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ABSTRACT. We consider a string algebra A. In case A is domestic, and
G,G′ are non-isomorphic generic modules, then G′ neither generates nor cogener-
ates G. On the other hand, in case A is non-domestic, we are going to construct
sequences G1, G2, . . . of pairwise non-isomorphic generic modules such that there
are monomorphisms Gt → Gi+1 and epimorphisms Gi+1 → Gi, for all i. The proof
of the existence of such sequences answers a question raised by Bautista.

In particular, we see that any non-domestic string algebra has generic modules
whose endomorphism rings have a non-zero radical. Actually, we will show that in
the non-domestic case there always do exist generic modules with nilpotent endo-
morphisms of arbitrary large nilpotency index. Of course, in the domestic case the
nilpotency index of a nilpotent endomorphism of a generic modules is bounded; in
fact, it is bounded by the nilpotency index of the radical of A.
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Let k be a field and A a finite dimensional k-algebra which is a string algebra.
Recall that this means that A = kQ/I where Q = (Q0, Q1) is a finite quiver and I
is an admissible ideal generated by monomials, with the following properties: every
vertex of Q is endpoint of at most two arrows and starting point of at most two
arrows, and second, for any arrow β, there is at most one arrow α such that αβ
does not belong to I, and at most one arrow γ such that βγ does not belong to I.

The finite-dimensional indecomposable A-modules are well-known, this clas-
sification is essentially due to Gelfand and Ponomarev (see [GP]; for the notation
used here and for more detailed information, we refer to [R]). There are two types of
finite-dimensional indecomposable A-modules: First of all, there are the string mod-
ules M(w) described by words w. Second, there are the band modules M(w, φ, n),
where w is a primitive cyclic word, φ an irreducible polynomial in k[T ] different from
T and n a natural number: if λ is a non-zero element of k, we write M(w, λ, n)
instead of M(w, T−λ, n). The words considered here use as letters the arrows of
the quivers (the ‘direct’ letters) and formal inverses of these arrows (the ‘inverse’
letters); such a word may be interpreted as walking around in the quiver, avoiding
the given zero relations. We denote by |w| the length of the word w. Recall that a
word w is called cyclic provided it contains both direct and inverse letters and such
that also w2 = ww is a word; a cyclic word is said to be primitive provided it is not
a proper power of some other word.

For any primitive cyclic word w (with last letter being inverse), we need the
following functor

Fw : Mod k[T ]→ModA,

the underlying vector space of the A-module M = Fw(V, φ) is the direct sum of t
copies Vi of V , and the operation of the arrows of Q onM follows the word w. More
precisely, write w = l1 · · · lt with letters li, and consider first an index 1 ≤ i < t.
If li = ǫ for some arrow ǫ, then consider ǫ as an element of the path algebra kQ;
the multiplication by ǫ yields the identity map Vi → Vi−1. If li = ǫ−1 for some
arrow ǫ, then the multiplication by ǫ yields the identity map Vi−1 → Vi. Finally,
the last letter is inverse, say lt = β−1, where β is an arrow; here, the multiplication
by β yields the map φ : Vt−1 → V0. In case ǫ is an arrow of the quiver Q, and the
multiplication by ǫ is not yet defined on Vi, then this just should be zero.

The functor Fw sends the k[T ]-module k[T ]/〈φn〉 to M(w, φ, n), for any irre-
ducible polynomial φ, and sends k(T ) to a generic module; we denote this generic
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module by G(w). A moduleM will be said to be prime, provided there is a primitive
cyclic word w such that M is either of the form M(w, φ, 1), where φ is a primitive
polynomial in k[T ], different from T, or of the form G(w). The word w (or better,
its equivalence class with respect to inversion and rotation) is said to be the type
of M . Note that the prime modules are of the form Fw(K, x), where K : k is a
simple field extension generated by the element x ∈ K (and where we consider the
pair (K, x) as the k[T ]-module whose underlying vector space is equal to K and the
scalar multiplication by T is just the multiplication in K by x).

Given an arrow α, we denote by N (α) the set of cyclic words starting with α
and ending in an inverse letter (for all the words in N (α), the last letter is a fixed
one, namely the inverse of the only arrow different from α which has the same end
point as α). Clearly, N (α) is a semigroup. Note that N (α) is the free semigroup
on the subset N1(α) = N (α) \ N (α)2; also, A is non-domestic if and only if there
exists an arrow α such that N (α) is (non-empty and) not cyclic (for both assertions,
see [R], Proposition 2 and its proof).

