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Examples: (a): Let A = K[T ]/(Tm) for some m ≥ 2. Then none of the indecom-
posable A-modules is directing.

(b): If A is the path algebra of a quiver of type A2, then each indecomposable
A-module is directing.

Let Γ(A) = (ΓA, dA) be the Auslander-Reiten quiver of A. If Y is a reachable A-
module, and [X] is a predecessor of [Y ] in Γ(A), then by definition there exists a
path from [X] to [Y ] in ΓA. Thus, we also get a path from X to Y in M. This
implies that X is a reachable module as well. In particular, if Z is a reachable non-
projective module, then τA(Z) is reachable. So the Auslander-Reiten translation
maps the set of isomorphism classes of reachable modules into itself.

We define classes

∅ = −1M ⊆ 0M ⊆ · · · ⊆ n−1M ⊆ nM ⊆ · · ·
of indecomposable modules as follows: Set −1M = ∅. Let n ≥ 0 and assume
that n−1M is already defined. Then let nM be the subcategory of all indecompos-
able modules M in M with the following property: If N is indecomposable with
radA(N,M) 6= 0, then N ∈ n−1M.

Let

∞M =
⋃

n≥0

nM

be the full subcategory of M containing all M ∈ nM, n ≥ 0.

Then the following hold:

(a) n−1M ⊆ nM (Proof by induction on n ≥ 0);
(b) 0M is the class of simple projective modules;
(c) 1M contains additionally all indecomposable projective modules P such that

rad(P ) is semisimple and projective;
(d) 2M can contain non-projective modules (e.g. if A is the path algebra of a

quiver of type A2);
(e) nM is closed under indecomposable submodules;
(f) If g : Y → Z is a sink map, and

Y =

t⊕

i=1

Yi

a direct sum decomposition with Yi indecomposable and Yi ∈ n−1M for
all i, then Z ∈ nM; (Proof: Let N be indecomposable, and let 0 6= h ∈
radA(N,Z). Then there exists some h′ : N → Y with h = g ◦ h′.

N

h
��h′~~~

~
~

~

Y
g // Z

Thus we can find some 0 6= h′i : N → Yi. If h′i is an isomorphism, then
N ∼= Yi ∈ n−1M. If h′i is not an isomorphism, then N ∈ n−2M ⊆ n−1M.)
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(g) If Z ∈ nM is non-projective, then τA(Z) ∈ n−2M;
(h) We have

E(A) = ∞M.

Lemma 9.3. Let A be a finite-dimensional K-algebra. If Z is an indecomposable
A-module, then Z ∈ nM if and only if [Z] ∈ n(ΓA).

Proof. The staatement is correct for n = −1. Thus assume n ≥ 0. If Z ∈ nM and
t⊕

i=1

Yi → Z

is a sink map with Yi indecomposable for all i, then Yi ∈ n−1M for all i. Thus
by induction assumption [Yi] ∈ n−1(ΓA), and therefore [Z] ∈ n(ΓA). Vice versa, if
[Z] ∈ n(ΓA), then [Yi] ∈ n−1(ΓA). Thus Yi ∈ n−1M. Using (f) we get Z ∈ nM. �

Let
E(A)

be the full subquiver of all vertices [X] of ΓA such that X is a reachable module.
One easily checks that E(A) is again a valued translation quiver.

Summarizing our results and notation, we obtain

E(A) = ∞(ΓA) = ∞∆, and E(A) = ∞M.

Furthermore, E(A) is the full subcategory of all A-modules X such that [X] ∈ E(A).

We say that K is a splitting field for A if EndA(S) ∼= K for all simple A-modules
S.

Examples: If K is algebraically closed, then K is a splitting field for K. Also, if
A = KQ is a finite-dimensional path algebra, then K is a splitting field for A.

Roughly speaking, if K is a splitting field for A, then there are more combinatorial
tools available, which help to understand (parts of) mod(A). The most common
tools are mesh categories and integral quadratic forms.

Theorem 9.4. Let A be a finite-dimensional K-algebra, and assume that K is a
splitting field for A. Then the valuation for E(A) splits, and there is an equivalence
of categories

η : K〈E(A)e〉 → E(A).

Proof. Let I be a complete set of indecomposable A-modules (thus we take exactly
one module from each isomorphism class). Set

nI = I ∩ nM and ∞I = I ∩ E(A).

For X, Y ∈ ∞I we want to construct homomorphisms

ai
XY ∈ HomA(X, Y )

with 1 ≤ i ≤ dXY := dimK IrrA(X, Y ).
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If Y = P is projective, we choose a direct decomposition

rad(P ) =
⊕

X∈I

XdXP .

We know that dXP = dimK IrrA(X,P ). Let

ai
XP : X → P

with 1 ≤ i ≤ dXP be the inclusion maps.

By induction we assume that for all X, Y ∈ nI we have chosen homomorphisms
ai

XY : X → Y where 1 ≤ i ≤ dXY .

Let Z ∈ n+1I be non-projective, and let

0 → X
f−→
⊕

Y ∈nI

Y dXY
g−→ Z → 0

be the Auslander-Reiten sequence ending in Z, where the dXY component maps
X → Y of f are given by ai

XY , 1 ≤ i ≤ dXY . Now g together with the direct sum
decomposition ⊕

Y ∈nI

Y dXY

yields homomorphisms ai
Y Z : Y → Z, 1 ≤ i ≤ dXY = dY Z . These homomorphisms

obviously satisfy the equation

∑

Y ∈nI

dXY∑

i=1

ai
Y Za

i
XY = 0.

Denote the corresponding arrows from [X] to [Y ] in

Γ := E(A)e

by αi
XY where 1 ≤ i ≤ dXY .

We obtain a functor

η : K〈Γ〉 → E(A)

as follows: For X ∈ ∞I define

η([X]) := X and η
(
αi

XY

)
:= ai

XY .

This yields a functor K〈Γ〉 → E(A), since by the equation above the mesh relations
are mapped to 0.

Now we will show that η is bijective on the homomorphism spaces.

Before we start, note that EndA(X) ∼= K for all X ∈ E(A). (Proof: A reachable
module X does not lie on a cycle in M(A), thus rad(EndA(X)) = 0. This shows
that F (X) ∼= EndA(X). Let X ∈ ∞M = E(A). If X = P is projective, then

F (X) ∼= EndA(P/ rad(P )) ∼= EndA(S) ∼= K

where S is the simple A-module isomorphic to P/ rad(P ). Here we used that K is
a splitting field for A. If X is non-projective, then F (X) ∼= F (τA(X)). Furthermore
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we know that τn
A(X) is projective for some n ≥ 1. Thus by induction we get

F (X) ∼= EndA(X) ∼= K.)

Surjectivity of η: Let h : M → Z be a homomorphism in ∞I, and let Z ∈ nI. We
use induction on n. If M = Z, then h = c · 1M for some c ∈ K. Thus h = η(c · 1[M ]).
Assume now that M 6= Z. This implies that h is not an isomorphism. The sink
map ending in Z is

g = (ai
Y Z)Y,i :

⊕

Y ∈n−1I

Y dY Z → Z.

We get

h =
∑

Y,i

ai
Y ZhY,i.

By induction the homomorphisms hY,i : M → Y are in the image of η, and by the
construction of η also the homomorphisms ai

Y Z are contained in the image of η.
Thus h lies in the image of η

Injectivity of η: Let R be the mesh ideal in the path category KΓ. We investigate
the kernel K of

η : KΓ → ∞I.
Clearly, R ⊆ K. Next, let ω ∈ K. Thus ω ∈ HomKΓ([M ], [Z]) for some [M ] and
[Z]. We have to show that ω ∈ R. Assume [Z] ∈ nI. We use induction on n.
Additionally, we can assume that ω 6= 0. Thus there exists a path from [M ] to [Z].

If [M ] = [Z], then ω = c · 1[M ] and η(ω) = c · 1M = 0. This implies c = 0 and
therefore ω = 0.

