The repetitive algebra of a gentle algebra

Claus Michael Ringel

ABSTRACT. We are going to show that the repetitive algebra of a gentle algebra
whose quiver has at least two cycles is non-domestic (thus even of non-polynomial
growth).

1. Introduction.

Let k be a field. Given a quiver ) and arrows a: a — b, 5: b — ¢, the concatenation
of a and 8 will be denoted by af, it is a path of length 2 starting in a and ending in c.
Recall that a relation for the quiver ) is a non-zero linear combination of paths of length
at least 2 having the same starting point and the same end point.

Let @ be a connected quiver and p a set of relations for Q. The pair (Q, p) is said to
be special biserial provided the following conditions are satisfied:

(1) Every vertex is starting point of at most two arrows.

(1") Every vertex is end point of at most two arrows.

(2) For every arrow 3, there is at most one arrow « with af ¢ p.
(2") For every arrow [3, there is at most one arrow v with 5y ¢ p.

The pair (@, p) is said to be gentle provided besides (1), (1'), (2), (2’) also the following

conditions are satisfied:

(3) All the relations in p are monomials of length two.

(4) For every arrow f3, there is at most one arrow o/ with o/ € p.
(4") For every arrow (3, there is at most one arrow 4’ with 3y’ € p.

A k-algebra A is said to be special biserial, or gentle, provided A is isomorphic to
the factor algebra kQ/(p), where (Q,p) is special biserial, or gentle respectively; here
kQ denotes the path algebra of the quiver @, and (p) the ideal generated by the set p.
(The k-algebras which we consider will always have sufficiently many idempotents, but not
necessarily a unit element; note that the path algebra of a quiver @) has a unit element if
and only if @ has finitely many vertices. We are mainly interested in k-algebras A which
are locally bounded: this means that for every primitive idempotent e, both Ae and eA are
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finite dimensional over k. Note that for a special biserial pair (@, p), the algebra kQ/(p)
is locally bounded if and only if for every vertex a of (), almost all paths of @) starting or
ending in a belong to (p). Of course, kQ)/(p) is finite dimensional if and only if £Q/(p) is
locally bounded and @ is finite.)

The finite dimensional representations of special biserial algebras are well understood.
Methods of Gelfand and Ponomarev [GP] developed for an example have been found
fruitful also in the general setting, see [SW]. In particular, a special biserial k-algebra is
always tame, and either domestic or of non-polynomial growth, see [S]. (Since we deal
with not necessarily finite dimensional algebras A, we should remark that we call A tame
(or domestic) provided all finite dimensional factor algebras are tame (or domestic), and
we say that A is of non-polynomial growth provided there is a finite dimensional factor
algebra which is of non-polynomial growth.)

Given a finite dimensional k-algebra A, Hughes and Waschbiisch [HW, see also H] have
introduced its repetitive algebra A. The repetitive algebras are always locally bounded.
It is easy to see (see Assem-Skowroniski [AS] and Pogorzaly-Skowronski [PG]) that a finite
dimensional algebra A is gentle if and only if the repetitive algebra Ais special biserial.
The construction of A for a gentle algebra A will be reviewed below.

Let A be a finite dimensional algebra which is gentle. According to Nehring [N], the
repetitive algebra A is domestic provided the quiver Q(A) of A has at most one cycle (by
definition, the number of cycles of a connected quiver is the minimal number of arrows
which have to be removed in order to obtain an oriented tree). The aim of the present
note is to show the converse:

Theorem (1.1). Let A be a finite dimensional algebra which is gentle and assume

that Q(A) has at least two cycles. Then A is non-domestic (thus even of non-polynomial
growth).

Let us recall that Nehring [N] has shown that for a gentle algebra A with at least two
cycles, the trivial extension T'(A) is non-domestic. Since the trivial extension 7'(A) of A
has A as a Galois covering, our Theorem also yields a proof of this assertion.