Recall that a moduleM is said to be serial provided it has a unique composition
series. For a string algebra, a serial module is either a string module (and then of the
form M(w) where w is a word which consists only of direct letters or only of inverse
letters), or a band module M(w, φ, 1), where w is a cyclic word with precisely one
inverse letter, or precisely one direct letter. A serial module of the form M(w) is
said to be isolated provided there does not exist a letter l such that wl is a cyclic
word.

1. Domestic string algebras.

In this section, we assume that A is a domestic string algebra. For the first two
assertions, we refer to [R].

(1) Let M be a prime module and S a simple module. Then Hom(S,M) is
either zero or a simple End(M)-module. Similarly, Hom(M,S) is either zero or a
simple End(M)op-module.

(2) Let M,M ′ be prime modules of types w,w′ respectively. Let S be a simple
A-module. If both Hom(S,M) 6= 0 and Hom(S,M ′) 6= 0, then w,w′ are equivalent
cyclic words. If both Hom(M,S) 6= 0 and Hom(M ′, S) 6= 0, then w,w′ are equivalent
cyclic words.

(3) Let M,M ′ be prime modules. Let f : M → M ′ be a non-invertible homo-
morphism. Then the image of f is contained in the radical of M ′ and the kernel of
f contains the socle of M . Also, f can be factored through a direct sum of isolated
serial modules.

Proof. Let us assume that the socle of M is not contained in the kernel of f ,
thus there is a simple submodule S = S(i) of M such that f(S) 6= 0, thus also M ′

has a submodule isomorphic to S. We conclude thatM andM ′ have the same type,
say w = αw′β−1, where α, β are arrows ending in the vertex i. Thus, we can write
M = Fw(K, x),M

′ = Fw(K
′, x′), whereK : k andK ′ : k are simple field extensions,

generated by x and x′ respectively. The functor Fw : Mod k[T ]→ ModA is a split
embedding with retraction M 7→ w∞M/w∞0M ; here, w∞M =

⋃
n∈N

wnM and
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w∞0M =
⋂

n∈N
wn0, see for example [BR]. By assumption, the map f : M → M ′

induces a non-zero map w∞M/w∞0M → w∞M ′/w∞0M ′ , thus we obtain a non-
zero k[T ]-linear map f : (K, x) → (K ′, x′). Such a map is an isomorphism, and
therefore Fw(f) is an isomorphism. It remains to observe that with Fw(f) also f is
an isomorphism, a contradiction.

Similarly, assume that the image of f is not contained in radM . There exists
a simple module S and a map π : M ′ → S such that πf 6= 0. From Hom(M,S) 6= 0
and Hom(M ′, S) 6= 0 we conclude that M and M ′ have the same type, say w. As
above, we can assume that M = Fw(K, x),M

′ = Fw(K
′, x′)) where K : k and

K ′ : k are simple field extensions, generated by x and x′ respectively, and see that
f induces a non-zero k[T ]-linear map f : (K, x) → (K ′, x′). Again, f has to be an
isomorphism of k[T ]-modules and this then implies that also f is an isomorphism.

Since the map f : M → M ′ maps into the radical radM ′ of M ′ and vanishes
on the socle socM of M , we can factor it via M → M/ socM → radM ′ → M ′.
Now, M/ socM is the direct sum of string modules Mi with simple top, whereas
N = radM ′ is the direct sum of string modules with simple socle. Let Mi =
M(w′

iw
′′

i ), where all letters of wi are direct, all letters of w′

i are inverse. The
canonical projections π′

i : Mi →M(w′

i) and π
′′

i Mi →M(w′′

i ) provide an embedding
πi : Mi → M(w′

i) ⊕M(w′′

i ) and it is easy to see that any map fi : Mi → N can
be extended via πi to a map M(w′

i) ⊕ M(w′′

i ) → N : Namely, consider a direct
sum of string modules with simple socle. Then the canonical basis vectors of N
are annihilated by all but at most one arrow. Thus, let α be the last letter of w′

i

and β the last letter of (w′′

i )
−1. Let e be the canonical basis element of Mi which

generates Mi as an A-module, then fi(e) = y′+y′′, where y′ is a linear combination
of canonical basis elements of N which are annihilated by β, whereas y′′ is a linear
combination of canonical basis elements of N which are annihilated by α. We can
define maps Mi → N by e 7→ y′ and by e 7→ y′′, the first one factors through
π′

i, the second through π′′

i , their sum is just fi. This provides a factorization of fi
through πi. Of course, the modules M(w′

i) and M(w′′

i ) are serial string modules
and it remains to be seen that they are isolated.

Assume one of them, say M(w′

i) is not isolated. Then w′

iβ
−1 is a primitive

cyclic word. Its top composition factor occurs also in the top of M . However,
according to (2), it follows that the cyclic words w and w′

iβ
−1 are equivalent. But

this is impossible, since the length of a module of the form M(w′

iβ
−1, λ, 1) is equal

to the length of M(w′

i), but this is a factor module of M/ socM , where M is a
prime module of type w.