Thus we assume that [M ] 6= [Z]. Now ω is a linear combination of paths from [M ]
to [Z], i.e. ω is of the form

ω =
∑

Y,i

αi
Y ZωY,i

where the ωY,i are elements in HomKΓ([M ], [Y ]). Note that [Y ] ∈ n−1I. Applying η
we obtain

0 = η(ω) =
∑

Y,i

ai
Y Zη(ωY,i).

If Z is projective, then each ai
Y Z : Y → Z is an inclusion map, and we have

Im(ai1
Y1Z) ∩ Im(ai2

Y2,Z) 6= 0

if and only if Y1 = Y2 and i1 = i2. This implies ai
Y Zη(ωY,i) = 0 for all Y, i. Since ai

Y Z

is injective, we get η(ωY,i) = 0. Thus by induction ωY,i ∈ R and therefore ω ∈ R.

Thus assume Z is not projective. Then we know the kernel of the map

g = (ai
Y Z)Y,i :

⊕

Y ∈n−1I

Y dY Z → Z

namely

f = (ai
XY )Y,i : X →

⊕

Y ∈n−1I

Y dY Z .
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Thus the map

h := (η(ωY,i))Y,i : M →
⊕

Y ∈n−1I

Y dY Z

factorizes through f , since g ◦ h = 0. So we obtain a homomorphism h′ : M → X
such that

(ai
XY )Y,i ◦ h′ = (η(ωY,i))Y,i

and therefore ai
XY ◦ h′ = η(ωY,i).

By the surjectivity of η there exists some ω′ : [M ] → [X] such that η(ω′) = h′. Thus
we see that

η
(
αi

XY ω
′
)

= ai
XY ◦ h′ = η(ωY,i).

In other words, η (ωY,i − αi
XY ω

′) = 0. By induction ωY,i − αi
XY ω

′ belongs to the
mesh ideal. Thus also

ω =
∑

Y,i

αi
Y ZωY,i

=
∑

Y,i

αi
Y Z

(
ωY,i − αi

XY ω
′
)

+
∑

Y,i

(
αi

Y Zα
i
XY

)
ω′

is contained in the mesh ideal. This finishes the proof. �

9.2. Computations in the mesh category. Let M and X be non-isomorphic
indecomposable A-modules such that X is non-projective. Let 0 → τA(X) → E →
X → 0 be the Auslander-Reiten sequence ending in X. Then

0 → HomA(M, τA(X)) → HomA(M,E) → HomA(M,X) → 0

is exact.

Let Γ = (ΓA, dA). If [X] and [Z] are vertices in E(A) such that none of the paths
in Γ starting in [X] and ending in [Z] contains a subpath of the form [Y ] → [E] →
[τ−1

A (Y )], then we have

HomK〈E(A)e〉([X], [Z]) = HomKΓ([X], [Z]).

Using this and the considerations above, we can now calculate dimensions of homo-
morphism spaces using in the mesh category K〈E(A)e〉.

Let Q be the quiver

2

��

5oo

1 3oo

4

OO

6oo

and let A = KQ. Here is the Auslander-Reiten quiver of A, using the dimension
vector notation:
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1 1
1 0
0 0

��=
==

=

0 0
1 1
1 0

��=
==

=

1 0
1 0
1 1

��=
==

=

1 1
1 1
0 0

��=
==

=

0 0
0 0
1 0

��=
==

=

0 0
0 0
0 1

1 0
1 0
0 0

��=
==

=

@@����
1 1
2 1
1 0

��=
==

=

@@����
1 0
2 1
2 1

��=
==

=

@@����
2 1
2 1
1 1

��=
==

=

@@����
1 1
1 1
1 0

��=
==

=

@@����
0 0
0 0
1 1

@@����

0 0
1 0
0 0

@@����

��=
==

=
// 0 0
1 1
0 0

// 1 0
2 1
1 0

//

@@����

��=
==

=

1 0
1 0
1 0

// 2 1
3 1
2 1

//

��=
==

=

@@����
1 1
2 1
1 1

// 2 1
3 2
2 1

//

��=
==

=

@@����
1 0
1 1
1 0

// 2 1
2 1
2 1

//

��=
==

=

@@����
1 1
1 0
1 1

// 1 1
1 1
1 1

//

@@����

��=
==

=

0 0
0 1
0 0

0 0
1 0
1 0

��=
==

=

@@����
1 0
2 1
1 1

��=
==

=

@@����
2 1
2 1
1 0

��=
==

=

@@����
1 1
2 1
2 1

��=
==

=

@@����
1 0
1 1
1 1

��=
==

=

@@����
1 1
0 0
0 0

��=
==

=

0 0
1 0
1 1

@@����
1 0
1 1
0 0

@@����
1 1
1 0
1 0

@@����
0 0
1 1
1 1

@@����
1 0
0 0
0 0

@@����
0 1
0 0
0 0

Here we display the locations of the indecomposable projective and the indecom-
posable injective A-modules:

P5

��>
>>

>>
◦

��;
;;

;;
◦

��;
;;

;;
◦

��;
;;

;;
◦

��?
??

??
I6

P2

  A
AA

AA

>>}}}}
◦

��;
;;

;;

AA����� ◦
��;

;;
;;

AA����� ◦
��;

;;
;;

AA����� ◦
��=

==
==

@@�����
I4

??����

P1

>>}}}}

  A
AA

A
// P3

// ◦ //

??�����

��>
>>

>>
◦ // ◦ //

��;
;;

;;

AA����� ◦ // ◦ //

��;
;;

;;

AA����� ◦ // ◦ //

��;
;;

;;

AA����� ◦ // I1 //

??����

��?
??

?
I3

P4

  A
AA

A

>>}}}}}
◦

��;
;;

;;

AA����� ◦
��;

;;
;;

AA����� ◦
��;

;;
;;

AA����� ◦
��=

==
==

@@�����
I2

��?
??

?

P6

??�����
◦

AA����� ◦

AA����� ◦

AA����� ◦

??�����
I5

The following pictures show how to compute dim HomA(Pi,−) for all indecom-
posable projective A-modules Pi. Note that the cases P2 and P4, and also P5

and P6 are dual to each other. We marked the vertices [Z] by a where a =
dim HomA(Pi, Z), provided none of the paths in E(A) starting in [Pi] and ending
in [Z] contains a subpath of the form [Y ] → [E] → [τ−1

A (Y )]. Of course, we can
compute dim HomA(X,−) for any indecomposable A-module.
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dim HomA(P1,−):

1

��;
;;

;;
;

1

��8
88

88
88

1

��8
88

88
88

1

��8
88

88
88

0

��8
88

88
88

0

1

��>
>>

>>
>>

@@������

2

��8
88

88
88

BB�������
2

��8
88

88
88

BB�������
2

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
0

BB�������

1

@@������

��>
>>

>>
>

// 1 // 2 //

AA�������

��;
;;

;;
;;

1 // 3 //

��8
88

88
88

BB�������
2 // 3 //

��8
88

88
88

BB�������
1 // 2 //

��8
88

88
88

BB�������
1 // 1 //

BB�������

��8
88

88
88

0

1

��>
>>

>>
>

@@�������

2

��8
88

88
88

BB�������
2

��8
88

88
88

BB�������
2

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
0

��8
88

88
88

1

AA������

1

BB�������
1

BB�������
1

BB�������
0

BB�������
0

dim HomA(P2,−):

1

��>
>>

>>
>>

0

��;
;;

;;
;;

1

��8
88

88
88

1

��8
88

88
88

0

��8
88

88
88

0

1

��>
>>

>>
>

@@������

1

��>
>>

>>
>>

>

@@��������
1

��8
88

88
88

BB�������
2

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
0

BB�������

0

AA������

��;
;;

;;
;;

// 0 // 1 //

@@�������

��>
>>

>>
>

1 // 2 //

��;
;;

;;
;;

AA�������
1 // 2 //

��8
88

88
88

BB�������
1 // 2 //

��8
88

88
88

BB�������
1 // 1 //

BB�������

��8
88

88
88

0

0

��>
>>

>>
>>

>

@@�������
1

��>
>>

>>
>

@@�������

2

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
1

��8
88

88
88

0

@@�������
1

AA������

1

BB�������
0

BB�������
1

BB�������
0

dim HomA(P3,−):

0

��>
>>

>>
>>

1

��;
;;

;;
;

