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ABSTRACT. Let k be a field and A a finite dimensional k-category
which is a hereditary length category. We are going to show that the
support algebra of any object of A without self-extension is a finite
dimensional k-algebra. An object in A is said to be exceptional provided
it is indecomposable and has no self-extensions. For an algebraically
closed field k, Schofield has exhibited an algorithm for obtaining all
exceptional objects starting from the simple ones. We will present a
proof which works for arbitrary fields k.

Let A be an abelian category. The category A is said to be hereditary

provided Ext2 vanishes everywhere. Also, we recall that A is said to be a length

category provided every object in A has finite length.

Let k be a field. We say that A is a k-category provided k operates centrally
on all Hom-sets and such that the composition of maps is bilinear. Such a k-
category is said to be finite dimensional provided the vector spaces Hom(X, Y )
are finite dimensional, for all objects X, Y in A.

Exceptional objects have been studied in various contexts. The terminol-
ogy ‘exceptional’ was first used by Rudakov and his school [Ru] when dealing
with vector bundles. The relevance of exceptional objects in the representation
theory of finite dimensional hereditary k-algebras is well accepted; these excep-
tional modules are just the indecomposable partial tilting modules, they have
also been called stones by Kerner [K1] and Schur modules by Unger [U]. We
may refer to a recent survey of Kerner [K2] dealing with objects in hereditary
length categories, or at least with representations of wild quivers.

The aim of this report is to focus attention to some interesting developments
in the representation theory of finite dimensional hereditary algebras. This the-
ory has an apparent combinatorial flavour; one of the reasons is the role the
exceptional modules play. The existence of non-trivial finite dimensional mod-
ules without self-extensions should be considered as a feature which is peculiar
to non-commutative representation theory. As we want to show, the existence
of such modules seems also to be a kind of finiteness condition. We will present
a proof of a very useful theorem of Schofield [S2], for an arbitrary base field k.
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This result describes certain types of filtrations of an exceptional module X us-
ing as factors exceptional modules again; it is a kind of Jordan-Hölder theorem,
but the classical unicity assertion is replaced by the assertion that there are pre-
cisely s(X)−1 essentially different kinds of filtrations, where s(X) is the number
of isomorphism classes of composition factors of X . Our presentation should be
considered as a variation of the considerations by Crawley-Boevey [CB] dealing
with a braid group operation on exceptional sequences, see also [R]. Along the
way, we will focus attention to the so-called Bongartz complement of a sincere
exceptional module.

1. Subfactors of objects without self-extensions.

Let A be an abelian category and A an object in A. Let A′′ ⊆ A′ ⊆ A
be a chain of subobjects. Then A′/A′′ is said to be a subfactor of A. If U is a
subcategory of A, we denote by I(U) the class of all subfactors of objects in U .

Recall that for any object A ofA, one denotes by addA the full subcategory
given by all direct summands of finite direct sums of copies of A.

Lemma 1.1. Let A be a hereditary abelian category, and U a subcategory

which is closed under extensions. Then I(U) is closed under extensions.

Proof. Let A, B be objects in U . Let A′′ ⊆ A′ ⊆ A and B′′ ⊆ B′ ⊆ B be
chains of subobjects. Thus, A′/A′′ and B′/B′′ are subfactors of objects in U ,
and we consider an extension: assume that there is given an exact sequence

0→ A′/A′′ → C → B′/B′′ → 0.

We construct stepwise the following commutative diagram with exact rows:

0 −−−−→ A′/A′′ −−−−→ C −−−−→ B′/B′′ −−−−→ 0




y





y

∥

∥

∥

0 −−−−→ A/A′′ −−−−→ D −−−−→ B′/B′′ −−−−→ 0
x





x





∥

∥

∥

0 −−−−→ A −−−−→ E −−−−→ B′/B′′ −−−−→ 0
∥

∥

∥





y





y

0 −−−−→ A −−−−→ F −−−−→ B/B′′ −−−−→ 0
∥

∥

∥

x





x





0 −−−−→ A −−−−→ G −−−−→ B −−−−→ 0
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First, we form the induced exact sequence with respect to the inclusion A′/A′′ →
A/A′′ and obtain D with an inclusion map C → D. The exact sequence with
middle term D is induced from a third exact sequence with respect to the
canonical epimorphism A → A/A′; here we use that A is hereditary. In the
diagram above, this third exact sequence has middle term E and there is an
epimorphism E → D. Again using that A is hereditary, there exists an exact
sequence with middle term F and a monomorphism E → F which induces the
third exact sequence with respect to the inclusion map B′/B′′ → B/B′′. Finally,
we form the induced sequence with respect to the canonical epimorphism B →
B/B′′ and obtain an object G and an epimorphism G→ F . The maps

C → D← E → F ← G

show that C is a subfactor of G. Since A, B belong to U , and U is closed under
extensions, the object G belongs to U . This completes the proof.