Corollary Let M,M ′ be prime modules of types w,w′ respectively. If M ′

generates or cogenerates M , then w and w′ are equivalent.

Proof. If w and w′ are non-equivalent, then any homomorphism f : M ′ →M is
non-invertible, thus the image of f is contained in the radical ofM . This shows that
M ′ cannot generate M . Similarly, the kernel of any homomorphism g : M → M ′

contains the socle of M , thus M ′ cannot cogenerate M .

The assertion can be strengthened. Write AnnM = {a ∈ A | aM = 0}, this is
a twosided ideal of A, called the annihilator ideal of M . Two ideals I, I ′ of A are
said to be comparable provided I ⊆ I ′ or I ′ ⊆ I.

(4) Let M,M ′ be prime modules of types w,w′ respectively. If the annihilator
ideals AnnM , AnnM ′ are comparable, then w and w′ are equivalent.
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Proof: Let us assume that AnnM ′ ⊆ AnnM. Let a be a vertex of the quiver
Q such that S(a) occurs in the socle of M . Note that this implies that a is the
endpoint of two different arrows α, β in Q, and we can assume that w starts with
the letter α and ends with the letter β−1. In particular, the elements α, β of kQ
do not annihilate M , thus also not M ′. As a consequence, both α and β (or their
inverses) occur in w′. Up to rotation and inversion, we can assume that either w′

is of the form αuβ−1v or αuβv, with suitable words u, v.
First, consider the case w′ = αuβ−1v. Let us assume that w′ is not equivalent

to w, thus S(a) cannot lie in the socle of M ′. It follows that the first letter of v is
inverse, and the last letter of v is direct. We form the word w′′ = αuβ−1w (this is a
cyclic word, since w starts with α and ends with β−1). Note that w′, w′′ cannot be
powers of a fixed word, since the first letter of v is inverse, whereas the first letter
of w is direct. This shows that N (α) is not cyclic, a contradiction.

Second, consider the case that w′ = αuβv. Again, we assume that S(a) does
not occur in the socle of M ′. Here we conclude that the last letters of u and v both
are direct, say u = u′γ, v = v′δ. Of course, then γ, δ are arrows starting in a and
they have to be different. Now we form the cyclic word w′′ = αuv−1β−1. Again,
w′, w′′ cannot be powers of a fixed word, thus N (α) is not cyclic. This contradiction
shows that S(a) occurs in the socle of M ′, thus w and w′ have to be equivalent.

(5) Let n(A) be the nilpotency index of the radical of A. Let M be a prime
module. Then n(End(M)) ≤ n(A).

Proof: Consider a product f1 · . . . · fn(A) of nilpotent endomorphisms fi of M .
Consider nilpotent endomorphisms fi of M . As we have seen, any fi vanishes on
the socle ofM , thus a product of t nilpotent endomorphisms will vanish on the t-th
socle soctM of M (it is defined inductively by soc0 = 0 and soct+1M/ soctM =
soc(M/ soctM)). On the other hand, socn(A)M = M for any A-module M , thus
any product of n(A) nilpotent endomorphisms of M is zero.

2. Serial modules and band modules.

We need the following general result which may be deduced from the work of
Krause [K].

Lemma 1. Let M be a prime module, and I a serial module. If f : I → M
is a homomorphism, then either f is an isomorphism, or else the image of f is
contained in the radical of M .

Here is a direct proof: First, consider the case where I is a string module, say
I = M(αt · · ·α1), where α1, . . . , αt are arrows. Denote by a the starting vertex of
α1. If α1 is the only arrow starting in a, then the simple module S(a) does not occur
in the top of a band module, thus the image of f : I → M has to be contained in
the radical of M . Also, in case there is a second arrow, say β, which starts at a,
then the image of I under f is generated by an element of M which belongs to the
kernel of the multiplication by β; again: such an element belongs to the radical of
M .

Next, let I be a band module, say I =M(αt · · ·α1β
−1, λ, 1), where α1, . . . , αt, β

are arrows and λ is a non-zero element of k. Consider a canonical generator x of I,
this is an element of I such that βx = λαt · · ·α1x. Assume that the image x′ of x
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does not belong to the radical of M . As before, we see that βx′ 6= 0. But βx′ can
be a multiple of αt · · ·α1x

′ only in case the type of M is just αt · · ·α1β
−1 and f is

an isomorphism.