The first part of the paper describes the relationship between the set VW of words in
the given quiver QQ(A) (here we consider all possible words, not taking into account the
given set of relations), and a set W of words in the quiver of A which do not involve certain

paths. In fact, the set W is just the usual index set for the string modules of A which
are neither simple nor injective. We will construct a projection m: W — W and many
sections 0% and o, (with z € Z). Of particular interest is the following: words in W which
are cyclic and of “cyclic defect zero” yield cyclic words in W. All these considerations are
well-known, but we hope that the formulations and proofs presented here will be found
to be useful elsewhere. In particular, we introduce in Section 4 as a tool the “expansion”
of a locally bounded gentle quiver, this is again a gentle quiver (but usually not locally
bounded), and A is obtained from it by adding further relations. The essential part of the
paper are Sections 8, 9 and 10, where we consider the case of a gentle quiver with at least
two cycles: there, we are going to construct sufficiently many cyclic words belonging to W
which have cyclic defect zero. Using the maps 0* and o, these words yield corresponding
cyclic words in W.
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The author is indebted to P. Dréxler and B. Roggon [Ro] for pointing out the problem.
The result completes the classification of the socalled ‘rpg-critical’ algebras, see [Ro]. The
author thanks J.Schroer for pointing out an inaccuracy in a previous version of the paper.

2. Words in a quiver.

Let @ be a quiver. The concatenation of paths in @) will be written by juxtaposition
(the concatenation wjwsy of paths wy,ws is defined only in case the path wsy starts in the
same vertex as wy ends). If v, w are paths in @, then v is called a subpath of w provided
there are paths vy, vs in ) such that w = vyvvs.

We denote by Q* the opposite quiver of Q. Let Q = Q LI Q* be the quiver obtained
from the disjoint union of @) and @Q* by identifying the corresponding vertices of @) and Q*,
thus Q is obtained from @ by adding to every arrow o: a — b a new arrow o~ ': b — a,
and we write (a~1)~! = a. The arrows of Q will be considered as letters in order to form
words. The original arrows of ) will be said to be the direct letters, those of Q* will be
called the nverse letters.

We denote by W = W(Q) the set of paths of length at least 1 in @ which do not
contain any subpath of the form aa™! where « is a letter, the elements of W will be called
words (using @ as letter set). (Note that we are excluding the paths of length zero; in this
way, we deviate from a convention which otherwise seems to be useful, but which would
force us to take extra care: in the sequel, paths of length zero usually will not be needed or
will behave differently.) Let w = I, - - -1, be a word with [; € Q,. Then w= =171 ---1;*
is called its inverse. The word w is said to be direct or inverse, in case all the letters [; are
direct or inverse, respectively. A subpath of w of length at least 1 will be called a subword.
If v, w are words, we will say that w does not involve v provided w has no subword equal
to v or to v L.

Let W, be the set of words such that the concatenation ww again is a word (this
means, that the following two conditions are satisfied: first of all, the word w starts in the
same vertex as it ends, and second: if [ is the first letter of w, and [,, the last one, then
we must have I; # [,;1), the elements in W, are called cyclic words. Given a cyclic word
w, all the powers w™ with n > 1 are cyclic words. A cyclic word which is not a proper
power of a cyclic word is said to be primitive. If w = wyws is a cyclic word, also wow; is
a cyclic word; we say that it is obtained from w by rotation.

A cyclic word w € W, is said to be elementary provided w = [y -- -1, with letters
I; € Q, such that the starting points of all the letters I; are pairwise different. To say that
a quiver () has at least two cycles just means that there are at least two elementary cycles
in W, which cannot be obtained from each other by rotation and inversion.

Let @ be a quiver, let p be a set of paths of length at least 2 (such a set may be called
a set of monomial relations). A word w in @ is said to be a word in (Q, p) provided w
does not involve a path from p.