Remark 1.2. The conclusion of Lemma 1.1 may be reformulated as fol-
lows: I(U) is a Serre subcategory of A. Recall that a subcategory B of A is said
to be a Serre subcategory provided for any exact sequence 0 → A1 → A2 →
A3 → 0 in A, the object A2 belongs to B if and only if both A1, A3 belong to
B.

2. The support of an object without self-extension

Let A be a length category. For any object A in A, we denote its iso-
morphism class by [A]. We denote by S(A) the ‘set’ of isomorphism classes of
simple objects in A (it may not be a set, for set-theoretical reasons, thus we
have used the quotation marks). Given two simple objects S, S′ in A, we draw
an arrow [S] → [S′] provided Ext1(S, S′) 6= 0. In this way, S(A) becomes a
‘quiver’ (again, we use quotation marks, for set-theoretical reasons).

The support supp A of an object A in A is the set of isomorphism classes
of composition factors of A, this is a ‘subset’ of S(A) (but since supp A is finite,
we now deal with a ‘subset’ which really is a set). We consider supp A as a full
‘subquiver’ of S(A). If S′ is a ‘subset’ of S, we denote by E(S′) the class of
objects of A with all composition factors belonging to S′.

Proposition 2.1. Let A be a hereditary length category. Let A be an

object in A with Ext1(A, A) = 0. Then the support supp A of A is a directed

quiver, and E(suppA) = I(addA). If A is, in addition, a finite dimensional k-

category, then the k-space Ext1(S, S′) is finite dimensional, for every pair S, S′

of composition factors of A.

Proof: Since Ext1(A, A) = 0, the subcategory addA of A is closed under
extensions. According to Lemma 1.1, the class I(addA) is closed under ex-
tensions. The composition factors of A belong to I(addA), thus any object in
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E(suppA) belongs to I(add A). Of course, conversely, the composition factors
of subfactors of objects in addA belong to supp A.

Let t be the Loewy length of A, this is the minimal length t of a filtration

0 = B0 ⊂ B1 ⊂ · · · ⊂ Bt = A

of A with semisimple factors Bi/Bi−1. Note that any object in addA, and
therefore also any any subfactor of such an object has Loewy length at most t.

Now assume that there is an oriented cycle in the quiver supp A, say [S0]→
[S1] → · · · → [Ss] = [S0], with simple objects Si. Since A is hereditary, one
may construct serial objects Un in A of arbitarily large finite length n, such
that the composition factors of Un are of the form S0, . . . , Ss−1. In particular,
Un belongs to I(addA). But the Loewy length of Un is equal to its length n,
since Un is serial. It follows that n ≤ t. This contradiction shows that there
cannot be any oriented cycle in suppA.

Let us assume now that A is, in addition, a finite dimensional k-category.
Let us start with a composition series

0 = A0 ⊂ A1 ⊂ · · · ⊂ An = A

of A, and let Si = Ai/Ai−1. Let b be the k-dimension of the endomorphism ring
of

⊕n

i=1
Si. Clearly, b is a common bound for the k-dimension of Hom(A′, A′′),

where A′, A′′ are subfactors of A. Let us fix 1 ≤ i, j ≤ n. The embedding
Si ⊂ A/Ai−1 yields a surjection

Ext1(A/Ai−1, Sj)→ Ext1(Si, Sj).

The exact sequence
0→ Ai−1 → A→ A/Ai−1 → 0

yields an exact sequence

Hom(Ai−1, Sj)→ Ext1(A/Ai−1, Sj)→ Ext1(A, Sj).