Here is the dual assertion:

Lemma 1∗. Let M be a prime module, and I a serial module. If f : M → I is
a homomorphism, then either f is an isomorphism, or else the kernel of f contains
the socle of M .

3. Rich primitive cyclic words.

A primitive cyclic word w will be called rich provided there exists a word c
which contains both direct and inverse letters, with |c| < |w| and such that w2 has
a subword of the form αcβ−1 as well as one of the form γ−1cδ or γ−1c−1δ.

Let us consider prime modules of rich type in more detail.

Proposition 1. Let M be a prime module of type w. Let c be a word with
|c| < |w| and such that w2 has a subword of the form αcβ−1 as well as one of
the form γ−1cδ or γ−1c−1δ (where α, β, γ, δ are arrows). Then there exists an
endomorphism f of M with image M(c) and the following additional properties:

Case 1: Assume that c contains a subword of the form ǫη−1, where ǫ, η are
arrows. Then the image of f is not contained in the radical of M (and the socle of
M(c) is not simple).

Case 2: Assume that c contains a subword of the form ǫ−1η, where ǫ, η are
arrows. Then the kernel of f does not contain the socle of M (and the top of M(c)
is not simple).

In both cases, f cannot be factored through a direct sum of serial modules.

Proof. Let M = Fw(K, x), where K : k is a simple field extension generated
by the element x ∈ K. The subword αcβ−1 of w shows that actually |c| ≤ |w| − 2,
since otherwise both αc and cβ−1 would be obtained from w by rotation, but this is
impossible. Thus αcβ−1 is a subword of some word w′ obtained from w by rotation,
and thereforeM(c)⊗kK is a canonical factor module of Fw′(K, x), thus also a factor
module of the isomorphic moduleM . Also, if γ−1cδ is a subword of w2, then this is a
subword of some word w′′ obtained from w by rotation, and thereforeM(c)⊗kK is a
canonical submodule of Fw′′(K, x), thus also a submodule of the isomorphic module
M . Similarly, if γ−1c−1δ is a subword of w2, then δ−1cγ is a subword of w−2, thus
a subword of some word w′′ obtained from w by rotation and inversion. It follows
that M(c) ⊗k K is a canonical submodule of Fw′′(K, x), thus also a submodule of
the isomorphic module M . It remains to note that M(c) ⊗k K is a direct sum of
copies of M(c), thus we obtain M(c) as the image of an endomorphism of M .

Finally, we are going to show that f cannot be factored through a direct sum of
serial modules. We observe thatM itself is not serial: otherwise, also any submodule
of M would be serial; but the module M(c) is isomorphic to a submodule of M
and, as we have noted already, is not serial. Now, let us assume that f : M → M
factors through a direct sum N =

⊕
Ni of serial modules Ni, say f = gh, where

h : M → N, g : N →M. According to section 2, the map h vanishes on the socle of
M , and the image of the map g is contained in the radical ofM . But as we know, in
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the first case the image of f is not contained in the radical of M , and in the second
case the kernel of f does not contain the socle of M . This gives a contradiction.

Remark 1. We will see below a method for the construction of rich primitive
cyclic words w such that the prime modules of type w have nilpotent endomorphisms
with large nilpotency index. The following recipe for obtaining rich primitive cyclic
words is easier: Let u, v be different elements of N1(α). Then all the words unvm

for n,m ≥ 1 are primitive, and all the words unvm for n,m ≥ 2 are rich.

Proof. Assume we have unvm = wt for some t ≥ 2. Write w = w1 · · ·ws with
all wi ∈ N1(α). Since we deal with free generators of a semigroup, the factorizations
unvm = (w1 · · ·ws) · · · (w1 · · ·ws) have to coincide, in particular, we have n+m = st.
If s ≤ n, then all u = wi, since these are the first s factors. It follows that the given
word is a power of u, thus also v = u, a contradiction. If s > n, then n+m = st ≥ 2·s
implies that s < m; now consider the last s factors: we see that v = wi for all i,
thus again we obtain a contradiction.

Next, we have to show that the word unvm with n,m ≥ 2 are rich. We can
assume that u < v. First, consider the case where u−1 > v−1. We are going to show
that in this case any word w = unvm with n,m ≥ 1 is rich. Since u < v, we can
write u = au′, v = av′, where u′ is empty or starts with a direct letter, and v′ starts
with an inverse letter. Similarly, u−1 > v−1 means that we can write u−1 = bu′′,
v−1 = bv′′, where this times v′′ is empty or starts with a direct letter, and u′′ starts
with an inverse letter. We want to show that we can take c = b−1a. Note that the
first letter of a is α, thus a direct letter, whereas the last letter of b is an inverse
letter (since it is the common last letter of all the words in N (α). This shows that
c is neither direct nor inverse.