3. Monomial relations of length 2.

Let us assume that p is a set of paths in ) of length 2.
Given an element w = [y - - - I, of W, let ¢’(w) be the number of indices i € {1,...,n—
1} such that l;,1;11 are direct letters and [;l;11 belongs to p; similarly, let 6" (w) be the
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number of indices i € {1,...,n—1} such that ;, ;11 are inverse letters and lijrllli_1 belongs
to p. We call §(w) = ¢'(w) — §"(w) the defect of w. Given two elements v,w € W such
that vw is defined and belongs to W, let

d(v,w) = d(vw) — §(v) — §(w),

(thus 0(v, w) detects relations involving the last letter of v and the first letter of w). For
w e W,, let
bo(w) = 8(w) + 6(w, w),

we call §.(w) the cyclic defect of w. In particular, we will be interested in cyclic words
w such that d.(w) = 0 (the condition d.(w) = 0 is sometimes called the clock condition:
the number of “clockwise oriented” relations is equal to the number of “anti-clockwise
oriented” relations).

Again, let us assume that p is a set of paths of length 2. Given any word w in W, its
p-factorization is w = wy - - - w; provided the following conditions are satisfied:

(a) Any of the words w; is either a direct or an inverse word in (Q, p),
(b) If w;, w;+1 are both direct or both inverse, then §(w;, w; 1) # 0.

A path a3 ---ay,:a — bin (Q,p) is said to be a mazimal path in (Q, p) provided it
cannot be prolonged on either side to a path in (Q, p) (thus, if 8 is an arrow starting in b,
then «,, 8 belongs to p, if v is an arrow ending in a, then ya; belongs to p; let us consider
also the degenerate case n = 0 and therefore a = b: this path is maximal provided there is
no arrow starting or ending in a).

Let (Q,p) be a gentle quiver (Q, p), and let w be a path of length at least one in
(Q,p). We note the following: There is at most one arrow « such that cw is a path in
(Q, p). Similarly, there is at most one arrow [ in Q such that wf is a path in (Q, p). We
may call two arrows path-equivalent provided they belong to a path of (@, p); note that
this is an equivalence relation on Q1.

As a consequence we see: If (Q,p) is in addition locally bounded, then every path w
of length at least one in (Q, p) is subpath of a unique mazimal path of (Q, p). Thus, for a
locally bounded gentle quiver (Q, p), any equivalence class with respect to path-equivalence
is just a set of arrows which combine to form a maximal path.

A connected gentle quiver (Q, p) is called expanded, provided )7 is not empty and for
every arrow 3, there are arrows «, v such that the concatenations aff and g7y do exist and
both do not belong to p. Thus, a gentle quiver (Q, p) is expanded if and only if the vertices
a are of the following two types: either a is a crossing vertex: there are precisely two
arrows ending in a and two arrows starting in a, or else it is a transition verter: there is
just one arrow, say « ending in a and just one arrow, say [, starting in a, and a3 does not
belong to p. Of course, we see: If (Q, p) is expanded, and w is any path of length at least
one in (Q, p), then there is precisely one arrow « and precisely one arrow 3 such that cwf
is a path in (Q, p). Here we see: the equivalence classes with respect to path-equivalence
are of two kinds: given a direct cyclic word w in W such that ww is a path in (Q, p), then
the arrows occurring in w form such an equivalence classe; the remaining path-equivalence
classes will be called threads: A thread is given by a set of pairwise different arrows a,
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indexed by the integers z € Z, such that the arrows a,, a,;; are composable and all the
words a, -+ - a with z < 2’ are words in (Q, p).

Remark (3.1). A finite gentle quiver (@, p) is locally bounded if and only if any
arrow belongs to a maximal path, if and only if there is no cyclic path w in @ of length at
least one such that w? is a word in (Q, p).

4. The expansion Z(Q, p) of a locally bounded gentle quiver (Q, p).

Assume now that (@, p) is a locally bounded gentle quiver.