The epimorphism Aj → Sj yields a surjection

Ext1(A, Aj)→ Ext1(A, Sj),

and finally we consider the exact sequence

0→ Aj → A→ A/Aj → 0;

it yields an exact sequence

Hom(A, A/Aj)→ Ext1(A, Aj)→ Ext1(A, A).
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Note that the last term is zero. Altogether we see that

dim Ext1(Si, Sj) ≤ dim Ext1(A/Ai−1, Sj)

≤ dim Hom(Ai−1, Sj) + dimExt1(A, Sj)

≤ dim Hom(Ai−1, Sj) + dimExt1(A, Aj)

≤ dim Hom(Ai−1, Sj) + dimHom(A, A/Aj)

≤ 2 b.

This completes the proof.

Corollary 2.2. Let A be a finite dimensional hereditary length k-category.

Let A be an object without self-extensions with support supp A. Then there exists

a finite dimensional hereditary k-algebra Λ such that the category E(suppA) is

equivalent to the category of all Λ-modules of finite length. Under such an

equivalence, A corresponds to a faithful Λ-module.

If Λ is any k-algebra, a Λ-module X is said to be sincere provided every
simple Λ-module occurs as a composition factor of X .

Corollary 2.3. Let Λ be a hereditary k-algebra and X a finite dimensional

Λ-module. Assume that X is sincere and has no self-extensions. Then Λ is finite

dimensional and X is faithful.

Proof: Apply the previous considerations to the category A of all finite
dimensional Λ-modules.

It seems that finite dimensional modules without self-extensions have been
considered before mainly for k-algebras Λ which are finite dimensional. For Λ
hereditary, the corollary asserts that in essence one obtains in this way all such
modules. The fact that for a finite dimensional hereditary k-algebra, a sincere
module without self-extension is faithful, is well-known, see for example Kerner
[K2], Lemma 8.3.

Remark 2.4. Let A be a hereditary length category with an exceptional
object A whose support is S(A). If A is a finite dimensional k-category, then
Corollary 2.2 shows that A has enough projective objects and enough injec-
tive objects. In general, this may not be the case: consider a field extension

k ⊂ K of infinite degree, let Λ =

[

k 0
K K

]

, and let A be the category of all

(left) Λ-modules of finite length. The indecomposable projective Λ-module P of
length 2 is exceptional and satisfies supp P = S(A). The category A has enough
projective objects, but not enough injective objects.
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3. Schofield’s Theorem.

Let A be a finite dimensional k-category which is a hereditary length cate-
gory. We are going to present a theorem of Schofield which yields an inductive
way for constructing all exceptional objects A in A. The theorem asserts that
any exceptional object A is obtained as the middle term of a suitable exact
sequence

(∗) 0→ Uu → A→ V v → 0

where U, V are again exceptional objects and u, v are positive integers. More
precisely, there is such an exact sequence where U, V are exceptional objects
and where the objects U, V satisfy in addition the following conditions:

(∗∗) Hom(U, V ) = Hom(V, U) = Ext1(U, V ) = 0.

A pair (V, U) of exceptional objects satisfying these conditions (∗∗) is called
an orthogonal exceptional pair (the general notion of an exceptional pair will
be recalled below). Given an orthogonal exceptional pair (V, U), we want to
consider the full subcategory E(U, V ) of all objects of A which have a filtration
with factors of the form U and V . Note that for any object A in E(U, V ), there
exists an exact sequence of the form (∗) with non-negative integers u, v.

The reduction problem to be considered is the following: Given an excep-
tional object A, we want to find orthogonal exceptional pairs (V, U) such that A
belongs to E(U, V ), but A is not one of the two simple objects of E(U, V ). One
may ask for all possible pairs of this kind, and it is amazing that there exists
an intrinsic characterization of the number of such pairs.

Theorem 3.1 (Schofield). Let A be a finite dimensional k-category which

is a hereditary length category. Let A be an exceptional object in A. Then there

are precisely s(A)−1 orthogonal exceptional pairs (Vi, Ui) such that A belongs

to E(Ui, Vi) and is not a simple object in E(Ui, Vi).

Proof: We want to find exact sequences of the form (∗). Note that the
objects U, V have to belong to E(suppA), thus we may assume that A is equal
to E(suppA). This means that we may assume that A is the category of all
finite length Λ-modules, where Λ is a finite dimensional hereditary k-algebra
and that we consider a faithful exceptional Λ-module.

Thus, let Λ be a finite dimensional hereditary k-algebra and X a faithful
exceptional Λ-module.