We can write uv as follows:

u · v = (u′′)−1b−1 · av′ = (u′′)−1 · c · v′,

where (u′′)−1 ends with a direct letter, and v′ starts with an inverse letter. In
particular, we see that the length of the word c is smaller than |uv|. Similarly, we
write vu in the form

v · u = (v′′)−1b−1 · au′ = (v′′)−1 · c · u′,

here (v′′)−1 is empty or ends with an inverse letter, and u′ is empty or starts with
a direct letter. Now the copy of vu inside w2 = unvmunvm is surrounded by words
which start with a direct letter and end with an inverse letter, thus the copy of c
inside vu has as predecessor an inverse letter, as successor a direct letter.

Second, we also may have u−1 < v−1. Consider a word of the form w = unvm

with n,m ≥ 2. As before, we write u = au′, v = av′, where u′ is empty or starts
with a direct letter, and v′ starts with an inverse letter. Since u−1 < v−1, we write
u−1 = bu′′, v−1 = bv′′, where u′′ is empty or starts with a direct letter, and v′′

starts with an inverse letter. Again, let c = b−1a, a word which is neither direct
nor inverse. Write

v2 = (v′′)−1b−1 · av′ = (v′′)−1 · c · v′,

where (v′′)−1 ends with a direct letter and v′ starts with an inverse letter. Similarly,
write

u2 = (u′′)−1b−1 · au′ = (u′′)−1 · c · u′,
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where (u′′)−1 is empty or ends with a direct letter and u′ is empty or starts with
an inverse letter. Now there are copies of u2 inside w2 = unvmunvm which are
surrounded by words which start with a direct letter and end with an inverse letter,
thus a copy of c inside such a subword u2 has as predecessor an inverse letter, as
successor a direct letter. This completes the proof.

Remark 2. The previous remark indicates that for a non-domestic string
algebra nearly all of the primitive cyclic words will be rich. But let us stress that
there do exist non-domestic string algebras which have infinitely many primitive
cyclic words which are not rich. As an example, take the quiver with three vertices
a, b, c, two arrows β, γ : a→ b, two arrows α, δ : b→ c, and with relations δβ = 0 =
αγ. Consider N (α). The words u = αδ−1 and v = αβγ−1δ−1 belong to N (α) and
all the words utv are primitive, but not rich.

Remark 3. Assume there exists a rich primitive cyclic word w in N (η). Then
N (η) is not cyclic, and thus A is not domestic.

Proof: Let c be a word which is neither direct nor inverse, with |c| < |w| and
such that w2 has subwords of the form αcβ−1 and γ−1cδ, say w2 = xαcβ−1x′ =
yγ−1cδy′.

Let us first assume that c contains a subword of the form ǫ−1η, where ǫ and η
are arrows, say c = zǫ−1ηz′. Then

w2 = xαzǫ−1ηz′β−1x′ = yγ−1zǫ−1ηz′δy′.

We see that the words

ηz′β−1x′xαzǫ−1 and ηz′δy′yγ−1zǫ−1

belong to N (η), and this shows that N (η) cannot be cyclic. But

xαzǫ−1N (η)ηz′β−1x′

is a subset of N (η), thus N (η) cannot be cyclic.
Now assume that c does not contain any subword of the form ǫ−1η, where ǫ

and η are arrows, thus it is of the form c = c1c2, where c1 is a direct word and c2 is
an inverse word, both being non-empty. If such a word c is a subword of w2, then
it is already a subword of w (since w starts with a direct letter and ends with an
inverse letter). Let us assume that w has the following form w = w1cw2cw3, where
the last letter of w1 and the first letter of w3 are direct, and the first and the last
letters of w2 are inverse (in case this is not true, one may consider w−1 instead).
Let γ−1 be the first letter of c2, and δ the last letter of c1. We denote by N ∗(γ−1)
the set of cyclic words with first letter γ−1 and last letter δ. Consider the words
u = c2w1c1 and v = c2w3w1c1 which belong to N ∗(γ−1). They are cyclic words and
not powers of the same word, since w is primitive. Of course, this set N ∗(γ−1) is
again a free semigroup, and as we now see, not cyclic. Note that

w1c1N
∗(γ−1)c2w3

is a subset of N (η), thus N (η) is not cyclic.
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4. Construction of rich primitive cyclic words.

Lemma 2. Let c be a word which contains at least one direct and one inverse
letter. If the words u′c and cv′ exist, then also u′cv′ is a word.

Proof. Since c is neither direct nor inverse, we can factor it as c = c1c2 such
that the last letter of c1 and the first letter of c2 are not both direct and also not
both inverse. Now, u′c1 and c2v

′ are words, then also u′cv′ = u′c1 · c2v′ is a word.