We form Z(Q, p) = (@, Zp) as follows: We take countably many copies of @), indexed
over the integers, thus for every vertex a of (), there are the vertices alz] with z € Z,
and for every arrow « : a — b, there are arrows «[z] : a[z] — b[z]. In addition, for every
maximal path p: a — b in (Q, p), there are arrows p’[z]: b[z+1] — a|z] for all z € Z, they
may be called the connecting arrows. In this way, we have defined the quiver Q\ (in spite of
the notation @, this quiver not only depends on the quiver @), but also on the set p). The
relation set Zp contains all the paths a[z]8]z] with af € p and z € Z, and the following
additional paths of length 2: Let p = a1 ---ay,: a — b be a maximal path in (Q, p). If
B # aq is an arrow starting in a, then p’[z]5[z] is supposed to belong to Zp; if v # v, is an
arrow ending in b, then y[z+1]p’[z] is supposed to belong to Zp, for all z € Z. Finally, if ¢
is a maximal path ending in a, then also the elements p'[z]q’'[z—1] are supposed to belong
to Zp.

We denote by v the shift map given by a[z] — a[z+1] and a|z] — a[z+1]. Of course, v is
an automorphism of Z(Q, p). Note that there is a canonical embedding ¢: (Q, p) — Z(Q, p)
given by t(a) = a[0] and t(«) = a[0] for any vertex a and any arrow « of Q. Whenever it
will be convenient, we will identify (Q, p) with the image of ¢: (Q, p) — Z(Q, p).

Proposition (4.1). Let (Q,p) be a locally bounded gentle quiver. Then Z(Q,p) is
an expanded gentle quiver. If p = aq -+ -y, is a mazimal path in (Q,p), then the arrows
Qz(nt1)4i = i|—2] and a,, 41y = p'[—2] form a thread. All the threads are obtained in
this way.

Proof: We have to analyse the starting points and end points of the arrows p'[z]
where p = a3 - a0 @ — b is a maximal path in (Q, p). Using duality and the shift v, it
is sufficient to look at the end point of an arrow of the form p’[0]: b[1] — al0].

First, let us assume that a is a source of ), thus no connecting arrow will start in
a. In case a; is the only arrow of () starting in a, the path p is the only maximal path
of (@, p) starting in a, thus p’ is the only arrow of @ ending in a, and the path p’a; does
not belong to Zp. Thus, the vertex a is a transition point. In case there is a second arrow
B # aq starting in a, then p’[0]5[0] is supposed to belong to Zp. There is a maximal path
q in (Q, p) starting with the arrow 3, thus there is the additional arrow ¢'[0] in @ ending
in a[0], and ¢'[0]a1[0] belongs to Zp. There are the two arrows 5,y of @ starting in a,
thus there can be only two maximal paths of (@, p) which start in a, and consequently,
there are just two arrows of Q\ which end in a[0], and also precisely two relations in Zp
which pass through a[0], namely p’[0]3[0] and ¢'[0]a1[0]. This shows that a[0] is a crossing
vertex.
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Next assume that a is not a source in ), thus there is at least one arrow, say v of @
ending in a. Since (Q, p) is gentle and the path p = ay - - - a,, starting in a is maximal, it
follows that ~ is the only arrow ending in a and that ya; belongs to p.

In case there is an arrow 8 # «; starting in a, then three conclusions are of interest:
by definition of Zp, the path p’[0]5]0] belongs to Zp; second, p is the only maximal path
of (@, p) starting in a (any path with first letter 8 can be prolonged by multiplying from
the left with +); third, no maximal path of (Q, p) has « as last arrow (since any path with
last arrow 7 can be prolonged by multiplying on the right with ), thus in Z(Q, p), no
connecting arrow will start in a. We see that a[0] is a crossing vertex with arrows ~[0], p’[0]
coming in, with arrows §[0], @1[0] going out, and with relations ~y[0]ay [0], p'[0]5[0].

Finally, assume that «; is the only arrow starting in a. Since ya; belongs to p,
there is a maximal path ¢ in (Q, p) with last arrow being ~y, thus in Z(Q, p) there is the
connecting arrow ¢'[—1] starting in a[0], and p’[0]¢’[—1] belongs to Zp. Again, we obtain
a crossing vertex with arrows [0], p’[0] coming in, with arrows «a4[0], ¢'[—1] going out and
with relations [0]as[0], p'[0]¢’[—1].