We will need some preliminary considerations. A pair (B, A) of exceptional
objects in a hereditary abelian category A is said to be an exceptional pair

provided we have Hom(A, B) = Ext1(A, B) = 0.
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Let (Y, X) be an exceptional pair of Λ-modules. We define C(X, Y ) to be
the closure of the full subcategory with objects X, Y under kernels, images, co-
kernels and extensions; of course, in case (Y, X) is in addition orthogonal, then
C(X, Y ) = E(X, Y ). Let us recall the following facts: This subcategory C(X, Y )
is an exact abelian subcategory, it is the smallest exact abelian subcategory of
the category of all Λ-modules containing X, Y and being closed under exten-
sions. It is of importance that C(X, Y ) is equivalent to the category of all finite
length modules over a finite dimensional hereditary k-algebra Θ with precisely
2 simple modules S, T ; these modules S, T have no self-extensions and they sat-
isfy Ext1(S, T ) = 0. Under such an equivalence, the pair (Y, X) corresponds to
an exceptional pair of Θ-modules. The proofs rely on the use of perpendicular
categories as considered by Geigle-Lenzing [GL] and Schofield [S1], see Crawley-
Boevey [CB] (the latter paper assumes that k is an algebraically closed field,
but the relevant proofs needed here are valid in our more general setting).

The (finite dimensional) exceptional Θ-modules are well-known: they are
just the preprojective and the preinjective Θ-modules. Also, the exceptional
pairs of Θ-modules are easy to describe: For any exceptional Θ-module X , there
is (up to isomorphism) a unique module Y such that (Y, X) is an exceptional
pair of Θ-modules. Finally, if (Y, X) is an exceptional pair of Θ-modules, and
Hom(Y, X) 6= 0, then we must have Ext1(Y, X) = 0 (so that X ⊕Y is a module
without self-extensions). Note that the last assertion remains valid for arbitrary
exceptional pairs of Λ-modules.

From now on, we fix a faithful exceptional Λ-module X . Let us stress the
following conclusion: the orthogonal exceptional pairs (V, U) with X in E(U, V )
and X not simple in E(U, V ) correspond bijectivly to the exceptional pairs (Y, X)
such that X is not simple in C(X, Y ); at least if the pairs in question are
considered as pairs of isomorphism classes, not as pairs of modules. Namely, if
the pair (V, U) is given, then there is (up to isomorphism) a unique Λ-module Y
in E(U, V ) such that (Y, X) is an exceptional pair in E(U, V ) and therefore in A.
Also, we have E(U, V ) = C(X, Y ). Conversely, if (Y, X) is an exceptional pair
in A, then C(X, Y ) is a hereditary length category with precisely two simple
objects, say U, V , and such that (V, U) is an (even orthogonal) exceptional
sequence. Again we have E(U, V ) = C(X, Y ). If we assume that X is not simple
in E(U, V ), then the pair (U, V ) cannot be exceptional, thus not only the set
{V, U}, but the pair (V, U) is uniquely determined by the pair (Y, X).

Thus, our aim is to classify all exceptional pairs (Y, X) such that X is not
simple in C(X, Y ). It will turn out that there is a constructive way of obtaining
these pairs.

Lemma 3.2. Let (Y, X) be an exceptional pair. Then the following asser-

tions are equivalent:

(i) X is not simple in C(X, Y ).
(ii) Y is not injective in C(X, Y ).
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(iii) Y is cogenerated by X.

Proof: This follows from an easy inspection of all the exceptional sequences
of Θ-modules. In order to see the implication (ii) =⇒ (iii), just use the almost
split sequence in C(X, Y ) starting with Y , its left hand map is a monomorphism
of the form Y → Xn, for some n.

Consider now an exceptional module X . In case X is projective, we denote
by X ′ the direct sum of the remaining indecomposable projective modules,
one from each isomorphism class and call it the Bongartz complement for X .
Otherwise, let X ′ be the universal extension of ΛΛ by copies of X , thus there
is an exact sequence

0→ ΛΛ→ X ′ → Xm → 0

for some m, we have Ext1(X, X ′) = 0, and m is chosen minimal. Note that
m > 0, since X is not projective (since Λ is hereditary, a minimal projective
resolution of X is of the form 0 → P1 → P0 → X → 0, and this shows that
Ext1(X, P0) 6= 0, thus Ext1(X, P ) 6= 0 for some indecomposable projective mod-
ule, thus Ext1(X, ΛΛ) 6= 0). Also note that the minimality of m is equivalent
to the requirement that X does not occur as a direct summand of X ′. This
module X ′ is called the Bongartz complement for X .