0

��8
88

88
88

1

��8
88

88
88

0

��8
88

88
88

0

0

��>
>>

>>
>>

@@��������
1

��>
>>

>>
>>

@@������

1

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
0

BB�������

0

AA�������

��;
;;

;;
;;

// 1 // 1 //

@@������

��>
>>

>>
>

0 // 1 //

��;
;;

;;
;;

AA�������
1 // 2 //

��8
88

88
88

BB�������
1 // 1 //

��8
88

88
88

BB�������
0 // 1 //

BB�������

��8
88

88
88

1

0

��>
>>

>>
>>

>

@@�������
1

��>
>>

>>
>

@@�������

1

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
0

��8
88

88
88

0

@@�������
1

AA������

0

BB�������
1

BB�������
0

BB�������
0
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dim HomA(P5,−):

1

��>
>>

>>
>

0

��>
>>

>>
>>

> 0

��;
;;

;;
;;

1

��8
88

88
88

0

��8
88

88
88

0

0

��;
;;

;;
;;

AA������
1

��>
>>

>>
>

@@�������

0

��>
>>

>>
>>

>

@@��������
1

��8
88

88
88

BB�������
1

��8
88

88
88

BB�������
0

BB�������

0

BB�������

��8
88

88
88

// 0 // 0 //

@@�������

��>
>>

>>
>>

> 0 // 1 //

��>
>>

>>
>

@@�������

1 // 1 //

��;
;;

;;
;;

AA�������
0 // 1 //

��8
88

88
88

BB�������
1 // 1 //

BB�������

��8
88

88
88

0

0

��;
;;

;;
;;

AA�������
0

��>
>>

>>
>>

>

@@�������
1

��>
>>

>>
>

@@�������

1

��8
88

88
88

BB�������
0

��8
88

88
88

BB�������
1

��8
88

88
88

0

@@��������
0

@@�������
1

AA������

0

BB�������
0

BB�������
1

9.3. Directing modules.

Lemma 9.5. Let X be a directing A-module, then EndA(X) is a skew-field, and we
have Exti

A(X,X) = 0 for all i ≥ 1.

Proof. Since rad(EndA(X)) = 0, we know that EndA(X) is a skew-field. It is also
clear that Ext1

A(X,X) = 0: If 0 → X → M → X → 0 is a short exact sequence
which does not split, then we immediately get a cycle (X,Mi, X) where Mi is an
indecomposable direct summand of M .

Let C be the class of indecomposable A-modules M with M � X. We will show by
induction that Extj

A(M,X) = 0 for all M ∈ C and all j ≥ 1:

The statement is clear for j = 1. Namely, if Ext1
A(M,X) 6= 0, then any non-split

short exact sequence

0 → X →
⊕

i

Yi →M → 0

yields X ≺ M � X, a contradiction.

Next, assume j > 1. Without loss of generality assume M is not projective. Let
0 → Ω(M) → P0

ε−→ M → 0 be a short exact sequence where ε : P0 → M is a
projective cover of M . We get

Extj
A(M,X) ∼= Extj−1

A (Ω(M), X).

If Extj
A(M,X) 6= 0, then there exists an indecomposable direct summand M ′ of

Ω(M) such that Extj−1
A (M ′, X) 6= 0. But for some indecomposable direct summand

P of P0 we have M ′ � P ≺ M � X, and therefore M ′ ∈ C. This is a contradiction
to our induction assumption. �

Corollary 9.6. Assume gl. dim(A) <∞, and let X be a directing A-module. Then
the following hold:

(i) χA(X) = 〈X,X〉A = dimK EndA(X);
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(ii) If K is algebraically closed, then χA(X) = 1;
(iii) If K is a splitting field for A, and if X is preprojective or preinjective, then

χA(X) = 1.

As before, let A be a finite-dimensional K-algebra. An A-module M is sincere if
each simple A-module occurs as a composition factor of M .

We call the algebra A sincere if there exists an indecomposable sincere A-module.

Lemma 9.7. For an A-module M the following are equivalent:

(i) M is sincere;
(ii) For each simple A-module S we have [M : S] 6= 0;
(iii) If e is a non-zero idempotent in A, then eM 6= 0;
(iv) For each indecomposable projective A-module P we have HomA(P,M) 6= 0;
(v) For each indecomposable injective A-module I we have HomA(M, I) 6= 0

Proof. Exercise. �

Theorem 9.8. Let M be a sincere directing A-module. Then the following hold:

(i) proj. dim(M) ≤ 1;
(ii) inj. dim(M) ≤ 1;
(iii) gl. dim(A) ≤ 2.

Proof. (i): We can assume that M is not projective. Assume there exists an inde-
composable injective A-module I with HomA(I, τ(M)) 6= 0. Since M is sincere, we
have HomA(M, I) 6= 0. This yields M � I ≺ τ(M) ≺ M , a contradiction. Thus
proj. dim(M) ≤ 1.

(ii): This is similar to (i).

(iii): Assume gl. dim(A) > 2. Thus there are indecomposable A-modules with

Ext3
A(U, V ) 6= 0. Let 0 → Ω(U) → P0

ε−→ U → 0 be a short exact sequence with
ε : P0 → U a projective cover. It follows that Ext2

A(Ω(U), V ) ∼= Ext3
A(U, V ) 6= 0.

Thus proj. dim(Ω(U)) ≥ 2. Let U ′ be an indecomposable direct summand of Ω(U)
with proj. dim(U ′) ≥ 2. This implies HomA(I, τA(U ′)) 6= 0 for some indecomposable
injective A-module I. It follows that

M � I ≺ τA(U ′) ≺ U ′ ≺ P � M

where P is an indecomposable direct summand of P0, a contradiction. The first and
the last inequality follows from our assumption that M is sincere. This finishes the
proof. �

Theorem 9.9. Let X and Y be indecomposable finite-dimensional A-modules with
dim(X) = dim(Y ). If X is a directing module, then X ∼= Y .

Proof. (a): Without loss of generality we can assume that X and Y are sincere:
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Assume X is not sincere. Then let R be the two-sided ideal in A which is gen-
erated by all primitive idempotents e ∈ A such that eX = 0. It follows that
R ⊆ AnnA(X) := {a ∈ A | aX = 0} and R ⊆ AnnA(Y ) := {a ∈ A | aY = 0}.
Clearly, eX = 0 if and only eY = 0, since dim(X) = dim(Y ). We also know that
AnnA(X) is a two-sided ideal: If a1X = 0 and a2X = 0, then (a1 + a2)X = 0.
Furthermore, if aX = 0, then a′aX = 0 and also aa′′X ⊆ aX = 0 for all a′, a′′ ∈ A.
It follows that X and Y are indecomposable sincere A/R-modules. Furthermore, X
is also directing as an A/R-module, since a path in mod(A/R) can also be seen as
a path in mod(A). Thus from now on assume that X and Y are sincere.

(b): SinceX is directing, we get proj. dim(X) ≤ 1, inj. dim(X) ≤ 1 and gl. dim(A) ≤
2. Furthermore, we know that 〈dim(X), dim(X)〉A = dimK EndA(X) > 0, and
therefore

〈dim(X), dim(X)〉A = 〈dim(X), dim(Y )〉A
= dim HomA(X, Y ) − dim Ext1

A(X, Y ) + dim Ext2
A(X, Y ).

We have Ext2
A(X, Y ) = 0 since proj. dim(X) ≤ 1. It follows that HomA(X, Y ) 6= 0.

Similarly,

〈dim(X), dim(X)〉A = 〈dim(Y ), dim(X)〉A = dim HomA(Y,X) − Ext1
A(Y,X)

since inj. dim(X) ≤ 1. This implies HomA(Y,X) 6= 0. Thus, if X 6∼= Y , we get
X ≺ Y ≺ X, a contradiction. �

Motivated by the previous theorem, we say that an indecomposable A-module X is
determined by composition factors if X ∼= Y for all indecomposable A-modules
Y with dim(X) = dim(Y ).

Summary

Let A be a finite-dimensional K-algebra. By mod(A) we denote the category of
finite-dimensional left A-modules. Let ind(A) be the subcategory of mod(A) con-
taining all indecomposable A-modules.