It follows that the maximal path p of (Q, p) yields a path-equivalence class of Z(Q, p)
which consists of the arrows «[z], where « occurs in p, and the arrows p’[z], and this path-
equivalence class is a thread. Since (@, p) is locally bounded, every arrow of @ belongs to
a maximal path for (@, p), thus all the arrows of Z(Q, p) belong to one of these threads.
This completes the proof.

Let us formulate some consequences: Let (@, p) be a locally bounded gentle quiver.

(a) The inclusion ¢: (Q, p) = Z(Q, p) yields a bijection between the path-equivalence
classes of (@, p) and of Z(Q, p).

(b) The path-equivalence classes of Z(Q, p) are closed under v.

A path in Z(Q, p) of the form wq[z 4 1]p[z]w;[z], where p = wiws is a maximal path
of (Q,p) and z € Z, is said to be a full path. A full path ending in z starts in v(x); note
that in case @ has no cycles, the full paths are the only paths with this property. A path
in Z(Q, p) of length at least 1 which does not contain a full path as a subpath will be said
to be a short path. A word W in the quiver @ will be said to be short provided w or w™?
is a short path.

(c) If w is a full path in Z(Q, p), then v(w)w is a path in Z(Q, p).

(d) Let w: a[z] — b[Z'] be a short path. Then either z/ = z or 2’ = z — 1. A short
path starting in a[z] and ending in b[z’] will be said to be even, provided 2’ = z and odd,
provided 2/ = z — 1.

(e) If w is a short path in Z(Q, p), then there exists a uniquely determined path w’
such that w’w is a full path. This path w’ is a short path and it is also the uniquely defined
path so that v(w)w’ is a full path.

5. The set )7\/\

Let (Q, p) be a gentle quiver. We denote by W the set of words in WI(Z(Q, p)) which
do not involve any full path. Thus, the elements of W are those words w € W(Q) which

neither involve paths form Zp nor full paths. If w € V/\7, then its standard factorization is
w = w - - - wy where the subwords w; are short paths and inverses of short paths; of every
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consecutive pair w;, w;41, one of the words is a short path, the other one is the inverse of
a short path.

For any short word w € W and all t € Z, let us define a word w®). First, consider a
direct word w: @ — b in W. There is the word w’: v(b) — a, and we consider the inverse
w) = (w1 :a — v(b).

(In these pictures, we use the following conventions: on the one hand, words are to be
read from left to right; on the other hand, the dashed lines are paths or inverses of paths,
with all the arrows pointing downwards. Observe that the convention for reading letters
is opposite to the one used in [R].)
If w is an inverse word in W, then we take the word w(®) = (w™)': v(a) — b.
v(a)

AN
N

AN
w(l) AN

Always, we define w® for all integers t as follows:

w?) =1*(w), and WY = (w®).

Lemma (5.1). Let w be a word in W with standard factorization w = wy - - wy,.

Then also wgt) X ~w§f), for any t € Z, belongs to W and this factorization is the standard
one.

Proof: The shifts v* with z € Z are automorphisms of Z(Q, p); they map W to itself
and preserve the standard factorizations. Thus, it is sufficient to assume that t = 1.
Clearly, we only have to consider the case n = 2. One of the words w1y, ws is direct, the
other is inverse, thus we have to consider two cases.

Case 1: Let wy: a — b be direct, and ws: b — ¢ inverse.
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For ¢t = 1, we obtain wgl)wél)

Note that the two paths (w%l))_1 : v(b) — a and wél) : v(b) — ¢ both start in v(b), but that
they have different first letters: Since wjws is a word, the paths wy, wy ! have different
last letters, thus they belong to different threads. In one of these threads, we can form the
word V(wl)(wgl))_l, in the other the word V(wz_l)wél). If the first letters of (wgl))_1 and of

wél) would coincide, also the last letters of v(w1) and v(w;, ') would coincide, impossible.
Case 2: Let wi: a — b be inverse, and ws: b — ¢ direct. For t = 1, we have to

consider wgl)wél). There are the paths wgl): v(a) — b and (wgl))_lz v(c) — b.

v(a) v(c)
AN 7/
AN 7/
AN /
1) (1)
wl AN , 7/ w2
b
/ AN
wy 7 N \wg
/ AN
/ AN
a &

Since the first letters of the paths w; ' and ws are different, the last letters of w%l) and

(wél))_1 have to be different, using again the argument that we deal with paths in different

1 2
O

threads. Thus, we can form the word w in )7\/\, and the given factorization is its

standard factorization.