Consider now again the general case of an exceptional module X and let X ′

be its Bongratz complement. It is well-known (and easy to see) that X ⊕X ′ is
a tilting module. The Bongartz complement of a module without self-extension
has been used before in many different situations, and a lot is known about its
properties. For the convenience of the reader, we will include proofs of all the
facts which are relevant for our consideration.

Lemma 3.3. Let X be a faithful exceptional module. The Bongartz com-

plement X ′ of X is cogenerated by X and therefore Hom(X, X ′) = 0.

Proof: Let us first show that X ′ is cogenerated by X . First, consider the
case of X being projective, say the projective cover of the simple module E.
Since X is faithful, we have Hom(P, X) 6= 0, for any indecomposable projective
module P . But any non-zero map P → X is a monomorphism, since Λ is
hereditary. This shows that the Bongartz complement X ′ of X is cogenerated
by X .

Now, assume that X is not projective and take the defining exact sequence

0→ ΛΛ→ X ′ → Xm → 0.

Since X is faithful, there is a monomorphism α : ΛΛ → Xs for some s. We
obtain a commutative diagram with exact rows

0 −−−−→ ΛΛ −−−−→ X ′ −−−−→ Xm −−−−→ 0

α





y α′





y

∥

∥

∥

0 −−−−→ Xs −−−−→ X ′′ −−−−→ Xm −−−−→ 0.
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The lower sequence splits, since X is exceptional, thus X ′′ is isomorphic to
Xs+m. With α also α′ is injective, thus X ′ is cogenerated by X , also in this
case.

Let us assume that there exists a non-zero homomorphism β : X → X ′.
Since X ′ is cogenerated by X , we find β′ : X ′ → X such that β′β 6= 0. This is a
non-zero endomorphism of the exceptional module X , thus invertible. But this
implies that β is a split monomorphism, impossible.

As a consequence, we obtain the following characterization of the indecom-
posable direct summands of the Bongartz complement of a faithful exceptional
module:

Lemma 3.4. Let X be a faithful exceptional module, let Y be indecompos-

able. The following assertions are equivalent:

(i) Y is a direct summand of the Bongartz complement of X.

(ii) (Y, X) is an exceptional pair and Y is cogenerated by X.

Proof: Let X ′ be the Bongartz complement of X . First, let us assume that
Y is a direct summand of X ′. In particular, we have Ext1(X, Y ) = 0. According
to the previous Lemma, Y is cogenerated by X and Hom(X, Y ) = 0. But this
also means that (Y, X) is an exceptional pair.

For the proof of the converse, we first note the following: Let Z be a module
cogenerated by X , say with a monomorphism γ : Z → Xt, and let Z ′ be a
module with Ext1(X, Z ′) = 0. The long exact sequence for Hom(−, Z ′) yields
an epimorphism Ext1(Xt, Z ′)→ Ext1(Z, Z ′), thus we see that Ext1(Z, Z ′) = 0.

Now, let us assume that (Y, X) is an exceptional pair and that Y is co-
generated by X . Since Hom(Y, X) 6= 0, we have Ext1(Y, X) = 0. The previous
considerations yield Ext1(X ′, Y ) = 0 and Ext1(Y, X ′) = 0, since both mod-
ules X ′, Y are cogenerated by X and since they satisfy Ext1(X, X ′) = 0 and
Ext1(X, Y ) = 0. It follows that X ⊕ X ′ ⊕ Y is a tilting module. As a conse-
quence, Y is isomorphic to a direct summand of X⊕X ′. Since Hom(X, Y ) = 0,
we see that Y is isomorphic to a direct summand of X ′.

Proof of Schofield’s Theorem: Since X is a faithful Λ-module, s = s(X) is
the number of simple Λ-modules. Let Y1, . . . , Ys−1 be pairwise non-isomorphic
direct summands of the Bongartz complement X ′ of X (recall that a tilting mod-
ule has precisely s isomorphism classes of indecomposable direct summands).
Then, the pairs (Yi, X) are exceptional with Yi being cogenerated by X , thus
X is not simple in the subcategory C(Yi, X).

On the other hand, consider an exceptional pair (Y, X) with X not simple
in C(X, Y ). Then Y is cogenerated by X , thus Y is isomorphic to a direct
summand of X ′, thus to one of the modules Yi. This completes the proof.
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