The two general problems are these:

Problem 9.10. Classify all modules in ind(A).

Problem 9.11. Describe HomA(X, Y ) for all modules X, Y ∈ ind(A).

Note that we do not specify what “classify” and “describe” should exactly mean.

(a) Let E(A) be the subcategory of ind(A) containing all reachable A-modules.
For all X ∈ E(A) and all Y ∈ ind(A) we have dim(X) = dim(Y ) if and only
if X ∼= Y .

(b) The knitting algorithm gives ∞∆ = ∞(ΓA) = E(A), and for each [X] ∈ E(A)
we can compute dim(X).

(c) For X ∈ ind(A) we have [X] ∈ E(A) if and only if X ∈ E(A).



100 CLAUS MICHAEL RINGEL AND JAN SCHRÖER

(d) If K is a splitting field for A (for example, if K is algebraically closed), then
the mesh category K〈E(A)e〉 is equivalent to E(A).

(e) We can use the mesh category of compute dim HomA(X, Y ) for all X, Y ∈
E(A).

We cannot hope to solve Problems 9.10 and 9.11 in general, but for the subcategory
E(A) ⊆ ind(A) of reachable A-modules, we get a complete classification of reachable
A-modules (the isomorphism classes of reachable modules are in bijection with the
dimension vectors obtained by the knitting algorithm), and we know a lot of things
about the morphism spaces between them.

Keep in mind that there is also a dual theory, using “coreachable modules” etc.

Furthermore, for some classes of algebras we have E(A) = ind(A), for example
if A is a representation-finite path algebra, or more generally if ΓA is a union of
preprojective components.

9.4. The quiver of an algebra. Let A be a finite-dimensional K-algebra. The
valued quiver QA of A has vertices 1, . . . , n, and there is an arrow i → j if and
only if dimK Ext1

A(Si, Sj) 6= 0. In this case, the arrow has valuation

dij := dimK Ext1
A(Si, Sj).

Each vertex i of QA has valuation di := dimK EndA(Si).

Let Qop
A be the opposite quiver of A, which is obtained from QA by reversing all

arrows. The valuation of arrows and vertices stays the same.

Note that QA and Qop
A can be seen as valued translation quivers, where all vertices

are projective and injective.

Special case: Assume that A is hereditary. Then we have

dPjPi
= dij and dPi

= dSi
= di.

Thus, the subquiver PA of preprojective components of (ΓA, dA) is (as a valued
translation quiver) isomorphic to NQop

A .

We define the valued graph QA of A as follows: The vertices are again 1, . . . , n.
There is a (non-oriented) edge between i and j if and only if

Ext1
A(Si, Sj) ⊕ Ext1

A(Sj , Si) 6= 0.

Such an edge has as a valuation the pair

(dimEndA(Sj) Ext1
A(Si, Sj), dimEndA(Si)op Ext1

A(Si, Sj)) = (dij/dj, dij/di).

Example of a valued graph:

· · (2,1) · ·

The representation-finite hereditary algebras can be characterized as follows:
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Theorem 9.12. A hereditary algebra A is representation-finite if and only if QA is
a Dynkin graph.

The list of Dynkin graphs can be found in Skript 3. Note that non-isomorphic
hereditary algebras can have the same valued graph.

9.5. Exercises. 1: Let A be an algebra with gl. dim(A) ≥ d. Show that there exist
indecomposable A-modules X and Y with Extd

A(X, Y ) 6= 0.

————————————————————————————-

10. Cartan and Coxeter matrix

Let A be a finite-dimensional K-algebra. We use the usual notation:

• P1, . . . , Pn are the indecomposable projective A-modules;
• I1, . . . , In are the indecomposable injective A-modules;
• S1, . . . , Sn are the simple A-modules;
• Si

∼= top(Pi) ∼= soc(Ii).

(Of course, the modules Pi, Ii and Si are just sets of representatives of isomorphism
classes of projective, injective and simple A-modules, respectively.)

Let X and Y be A-modules.

If proj. dim(X) <∞ or inj. dim(Y ) <∞, then

〈X, Y 〉A := 〈dim(X), dim(Y )〉A :=
∑

t≥0

(−1)tdimK Exti
A(X, Y )

is the Ringel form of A. This defines a (not necessarily symmetric) bilinear form
〈−,−〉A : Zn × Zn → Z.

If proj. dim(X) <∞ or inj. dim(X) <∞, then set

χA(X) := χA(dim(X)) := 〈X,X〉A =
∑

t≥0

(−1)tdimK Exti
A(X,X).

This defines a quadratic form χA(−) : Zn → Z.

10.1. Coxeter matrix.

We did all the missing proofs in this section in the lectures. But you
also find them in Ringel’s book.

If dim(P1), . . . , dim(Pn) are linearly independent, then define the Coxeter matrix
ΦA of A by

dim(Pi)ΦA = −dim(Ii)
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for 1 ≤ i ≤ n. It follows that ΦA ∈Mn(Q).

Lemma 10.1. If gl. dim(A) < ∞, then dim(P1), . . . , dim(Pn) are linearly indepen-
dent.

Proof. We know that gl. dim(A) <∞ if and only if proj. dim(S) <∞ for all simple
A-modules S. Furthermore {dim(Si) | 1 ≤ i ≤ n} are a free generating set of the
Grothendieck group G(A). Let

0 → P (d) → · · · → P (1) → P (0) → S → 0

be a minimal projective resolution of a simple A-module S. This implies

d∑

i=0

(−1)idim(P (i)) = dim(S).

Thus the vectors dim(Pi) generate Zn. The result follows. �

Dually, if gl. dim(A) < ∞, then dim(I1), . . . , dim(In) are also linearly independent.
So ΦA is invertible in this case.

By the definition of ΦA, for each P ∈ proj(A) we have

(2) dim(P )ΦA = −dim(ν(P )).

Let M be an A-module, and let P (1) p−→ P (0) → M → 0 be a minimal projective
presentation of M . Thus we obtain an exact sequence

(3) 0 →M ′′ → P (1) → P (0) → M → 0

where M ′′ = Ker(p) = Ω2(M). We also get an exact sequence

(4) 0 → τA(M) → νA(P (1))
νA(p)−−−→ νA(P (0)) → νA(M) → 0

since the Nakajama functor νA is right exact.

There is the dual construction of τ−1
A : For an A-module N let

(5) 0 → N → I(0) q−→ I(1) → N ′′ → 0

be an exact sequence where 0 → N → I(0) q−→ I(1) is a minimal injective presentation
of N .

Applying ν−1
A yields an exact sequence

(6) 0 → ν−1
A /N) → ν−1

A (I(0))
ν−1

A
(q)−−−→ ν−1

A (I(1)) → τ−1
A (N) → 0

Lemma 10.2. We have

(7) dim(τA(M)) = dim(M)ΦA − dim(M ′′)ΦA + dim(νA(M)).
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Proof. From Equation (3) we get

−dim(P (1)) + dim(P (0)) = dim(M) − dim(M ′′).

Applying ΦA to this sequence, and using dim(P )ΦA = −dim(νA(P )) for all projec-
tive modules P , we get

dim(νA(P (1))) − dim(νA(P (0))) = dim(M)ΦA − dim(M ′′)ΦA.

From the injective presentation of τA(M) (see in Equation (4)) we get

dim(τA(M)) = dim(νA(P (1))) − dim(νA(P (0))) + dim(νA(M))

= dim(M)ΦA − dim(M ′′)ΦA + dim(νA(M)).

�

Lemma 10.3. If proj. dim(M) ≤ 2, then

(8) dim(τA(M)) ≥ dim(M)ΦA.

If proj. dim(M) ≤ 2 and inj. dim(τA(M)) ≤ 2, then

(9) dim(τA(M)) − dim(M)ΦA = dim(I)

for some injective module I.