Lemma (5.2). Let w be a short word in W. Then there is a unique integer t such
that w) starts and ends in vertices which belong to the image of v: (Q, p) = Z(Q, p); all
the arrows involved in w) belong to the image of ¢.

Proof: First, consider the case where w is direct, thus w is a short path. Let us assume
that w starts in a[z] and ends in b[2'], where a, b are vertices of @ and z, 2z’ € Z. Then w
and w") are the only words of the form w(® with d € Z which start in a[z], thus w(=2?)
and w(=2**1) are the only words of the form w(? which start in a = a[0]. There are two
possibilities for 2/, namely 2/ = z and 2’ = z — 1. In case 2’ = z, the path w(~2%) starts
in @ and ends in b, whereas the word w(~2**1) ends in b[1]. In the second case, the word
w(~25+1) starts in a and ends in b, whereas the path w(~2#) ends in b[—1].
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Second, let w be inverse, thus w™! is a short path. By the previous considerations,
there is one and only one ¢ € Z such that (w™')® starts and ends in vertices belonging to
the image of ¢. Then w® = ((w=1)®))~! has the same property. This completes the proof.

Given a short word w € )7\/\, let m(w) be the unique word of the form w® which
belongs to W. If w starts in a[z], where a is a vertex of Q and z € Z, then

w(=22) provided w is even,
m(w) = w=2=+D) provided w is odd and direct,
w(=22-1) provided w is odd and inverse.

In particular, for w even, we have 7(w) = w(=2%) = v=*(w).

6. The projection 7: W — W and the sections o* and lo %8

Given a short word w € ]7\/\, we have defined m(w) € W. We are going to extend this
definition in order to obtain a map

W:W—)W

as follows: If w belongs to W and w = wi - - - wy, is its standard factorization, then we
want to define
m(w) = 7m(wy) - w(wy).

We need the following lemma:

Lemma (6.1). Assume that w € W has the standard factorization w = wy - - - wy,
then m(wy) - - - m(wy) is a word in W and this factorization is the p-factorization.

Proof: It is sufficient to consider the case n = 2, thus there is given a standard
factorization w = wyws in YWW. We have to distinguish whether these words wy, ws are even
or odd.

It is sufficient to consider the case of 7(w;) = w;. Namely, let 7(wq) = wgt). Then

(t), (t)

we may consider w; ws  instead of wjwsy. According to Lemma (5.1), this is again the
standard factorization of a word in W and we have m(w;) = W(wgt)).

Thus, we assume that w; is in the image of ¢, say wy: a — b, where a, b are vertices
of Q. If ws is even, then wq also belongs to the image of ¢, thus 7(ws) = we and wywy is
not only the standard factorization of a word in )7\/\, but also its p-factorization.

Now assume that ws is odd. First, let us assume that w; is direct, thus ws is inverse.
This is the given situation (where a, b, ¢ are vertices of Q):
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Note that m(ws) = wé_l) : b — ¢, thus we deal with the following words:

a c[1]
N v
N v
N /
LN , W2
N
b
SN eD
N -1
W2
N
N
c

It remains to be seen that the concatenation of the last arrow of w; and the first arrow of
wg_l) belongs to p. On the one hand, we know that the concatenation of the last arrow
of w2_1 and the first arrow of wé_l) does not belong to Zp, since the path w;lwé_l) is
inside a thread. On the other hand, the last arrows of w; and w, 1 are different, since
wiws is a word. Thus, wlw(_l) cannot lie inside a thread. This shows that wlw(_l) is a
p-factorization.