The words in N1(α) are totally ordered as follows: Let x 6= y be elements of
N1(α). First case: assume that x = zx′ and y = zy′, where x′ and y′ are words
of length at least 1, with different first letters. If the first letter say of x′ is direct,
then the first one of y′ has to be inverse, and we write x < y. Second case: One of
the words is a left factor of the other, say xx′ = y for some word x′. In this case,
again let x < y. The last definition is motivated by the following observation: The
word x′ with xx′ = y has to start with an inverse letter (thus we use a similar rule
as in the first case, but now applied to xx and xx′). Namely, assume that x′ starts
with a direct letter. Since both words x and xx′ belong to N (α), this implies that
also x′ belongs to N (α), but then y = xx′ belongs to N (α)2.

If the words in N (α) have as last letter β−1, then w 7→ w−1 yields an anti-
isomorphism N (α) → N (β). In particular, w belongs to N1(α) if and only if w−1

belongs to N1(β). Thus, given two different words u, v in N1(α), we can assume
that u < v and we also may compare the inverses u−1 and v−1; we see that we have
to distinguish two cases: u−1 < v−1 and u−1 > v−1.

Lemma 3. Let A be a non-domestic string algebra. Then there exist non-serial
words x, y, z such that yxy and zxz are words, and such that the first and the last
letters of y are direct letters, whereas the first and the last letters of z are inverse
letters.

Proof: Since A is non-domestic, there exists an arrow α with two words u < v
in N1(α). Note that both words ends with the same inverse letter, say β−1. Since
u < v, we can write u = au′, v = av′, where u′ is empty or starts with a direct
letter, and v′ starts with an inverse letter.

Consider first the case u−1 > v−1. This means that we can write u−1 = bu′′,
v−1 = bv′′, where this times v′′ is empty or starts with a direct letter, and u′′ starts
with an inverse letter. Taking inverses, we have u = (u′′)−1b−1 and v = (v′′)−1b−1

and (u′′)−1 ends with a direct letter, whereas (v′′)−1 is empty or ends with an
inverse letter. Let

x = b−1a, y = u′u(u′′)−1, z = v′v(v′′)−1.

The word yxy exists, since this is a subword of u6. Similarly, the word zxz exists,
it is a subword of v6. Since the last letter of b−1 is β−1 and the first letter of a is
α, we see that x is non-uniserial. Since u is a subword of y and v is a subword of
z, clearly z and z are non-serial. The first letter of y is direct, since either u′ is
non-empty and its first letter is direct; or else the first letter of u is the first letter
of u and this is α. The last letter of y is that of (u′′)−1 and this is a direct letter.
Similarly, one sees that the first letter as well as the last one of z are inverse letters.

We also have to consider the case u−1 < v−1, thus we can write u−1 = bu′′,
v−1 = bv′′, where u′′ is empty or starts with a direct letter, and v′′ starts with an
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inverse letter. Taking inverses, we have u = (u′′)−1b−1 and v = (v′′)−1b−1, where
(u′′)−1 is empty or ends with an inverse letter and (v′′)−1 ends with a direct letter.
This time, let

x = b−1a, y = u′u(v′′)−1, z = v′u(u′′)−1.

Now, yxy is a subword of u2vu2v and zxz is a subword of vu2vu2. The remaining
arguments are the same as in the first case.

Lemma 4. Consider a primitive cyclic word of the form w = (xy)nxz with
n ≥ 1, and assume that y starts and ends with direct letters, whereas z starts
and ends with inverse letters. Let M be a prime module of type w. Then M
has an endomorphism φ such that for 1 ≤ t ≤ n, the image of φt is of the form
M((xy)n−tx), whereas φn+1 = 0.

Proof. Let |x| = a, |y| = b, |z| = c, thus t = |w| = (n + 1)a + nb + c. Since
M is a prime module of type w, we know that M = Fw(K, x), where K : k is a
simple field extension generated by the element x ∈ K and where we consider the
pair (K, x) as the k[T ]-module whose underlying vector space is equal to K and
the scalar multiplication by T is just the multiplication in K by x. The underlying
vector space of M is the direct sum of copies Vi of K, where 0 ≤ i < t, and the
operation of the arrows of Q on M follows the word w. We define φ : M → M as
follows: For a+ b ≤ i ≤ (n+1)a+nb, the restriction of φ to Vi shall be the identity
map Vi → Vi−a−b, whereas φ|Vi = 0 for the remaining indices i. Thus, the kernel
of φ is just the vector space sum U =