Proof. If proj. dim(M) ≤ 2, then M ′′ is projective, which implies dim(M ′′)ΦA =
−dim(νA(M ′′)). Therefore

dim(τA(M)) − dim(M)ΦA = dim(νA(M ′′) ⊕ νA(M)),

and therefore this vector is non-negative. Note that νA(M ′′) is injective. If we
assume additionally that inj. dim(τA(M)) ≤ 2, then νA(M) is also injective, since it
is the cokernel of the homomorphism

νA(p) : νA(P (1)) → νA(P (0))

with νA(P (1)) and νA(P (0)) being injective. �

Lemma 10.4. If proj. dim(M) ≤ 1 and HomA(M, AA) = 0, then

(10) dim(τA(M)) = dim(M)ΦA.

Proof. If proj. dim(M) ≤ 1, then M ′′ = 0, since Equation (3) gives a minimal
projective presentation of M . By assumption νA(M) = D HomA(M, AA) = 0. Thus
the result follows directly from Equation (7). �

Note that Equation (10) has many consequences and applications. For example, if
A is a hereditary algebra, then each A-module M satisfies proj. dim(M) ≤ 1, and if
M is non-projective, then HomA(M, AA) = 0.

Lemma 10.5. Assume proj. dim(M) ≤ 2. If dim(τA(M)) = dim(M)ΦA, then
proj. dim(M) ≤ 1 and HomA(M, AA) = 0.

Proof. Clearly, dim(τA(M)) = dim(M)ΦA implies νA(M ′′)oplusνA(M) = 0. Since
M ′′ is projective, we have νA(M ′′) = 0 if and only if M ′′ = 0. �
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Using the notations from Equation (5) and (6) we obtain the following dual state-
ments:

(i) We have

dim(τ−1
A (N)) = dim(N)φ−1

A − dim(N ′′)Φ−1
A + dim(ν−1

A (N)).

(ii) If inj. dim(N) ≤ 2, then

dim(τ−1
A (N)) ≥ dim(N)Φ−1

A .

If inj. dim(N) ≤ 2 and proj. dim(τ−1
A (N)) ≤ 2, then

dim(τ−1
A (N)) − dim(N)Φ−1

A = dim(P )

for some projective module P .
(iii) If inj. dim(N) ≤ 1 and HomA(D(AA), N) = 0, then

dim(τ−1
A (N)) = dim(N)Φ−1

A .

Lemma 10.6. If 0 → U → X → V → 0 is a non-split short exact sequence of
A-modules, then

dim EndA(X) < dim EndA(U ⊕ V ).

Proof. Applying HomA(−, U), HomA(−, X) and HomA(−, V ) we obtain the com-
mutative diagram

0

��

0

��

0

��
0 // HomA(V, U) //

��

HomA(X,U) //

��

HomA(U,U)
δ //

��

Ext1
A(V, U)

0 // HomA(V,X) //

��

HomA(X,X) //

��

HomA(U,X)

��
0 // HomA(V, V ) // HomA(X, V ) // HomA(U, V )

with exact rows and columns. Since η does not split, we know that the connecting
homomorphism δ is non-zero. This implies

dim HomA(X,U) ≤ dim HomA(V, U) + dim HomA(U,U) − 1.

Thus we get

dim HomA(X,X) ≤ dim HomA(X,U) + dim HomA(X, V )

≤ dim HomA(V, U) + dim HomA(U,U) − 1

+ dim HomA(V, V ) + dim HomA(U, V )

= dim EndA(U ⊕ V ) − 1.

This finishes the proof. �
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Recall that for an indecomposable A-module X we defined

F (X) = EndA(X)/ rad(EndA(X)),

which is a K-skew field. If K is algebraically closed, then F (X) ∼= K for all indecom-
posables X. If K is a splitting field for K, then F (τ−n(Pi)) ∼= K and F (τn(Ii)) ∼= K
for all n ≥ 0.

An algebra A is directed if every indecomposable A-module is directing.

Let A be of finite-global dimension. Then we call the quadratic form χA weakly
positive if χA(x) > 0 for all x > 0 in Zn. If x ∈ Zn with χA(x) = 1, then x is called
a root of χA.

Theorem 10.7. Let A be a finite-dimensional directed algebra. If gl. dim(A) ≤ 2,
then the following hold:

(i) χA is weakly positive;
(ii) If K is algebraically closed, then dim yields a bijection between the set of

isomorphism classes of indecomposable A-modules and the set of positive
roots of χA.

Proof. (i): Let x > 0 in G(A) = Zn. Thus x = dim(X) for some non-zero A-module
X. We choose X such that dim EndA(X) is minimal. In other words, if Y is another
module with dim(Y ) = x, then dim EndA(X) ≤ dim EndA(Y ).

Let X = X1 ⊕ · · · ⊕ Xt with Xi indecomposable for all i. It follows from Lemma
10.6 that Ext1

A(Xi, Xj) = 0 for all i 6= j. (Without loss of generality assume
Ext1

A(X2, X1) 6= 0. Then there exists a non-split short exact sequence

0 → X1 → Y →
t⊕

i=2

Xi → 0

and Lemma 10.6 implies that dim EndA(Y ) < dim EndA(X), a contradiction.) Fur-
thermore, since Xi is directing, we have Ext1

A(Xi, Xi) = 0 for all i. Thus we get
Ext1

A(X,X) = 0. Since gl. dim(A) ≤ 2, we have

χA(x) = χA(dim(X)) = dim EndA(X) + dim Ext2
A(X,X) > 0.

Thus χA is weakly positive.

(ii): If Y is an indecomposable A-module, then we know that

χA(Y ) = dim EndA(Y ),

since Y is directing. We also know that EndA(Y ) is a skew field, which implies
F (Y ) ∼= EndA(Y ). Thus, χA(Y ) = 1 in case F (Y ) ∼= K.

Furthermore, we know that any two non-isomorphic indecomposable A-modules Y
and Z satisfy dim(Y ) 6= dim(Z). So the map dim is injective.

Assume additionally that x is a root of χA. Now

1 = χA(x) = dim EndA(X) + dim Ext2
A(X,X)
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shows that EndA(X) ∼= K. This implies that X is indecomposable.

It follows that the map dim from the set of isomorphism classes of indecomposable
A-modules to the set of positive roots is surjective. �

Note that a sincere directed algebra A always satisfies gl. dim(A) ≤ 2.

Corollary 10.8. If Q is a representation-finite quiver, then χKQ is weakly positive.

Proof. If KQ is representation-finite, then ΓKQ consists of a union of preprojective
components. Therefore all KQ-modules are directed. Furthermore, gl. dim(KQ) ≤
1. Now one can apply the above theorem. �

Proposition 10.9 (Drozd). A weakly positive integral quadratic form χ has only
finitely many positive roots.

Proof. Use partial derivations of χ and some standard results from Analysis. For
details we refer to [Ri1]. �

From now on we assume that K is a splitting field for A.

10.2. Cartan matrix. As before, we denote the transpose of a matrix M by MT .
For a ring or field R we denote the elements in Rn as row vectors.

The Cartan matrix CA = (cij)ij of A is the n× n-matrix with ijth entry equal to

cij := [Pj : Si] = dim(Pj)i.

Thus the jth column of CA is given by dim(Pj)
T .

Recall that the Nakayama functor ν = νA = D HomA(−, AA) induces an equivalence

ν : proj(A) → inj(A)

where ν(Pi) = Ii. It follows that

dim(Ii)j = dim HomA(Ii, Ij) = dim HomA(Pi, Pj) = cij.

(Here we used our assumption that K is a splitting field for A.)

Thus the ith row of CA is equal to dim(Ii). So we get

(11) dim(Pi) = eiC
T
A and dim(Ii) = eiCA.

Lemma 10.10. If gl. dim(A) <∞, then CA is invertible over Z.

Proof. Copy the proof of Lemma 10.1. �

But note that there are algebras A where CA is invertible over Q, but not over Z,
for example if A is a local algebra with non-zero radical.
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Assume now that the Cartan matrix CA of A is invertible. We get a (not necesssarily
symmetric) bilinear form

〈−,−〉′A : Qn × Qn → Q

defined by

〈x, y〉′A := xC−T
A yT .

Here C−T
A denote the inverse of the transpose CT

A of C. Furthermore, we define a
symmetric bilinear form

(−,−)′A : Qn × Qn → Q

by

(x, y)′A := 〈x, y〉′A + 〈y, x〉′A = x(C−1
A + C−T

A )yT .

Set χ′
A(x) := 〈x, x〉′A. This defines a quadratic form

χ′
A : Qn → Q.

It follows that

(x, y)′A = χ′
A(x+ y) − χ′

A(x) − χ′
A(y).

The radical of χ′
A is defined by

rad(χ′
A) = {w ∈ Qn | (w,−)′A = 0}.

The following lemma shows that the form 〈−,−〉′A we just defined using the Cartan
matrix, coincides with the Ringel form we defined earlier:

Lemma 10.11. Assume that CA is invertible. If X and Y are A-modules with
proj. dim(X) <∞ or inj. dim(Y ) <∞, then

〈dim(X), dim(Y )〉′A = 〈X, Y 〉A =
∑

t≥0

(−1)tdim Extt
A(X, Y ).

In particular, χ′
A(dim(X)) = χA(X).

Proof. Assume proj. dim(X) = d < ∞. (The case inj. dim(Y ) < ∞ is done dually.)
We use induction on d.

If d = 0, then X is projective. Without loss of generality we assume that X is
indecomposable. Thus X = Pi for some i. Let y = dim(Y ). We get

〈dim(X), dim(Y )〉′A = 〈dim(Pi), y〉′A = dim(Pi)C
−T
A yT = eiy

T = dim HomA(Pi, Y ).

Furthermore, we have Extt
A(Pi, Y ) = 0 for all t > 0.

Next, let d > 0. Let P → X be a projective cover of X and let X ′ be its kernel. It
follows that proj. dim(X ′) = d− 1. We apply HomA(−, Y ) to the exact sequence

0 → X ′ → P → X → 0.
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Using the long exact homology sequence we obtain
∑

t≥0

(−1)idim Extt
A(X, Y ) =

∑

t≥0

(−1)idim Extt
A(P, Y ) −

∑

t≥0

(−1)idim Extt
A(X ′, Y )

= 〈dim(P ), Y 〉′A − 〈dim(X ′), dim(Y )〉′A
= 〈dim(X), dim(Y )〉′A.

Here the second equality is obtained by induction. This finishes the proof. �

Let δij be the Kronecker function.

Corollary 10.12. If A is hereditary, then

〈ei, ej〉A =

{
1 if i = j,

−dim Ext1
A(Si, Sj) otherwise.

Proof. This holds since gl. dim(A) ≤ 1 and since K is a splitting field for A. �

Lemma 10.13. Let A = KQ be a finite-dimensional path algebra. Then for any
simple A-module Si and Sj we have dim Ext1

A(Si, Sj) is equal to the number of
arrows i→ j in Q.

Proof. Let aij be the number of arrows i→ j. Since A is finite-dimensional we have
aii = 0 for all i. The minimal projective resolution of the simple A-module Si is of
the form

0 →
n⊕

j=1

P
aij

j → Pi → Si → 0

Applying HomA(−, Sj) yields an exact sequence

0 → HomA(Si, Sj) → HomA(Pi, Sj) → HomA(P
aij

j , Sj) → Ext1
A(Si, Sj) → 0.

Thus dim Ext1
A(Si, Sj) = aij . �

Corollary 10.14. Let A = KQ be a finite-dimensional path algebra, and let X and
Y be A-modules with dim(X) = α and dim(Y ) = β. Then

〈X, Y 〉KQ = 〈α, β〉KQ =
∑

i∈Q0

αiβi −
∑

a∈Q1

αs(a)βt(a)

and

χKQ(X) = 〈α, α〉KQ =

n∑

i=1

α2
i −

∑

i<j

qijαiαj

where qij is the number of arrows a ∈ Q1 with {s(a), t(a)} = {i, j}.
Lemma 10.15. Assume that CA is invertible. Then

ΦA = −C−T
A CA.
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Proof. For each 1 ≤ i ≤ n we have to show that

(12) dim(Pi)ΦA = −dim(Ii).

We have

dim(Pi)(−C−T
A CA) = −dim(Ii) if and only if − dim(Ii)

T = −CT
AC

−1
A dim(Pi)

T .

Clearly, C−1
A dim(Pi)

T = eT
i , and −CT

Ae
T
i = −dim(Ii)

T . �

Example: Let Q be the quiver

2
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1

and let A = KQ. Then

CA =

(
1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)

and

ΦA =

(
−1 −1 −1 −1 −1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

)
.

Here are some calculations:

• (3, 1, 1, 1, 1)ΦA = (1, 0, 0, 0, 0) and (3, 1, 1, 1, 1)Φ2
A = −(1, 1, 1, 1, 1),

• (1, 1, 1, 0, 0)ΦA = (1, 0, 0, 1, 1) and (1, 1, 1, 0, 0)Φ2
A = (1, 1, 1, 0, 0),

• (2, 1, 1, 1, 1)ΦA = (2, 1, 1, 1, 1).

Lemma 10.16. For all x, y ∈ Qn we have

〈x, y〉′A = −〈y, xΦA〉′A = 〈xΦA, yΦA〉′A.

Proof. We have

〈x, y〉′A = xC−T
A yT = (xC−T

A yT )T = yC−1
A xT

= yC−T
A CT

AC
−1
A xT = −yC−T

A ΦT
Ax

T = −〈y, xΦA〉′A.
This proves the first equality. Repeating this calculation we obtain the second
equality. �

Lemma 10.17. If there exists some x > 0 such that xΦA = x, then χA is not weakly
positive.

Proof. We have (x, y)′A = 0 for all y if and only if x(C−1
A + C−T

A ) = 0 if and only if
xC−1

A = −xC−T
A if and only if xΦA = x. �

Corollary 10.18. If there exists some x > 0 such that xΦA = x, then χ′
A is not

weakly positive.

Proof. If x ∈ rad(χ′
A), then χ′

A(x) = 0. �
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Assume there exists an indecomposable KQ-module X with τm
KQ(X) ∼= X and

assume m ≥ 1 is minimal with this property. Set

Y =

m⊕

i=1

τ i
KQ(X).

Then τKQ(Y ) ∼= Y which implies

dim(Y ) = dim(Y )ΦKQ.

We get

(Y, Z)KQ = 〈Y, Z〉KQ + 〈Z, Y 〉KQ

= −〈dim(Z), dim(Y )ΦKQ〉 − 〈dim(Y )Φ−1
KQ, dim(Z)〉

= −(〈Y, Z〉KQ + 〈Z, Y 〉KQ).

This implies dim(Y ) ∈ rad(χKQ).

Lemma 10.19. For an A-module M the following hold:

(i) If proj. dim(M) ≤ 1, then

τA(M) ∼= D Ext1
A(M, AA).

(ii) If inj. dim(M) ≤ 1, then

τ−1
A (M) ∼= Ext1

Aop(D(M), AA).

Proof. Assume proj. dim(M) ≤ 1. Then in Equation (3) we have M ′′ = 0. Applying
HomA(−, AA) yields an exact sequence

0 HomA(M, AA) → HomA(P (0), AA) → HomA(P (1), AA) → Ext1
A(M, AA) → 0

of right A-modules. Keeping in mind that νA = D HomA(−, AA) we dualize the
above sequence get an exact sequence

0D Ext1A(M, AA) → νA(P (1)) → νA(P (0)) → νA(M) → 0.

This implies (i). Part (ii) is proved dually. �

10.3. Exercises. 1: Show the following: If the Cartan matrix CA is an upper
triangular matrix, then CA is invertible over Q. In this case, CA is invertible over Z

if and only if EndA(Pi) ∼= K for all i.

————————————————————————————-

11. Representation theory of quivers

Parts of this section are copied from Crawley-Boevey’s lecture notes “Lectures on
representations of quivers”, which you can find on his homepage.
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11.1. Bilinear and quadratic forms. Let Q = (Q0, Q1, s, t) be a finite quiver
with vertices Q0 = {1, . . . , n}, and let A = KQ be the path algebra of Q.

For vertices i, j ∈ Q0 let qij = qji be the number of arrows a ∈ Q1 with {s(a), t(a)} =
{i, j}. Note that the numbers qij do not depend on the orientation of Q.