⊕
i<a+b

Vi ⊕
⊕

i>(n+1)a+nb
Vi. Note that U

is indeed a submodule, since the last letter of y is direct and the first letter of z
is inverse, and M/U is isomorphic to M((xy)n−1x) ⊗K. The image I of φ is the

vector space sum I =
⊕na+(n−1)b

i=0 Vi; also this is a submodule of M (here we use
that the last letter of z is inverse and the first letter of y is direct), again isomorphic
to M((xy)n−1x) ⊗K. Also, it is obvious that φ is A-linear: here we use that the
operation of the arrows of Q on M follows the word w and that all but the last
letter of w = l1 · · · lt yield identity maps Vi → Vi−1 or Vi−1 → Vi (the last letter is
part of z, thus concerns only the kernel U of φ). Finally, we observe that the image
of the t-th power φt is isomorphic to M((xy)n−tx) ⊗ K, for 1 ≤ t ≤ n and that
φn+1 = 0. This completes the proof.

Lemma 5. If N (α) is not cyclic, then for any w ∈ N (α) there exists a
w′ ∈ N (α) such that ww′ is primitive.

Proof. Let w ∈ N (α). Since N1(α) contains at least two elements, we can
choose an element v ∈ N1(α) such that w is not a power of v. Clearly, for large t,
the word wvt is primitive.

Theorem 1. Let A be a non-domestic string algebra and a natural number n.
Then there exist rich primitive cyclic words w such that any prime module M of
type w has a nilpotent endomorphism of nilpotency index n.

Proof. According to Lemma 3, there exist non-serial words x, y, z′ such that
yxy and z′xz′ are words, and such that the first and the last letters of y are direct
letters, whereas the first and the last letters of z′ are inverse letters. Since z′ is
non-serial, we may write z′ = z1z2 where z1, z2 are non-empty words, such that the
last letter of z1 and the first letter of z2 are not both direct and not both inverse.
Up to duality, we may assume that the first letter of z2 is direct, say equal to α. The
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two words z2xz1 and z2xyxz1 belong to N (α) (the word z2xyxz1 exists and is cyclic,
according to Lemma 2), and since the first letters of y and z1 are different, these
words z2xz1 and z2xyxz1 cannot be powers of some word u, thus N (α) is not cyclic.
According to Lemma 5, there exists a word w′ in N (α) such that z2(xy)

nxz1w
′ is

primitive. Of course, then also (xy)nxz1w
′z2 is primitive, thus we can apply Lemma

4 (with z = z1w
′z2).

5. Generic modules as submodules and as factor modules of direct
sums of copies of a string module.

Proposition 2. Let w = dαcβ−1 be a primitive cyclic word, let z′ = cβ−1dαc
and z′′ = dαcβ−1d. Let V be a vector space and φ an endomorphism of V . Then
Fw(V, φ) is a submodule of the module M(z′)⊗kV and a factor module of the module
M(z′′)⊗k V .

Proof: We factor Fw through the category of Kronecker modules as follows:
The Kronecker modules are the representations of the Kronecker quiver, this quiver
has precisely two vertices: a sink and a source, and two arrows going from the source
to the sink; its path algebra will be denoted by B. Thus, a Kronecker module is
of the form (V ′, V ′′, φ, ψ), where V ′, V ′′ are vector spaces and φ, ψ : V ′ → V ′′ are
linear maps. There is the well-known full embedding functor

ι : Mod k[T ]→ModB given by ι(V, φ) = (V, V, φ, 1).

Given the factorization w = dαcβ−1, we define a functor

F : ModB → ModA

as follows: Again, let r = |c|+ 1, and s = |d|+ 1. Let (V ′, V ′′, φ, ψ) be a Kronecker
module, we are going to define an A-module M = F (V ′, V ′′, φ, ψ). The underlying
vector space of M is the direct sum of r copies of V ′′, they are labeled Vi, where
0 ≤ i < r and s copies of V ′′, also labeled Vi, but now r ≤ i < r + s. The
operation of the arrows of Q on M follows the word w = dαcβ−1. More precisely,
write w = l1 · · · lr+s with letters li, and consider first an index i different form r and
r + s. If li = ǫ for some arrow ǫ, then consider ǫ as an element of the path algebra
kQ; on Vi, the multiplication by ǫ will be the identity map Vi → Vi−1. If li = ǫ−1

for some arrow ǫ, then on Vi−1 the multiplication by ǫ will be the identity map
Vi−1 → Vi. The letter with index r is lr = α, and we define on Vr the multiplication
by α as follows: note that Vr is a copy of V ′, whereas Vr−1 is a copy of V ′′, thus we
can (and will) take the map ψ : V ′ → V ′′. Finally, the last letter of w is lr+s = β−1.
On Vr+s−1 the multiplication by β will be given by the map φ : V ′ → V ′′, considered
as a map Vr+s−1 → V0; (here we use the identification of Vr+s−1 with V ′ and of V0
with V ′′). In case ǫ is an arrow of the quiver Q, and the multiplication by ǫ is not
yet defined on Vi, then this part of the multiplication map just should be the zero
map.