For α = (α1, . . . , αn) ∈ Zn define

qQ(α) :=
n∑

i=1

α2
i −

∑

i≤j

qijαiαj.

We call the quadratic form qQ : Zn → Z the Tits form of Q.

The symmetric bilinear form (−,−)Q : Zn × Zn → Z of Q is defined by

(ei, ej)Q :=

{
−qij if i 6= j,

2 − 2qii otherwise.

As before, ei denotes the canonical basis vector of Zn with ith entry 1 and all other
entries 0.

We have

(α, α)Q = 2qQ(α),

(α, β)Q = qQ(α + β) − qQ(α) − qQ(β).

Note that qQ and (−,−)Q do not depend on the orientation of the quiver Q.

For α, β ∈ Zn define

〈α, β, 〉Q :=
∑

i∈Q0

αiβi −
∑

a∈Q1

αs(a)βt(a).

This defines a (not necessarily symmetric) bilinear form

〈−,−〉Q : Zn × Zn → Z

which is called the Euler form of Q. Clearly, we have

qQ(α) = 〈α, α〉Q,
(α, β)Q = 〈α, β〉Q + 〈β, α〉Q.

The bilinear form 〈−,−〉Q does depend on the orientation of Q.

The Tits form qQ is positive definite if qQ(α) > 0 for all 0 6= α ∈ Zn, and qQ is
positive semi-definite if qQ(α) ≥ 0 for all α ∈ Zn.

The radical of q is defined by

rad(qQ) = {α ∈ Zn | (α,−)Q = 0}.
For α, β ∈ Zn set β ≥ α if β − α ∈ Nn. This defines a partial ordering on Zn.

An element α = (α1, . . . , αn) ∈ Zn is sincere if αi 6= 0 for all i. We write α ≥ 0 if
αi ≥ 0 for all i, and α > 0 if α ≥ 0 and αi > 0 for some i.
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Let S1, . . . , Sn be the simple KQ-modules corresponding to the vertices of Q. (These
are the only simple KQ-modules if and only if Q has no oriented cycles.) It is easy
to check that dim Ext1

KQ(Si, Sj) equals the number of arrows i → j in Q. (Just
construct the minimal projective resolution

0 →
⊕

j∈Q0

P
aij

j → Pi → Si → 0

of Si, where aij is the number of arrows i → j in Q. Then apply the functor
HomKQ(−, Sj).)

Lemma 11.1. Let Q be a connected quiver, and let β ≥ 0 be a non-zero element in
rad(qQ). Then the following hold:

(i) β is sincere;
(ii) qQ is positive semi-definite;
(iii) For α ∈ Zn the following are equivalent:

(a) qQ(α) = 0;
(b) α ∈ Qβ;
(c) α ∈ rad(qQ).

Proof. (a): By assumption we have

(β, ei)Q = (2 − 2qii)βi −
∑

j 6=i

qijβj = 0.

If βi = 0, then ∑

j 6=i

qijβj = 0,

and since qij ≥ 0 for all i, j and β ≥ 0, we get βj = 0 whenever qij > 0. Since Q is
connected, we get β = 0, a contradiction. Thus we proved that β is sincere.

(b): The following calculation shows that qQ is positive semi-definite:

∑

i<j

qij
βiβj

2

(
αi

βi

− αj

βj

)2

=
∑

i<j

qij
βj

2βi

α2
i −

∑

i<j

qijαiαj +
∑

i<j

qij
βi

2βj

α2
j

=
∑

i6=j

qij
βj

2βi
α2

i −
∑

i<j

qijαiαj

=
∑

i

(2 − 2qii)βi
1

2βi
α2

i −
∑

i<j

qijαiαj = qQ(α).

For the last equality we used n times the equation

(2 − 2qii)βi =
∑

j 6=i

qijβj.

(c): If qQ(α) = 0, then the calculation above shows that αi/βi = αj/βj whenever
qij > 0. Since Q is connected it follows that α ∈ Qβ.

(d): If α ∈ Qβ, then α ∈ rad(qQ), since β ∈ rad(qQ).
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(e): Clearly, if α ∈ rad(qQ), then qQ(α) = 0. �

Theorem 11.2. Suppose that Q is connected.

(i) If Q is a Dynkin quiver, then qQ is positive definite;
(ii) If Q is an Euclidean quiver, then qQ is positive semi-definite and rad(qQ) =

Zδ, where δ is the dimension vector for Q listed in Figure 2;
(iii) If Q is not a Dynkin and not an Euclidean quiver, then there exists some

α ≥ 0 in Zn with qQ(α) < 0 and (α, ei)Q ≤ 0 for all i.

Proof. (ii): It is easy to check that δ ∈ rad(qQ): If there are no loops or multiple
edges we have to check that for all vertices i we have

2δi =
∑

j

δj

where j runs over the set of neighbours of i in Q. By Lemma 11.1 this implies that
qQ is positive semi-definite.

In each case there exists some vertex i such that δi = 1. Thus rad(qQ) = Qδ ∩Zn =
Zδ.

(i): Any Dynkin quiver Q with n vertices can be seen as a full subquiver of some

Euclidean quiver Q̃ with n + 1 vertices. We have q eQ(x) > 0 for all non-sincere

elements in Zn+1, since the x with q eQ(x) = 0 are all multiples of the sincere element

δ. So qQ is positive definite. (The form qQ is obtained from q eQ via restriction to the

subquiver Q of Q̃.)

(iii): Let Q be a quiver which is not Dynkin and not Euclidean. Then Q contains
a (not necessarily full) subquiver Q′ such that Q′ is a Euclidean quiver. Note that
any dimension vector of Q′ can be seen as a dimension vector of Q by just adding
some zeros in case Q has more vertices than Q′.

Let δ be the radical vector associated to Q′. If the vertex sets of Q′ and Q coincide,
then α := δ satisfies qQ(α) < 0.

Otherwise, if i is a vertex of Q which is not a vertex of Q′ but which is connected
to a vertex in Q′ by an edge, then α := 2δ + ei satisfies qQ(α) < 0. �

Let Q be a Euclidean quiver. If i is a vertex of Q with δi = 1, then i is called
an extending vertex. Observe that there always exists such an extending vertex.
Furthermore, if we delete an extending vertex (and the arrows attached to it), then
we will obtain a corresponding Dynkin diagram.

For Q a Dynkin or an Euclidean quiver, let

∆Q := {α ∈ Zn | α 6= 0, qQ(α) ≤ 1}
be the set of roots of Q.
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A root α ofQ is real if qQ(α) = 1. Otherwise, if qQ(α) = 0, it is called an imaginary
root. Let ∆re

Q and ∆im
Q be the set of real and imaginary roots, respectively.

Proposition 11.3. Let Q be a Dynkin or a Euclidean quiver. Then the following
hold:

(i) Each ei is a root;
(ii) If α ∈ ∆Q ∪ {0}, then −α and α + β are in ∆Q ∪ {0} where β ∈ rad(qQ);
(iii) We have

∆im
Q =

{
∅ if Q is Dynkin,

{rδ | 0 6= r ∈ Z} if Q is Euclidean;

(iv) Every root α ∈ ∆Q is either positive or negative;
(v) If Q is Euclidean, then the set (∆Q ∪ {0})/Zδ of residue classes modulo Zδ

is finite;
(vi) If Q is Dynkin, then ∆Q is finite.

Proof. (i): Clearly, we have qQ(ei) = 1, so ei is a root.

(ii): Let α ∈ ∆Q ∪ {0} and β ∈ rad(qQ). Since (β, α)Q = 0 = qQ(β), we have

qQ(α) = qQ(β + α) = qQ(β) + qQ(α) + (β, α)Q

= qQ(β − α) = qQ(β) + qQ(α) − (β, α)Q

Thus −α and α + β are in ∆Q ∪ {0}. (The case β = 0 yields qQ(−α) = qQ(α).)

(iii): This follows directly from Lemma 11.1.

(iv): Let α be a root. So we can write α = α+ − α− where α+, α− ≥ 0 and have
disjoint supports. Assume that both α+ and α− are non-zero. It follows immediately
that (α+, α−)Q ≤ 0. This implies

1 ≥ qQ(α) = qQ(α+) + qQ(α−) − (α+, α−)Q ≥ qQ(α+) + qQ(α−).