If V is a vector space and φ an endomorphism of V , then clearly Fι(V, φ) =
Fw(V, φ).

On the other hand, let us consider the two indecomposable 3-dimensional rep-
resentations of B. One of them is the indecomposable projective module P =
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(k, k2, ι1, ι2) where ι1 and ι2 are the canonical inclusion maps. The other is the
indecomposable injective module I = (k2, k, π1, π2), where π1, π2 are the canonical
projection maps. Note that

F (P ) =M(z′′) and F (I) =M(z′).

It is obvious that the functor F commutes with (arbitrary) direct sums, in
particular with forming tensor products − ⊗k V , where V is a vector space. Now,
given a vector space V and an endomorphism φ of V , the projective cover of the
B-module ι(V, φ) is of the form P ⊗k V , the injective envelope of ι(V, φ) is of the
form I ⊗k V . Thus we have a surjective map

π : P ⊗k V → ι(V, φ)

and an injective map
µ : ι(V, φ)→ I ⊗k V

Under the functor F , we obtain a surjective map

F (π) : M(z′′)⊗k V = F (P ⊗k V ) −→ Fι(V, φ) = Fw(V, φ)

and an injective map

F (µ) : Fw(V, φ) = Fι(V, φ) −→ F (I ⊗k V ) =M(z′)⊗k V.

This completes the proof.

6. Chains of generic modules.

Theorem 2. Let w be a rich primitive cyclic word. Then there exists a rich
primitive cyclic word w′ with |w′| > |w| such that the following property holds: If K :
k is a simple field extension generated by the element x ∈ K, then M ′ = Fw′(K, x)
has a submodule and a factor module which both are isomorphic to M = Fw(K, x).

Proof of Theorem 2. Let w belong to N (η). Since w is rich, there exists a
word c which is neither direct nor inverse, with |c| < |w| and such that we can write
w2 = xαcβ−1x′ and also w2 = yγ−1cδy′.

Now |c| < |w| implies that we even have |c| ≤ |w| − 2. Namely, otherwise both
αc and cβ−1 would be obtained from w by rotation, but this is impossible, since α
is a direct letter and β−1 an inverse letter.

First of all, we conclude that there is a word d such that dαcβ−1 is obtained
form w by rotation and therefore G(dαcβ−1) is isomorphic to G(w). According to
Proposition 2, we may embed G(dαcβ−1) into M(cβ−1dαc)⊗k k(T ),

Similarly, we see that there is a word d′ such that d′γ−1cδ, and therefore also
cδd′γ−1 is obtained from w by rotation, thus G(w) is isomorphic to G(cδd′γ−1).
Again, we apply Proposition 2 in order to see that G(cδd′γ−1) is a factor module
of M(cδd′γ−1c)⊗k k(T ).

According to Lemma 2, the following words do exist

w1 = yγ−1cβ−1dαcδy′

w2 = xαcδd′γ−1cβ−1x′

11
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and both belong to N (η). Since there exists a rich primitive cyclic word in N (η),
we know that N (η) is not cyclic, see Remark 3. Thus we can use Lemma 2 in
order to obtain a word w3 such that w′ = w2w1w2w3 is primitive. This is the
required word. Of course, it is rich: just look at the factor w2. The subword
γ−1cβ−1dαcδ of w′ shows that the generic module G(w′) has a submodule isomor-
phic to M(cβ−1dαc) ⊗k k(T ), thus also a submodule isomorphic to G(w). The
subword αcδd′γ−1cβ−1 of w′ shows that the generic module G(w′) has a factor
module isomorphic to M(cδd′γ−1c) ⊗k k(T ), thus also a factor module isomorphic
to G(w). This completes the proof.

Corollary. Let A be a non-domestic string algebra. Then there are generic
modules Gi with i ∈ N and a chain of monomorphisms

G1 → G2 → . . . ,

as well as a chain of epimorphisms

G1 ← G2 ← . . . .

Final Remark. Seeing the behavior of special biserial algebras and the cor-
responding behavior of tubular algebras, one may wonder whether the following is
true: A tame algebra should be non-domestic if and only if there exists a pair of
non-isomorphic generic modules M,M ′ such that M ′ generates or cogenerates M ,
and also if and only if there exists a pair of non-isomorphic generic modules M,M ′

with comparable annihilator ideals.
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