Thus one of α+ and α− is an imaginary root and is therefore sincere. So the other
one is zero, a contradiction.

(v): Let Q be an Euclidean quiver, and let e be an extending vertex of Q. If α is a
root with αe = 0, then δ− α and δ + α are roots which are positive at the vertex e.
Thus both are positive roots. This implies

{α ∈ ∆ ∪ {0} | αe = 0} ⊆ {α ∈ Zn | −δ ≤ α ≤ δ},
and obviously this is a finite set.

If β ∈ ∆ ∪ {0}, then β − βeδ belongs to the finite set

{α ∈ ∆ ∪ {0} | αe = 0}.

(vi): If Q is a Dynkin quiver, we can consider Q as a full subquiver of the cor-

responding Euclidean quiver Q̃ with extending vertex e. (Thus, we obtain Q by
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deleting e from Q̃.) We can now view a root α of Q as a root of Q̃ with αe = 0.
Thus by the proof of (v) we get that ∆ is a finite set. �

11.2. Gabriel’s Theorem. Combining our results obtained so far, we obtain the
following famous theorem:

Theorem 11.4 (Gabriel). Let Q be a connected quiver. Then KQ is representation-
finite if and only if Q is a Dynkin quiver. In this case dim yields a bijection between
the set of isomorphism classes of indecomposable KQ-modules and the set of positive
roots of qQ.

Proof. (a): We know that there is a unique preprojective component PKQ of the
Auslander-Reiten quiver ΓKQ.

(b): We have χKQ(X) = qQ(dim(X)) for all KQ-modules X.

(c): Assume KQ is representation-finite. This is the case if and only if PKQ =
ΓKQ. Since all indecomposable preprojective modules are directed, we know that
KQ is a directed algebra. Furthermore, we have gl. dim(KQ) ≤ 1 ≤ 2. So we
can apply Theorem xx and obtain a bijection between the isomorphism classes of
indecomposable KQ-modules and the set of positive roots of χKQ. Furthermore, an
element α ∈ Nn is a positive root of χKQ if and only if α ∈ ∆Q. We also know that
χKQ = qQ is weakly positive. But this implies that Q has to be a Dynkin quiver.
(For all quivers Q which are not Dynkin we found some α > 0 with qQ(α) ≤ 0.)

(d): If KQ is representation-infinite, the component PKQ is infinite. Each indecom-
posable module X in PKQ is directed, and K is a splitting field for KQ. Thus

χKQ(X) = qQ(dim(X)) = 1.

Furthermore, we know that there is no other indecomposable KQ-module Y with
dim(X) = dim(Y ). So we found infinitely many α ∈ Zn with qQ(α) = 1.

Suppose that Q is a Dynkin quiver. Then

∆Q = {α ∈ Zn | qQ(α) = 1}
is a finite set, a contradiction. �

————————————————————————————-

12. Cartan matrices and (sub)additive functions

In Figure 1 we define a set of valued graphs called Dynkin graphs. By definition
each of the graphs An, Bn, Cn and Dn has n vertices. The graphs An, Dn, E6, E7

and E8 are the simply laced Dynkin graphs.
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An · · · · · · · n ≥ 1

Bn · (1,2) · · · · · · n ≥ 2

Cn · (2,1) · · · · · · n ≥ 3

·

Dn · · · · · · · n ≥ 4

·

E6 · · · · ·

·

E7 · · · · · ·

·

E8 · · · · · · ·

F4 · · (1,2) · ·

G2 · (1,,3) ·

Figure 1. Dynkin graphs

In Figure 2 we define a set of valued graphs called Euclidean graphs. By definition

each of the graphs Ãn, B̃n, C̃n, D̃n, B̃Cn, B̃Dn and C̃Dn has n + 1 vertices. The

graphs Ãn, D̃n, Ẽ6, Ẽ7 and Ẽ8 are the simply laced Euclidean graphs. By

definition the graph Ã0 has one vertex and one loop, and Ã1 has two vertices joined
by two edges. Our table of Euclidean graphs does not only contain the graphs
themselves, but for each graph we also display a dimension vector which we will
denote by δ.

A quiver Q is a Dynkin quiver or an Euclidean quiver of the underlying graph
of Q (replace each arrow of Q by a non-oriented edge) is a simply laced Dynkin
graph or a simply laced Euclidean graph, respectively.

***********************************************************************
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Ãn 1 1 1 · · · 1 1 1

B̃n 1
(1,2)

1 1 · · · 1 1
(2,1)

1

C̃n 1
(2,1)

2 2 · · · 2 2
(1,2)

1

1 1

D̃n 1 2 2 · · · 2 2 1

1

2

Ẽ6 1 2 3 2 1

2

Ẽ7 1 2 3 4 3 2 1

3

Ẽ8 2 4 6 5 4 3 2 1

Ã11 2
(1,4)

1 Ã12 1
(2,2)

1

B̃Cn 2
(1,2)

2 2 · · · 2 2
(1,2)

1

1

B̃Dn 1 2 2 · · · 2 2
(2,1)

2

1

C̃Dn 1 2 2 · · · 2 2
(1,2)

1

F̃41 1 2 3
(1,2)

2 1 F̃42 1 2 3
(2,1)

4 2

G̃21 1 2
(1,3)

1 G̃22 1 2
(3,1)

3

Figure 2. Euclidean graphs and additive functions δ
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Part 3. Extras

13. Classes of modules

simple modules

serial modules

uniserial modules

cyclic modules

cocyclic modules

indecomposable modules

projective modules

injective modules

preprojective modules (which should really be called postprojective modules)

preinjective modules

regular modules

bricks

stones

exceptional modules

Schur modules

tree modules (2 different definitions)

string modules

band modules

(generalized) tilting modules

(generalized) partial tilting modules

torsion modules

torsion free modules

In the world of infinite dimensional modules we find names like the following:

Prüfer modules

p-adic modules
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generic modules

pure-injective modules

algebraically compact module

Classifications of modules

For some algebras of infinite representation type, a complete classification of inde-
composable modules is known. We list some of these classes of algebras:

Solved:

tame hereditary algebras

tubular algebras

Gelfand-Ponomarev algebras

dihedral 2-group algebras

quaternion algebra

special biserial algebras

clannish algebras

multicoil algebras

Open:

biserial algebras

However, one still has to be careful what it means to have a classification of all
indecomposable modules over an algebra. For example for tubular algebras, one can
parametrize all indecomposable modules by roots of a quadratic form. But given a
root, it is still very difficult to write down explicitely the corresponding indecom-
posable module(s). In fact, for tubular algebras this remains an open problem.

14. Classes of algebras

We list some names of classes of mostly finite-dimensional algebras which were stud-
ied in the literature:

Basic algebras

Biserial algebras

Canonical algebras
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Clannish algebras

Cluster-tilted algebra

Directed algebras

Dynkin algebras

Euclidean algebras

Gentle algebras

Group algebras

Hereditary algebras

Multicoil algebras

Nakayama algebras

Path algebras

Poset algebras

Preprojective algebras

Quasi-hereditary algebras

Quasi-tilted algebras

Representation-finite algebras

Selfinjective algebras

Semisimple algebras

Simply connected algebras

Special biserial algebras

String algebras

Strongly simply connected algebras

Symmetric algebras

Tame algebras

Tilted algebras

Tree algebras

Triangular algebras
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Trivial extension algebras

Tubular algebras

Wild algebras

Here are some classes of algebras, which are not finite-dimensional, but linked to
the finite-dimensional world:

Repetitive algebras

Enveloping algebras of Lie algebras

Quantized enveloping algebras

Ringel-Hall algebras

Cluster algebras

Hecke algebras

15. Dimensions

The concept of “dimension” occurs frequently and with different meanings in the
representation theory of algebras. Here just some of the most common dimensions:

dimension of a module as a vector space

projective dimension of a module

injective dimension of a modules

global dimension of an algebra

finitistic dimension of an algebra

dominant dimension of an algebra

representation dimension of an algebra

Krull-Gabriel dimension of an algebra

Krull-dimension of a commutative ring

dimension of a variety

***********************************************************************
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