Second, let us assume that w; is inverse, thus ws is direct, thus we start with the

following words (again, a, b, ¢ are vertices in @Q):

We have m(ws) = wél) : b — ¢, thus we deal with the following words:

c
7/
/
/
1)
7w
, 2
b
/ AN
wy, 7 N ow
1 W2
/ AN
/ AN
a c[1]

This time, we have to show that the concatenation of the last arrow of (wél))_1 and the
first arrow of w; * belongs to p. On the one hand, we know that the concatenation of the

last arrow of (wél))_1 and the first arrow of ws does not belong to Zp, since the path
(wél))_lwg is inside a thread. On the other hand, the first arrows of wl_l and wy are
different, since wywsy is a word. Thus, wlwgl) cannot lie inside a thread. This shows that

wlwél) is a p-factorization. In this way, we complete the proof.
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The map 7: W — W is rather useful. We are going to determine its fibers. First, let
us reverse the considerations of Lemma (6.1).

Lemma (6.2). Let w € W be a word, with p-factorization w = wiws. Given an

integer t, let t' =t + 0(wyws). Then wgt)wét/) is a word in W and the factorization is the
standard one.

Proof: Using the shifts v* with z € Z, we see that it is sufficient to assume that ¢ =0
or t = 1. The words w1y, ws may be direct or inverse. If one of the words wq, ws is direct,
the other one inverse, then we are in the situation considered in Lemma (5.1), thus we can
assume that both wy, ws are direct, or both are inverse.

Let both wy: a — b and wy: b — ¢ be direct. Since wjws is the p-factorization, we
know that the concatenation of the last letter of w; and the first letter of ws belongs to
p. In particular, we have 6(wiws) = 1. In order to settle the case ¢t = 0, we have to show

that wgo)wél) is in W and that this factorization is the standard one.

a c[1]
N V
N s
/ 1
wr wé)
N
b
N
N
(1) N
N
c

Note that the last letters of w; and (wél))_1 are different: after all, the concatenation of

the last letter of w; and the first letter of ws belongs to p, whereas (wél))_lwg belongs to
a thread. We obtain the case ¢t = 1 from the case t = 0 using Lemma (5.1).

Next, let us assume that both words w;: @ — b and wg: b — ¢ are inverse. This time,
d(wrwy) = —1. We first treat the case t = 1. Thus, we show that w;(1)w2(0) is in W and
that this factorization is the standard one.

all] c
N s
N s
N v
(1) N w2
Wi N d
b
v
s
s
s W
/
a

Note that the last letters of wgl) and wy I are different: the concatenation of the last letter

of w2_1 and the first letter of wl_1 belongs to p, whereas w%l)wfl belongs to a thread.
We obtain the case of arbitrary ¢ from the case ¢ = 1, using Lemma (5.1). This
completes the proof.

11
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Lemma (6.3). Let z € Z. Let w be a word in W starting in a.
There is a unique word o*(w) € W with the following properties: o*(w) starts in a|z],
we have mo*(w) = w and the first letter of o*(w) is direct.

There is a unique word o,(w) € W with the following properties: o,(w) starts in a[z],
we have mo,(w) = w and the first letter of o,(w) is inverse.

Proof. Let us assume that we deal with the word w € W with canonical factorization
w=wi - -w, in W(Q,p). Let

; 2z if wy is direct,
€ (wy) =

2z —1 if w; is inverse.

Similarly, let

( 2z +1 if wq is direct,
€. (wy) =
2 2z if wy is inverse.

Using these numbers €¢*(w;) and €,(wq), we define

N7 (t) = €*(wy) + d(wy - - - wy),
N:(t) = €x(w1) + 0(wr - - wy).

We define 0*(w) and o, (w) as follows:

O_z(w> _ wgﬂz(l)) . ‘w;nz(n)),

o (w) = wgﬂz(l)) L w;ﬁz (n))

Let us show that these words o%(w) and o, (w) are defined in W and that the given
factorization is the standard one.

First, let us consider the case n = 1, thus we deal with a word w = wy in W(Q, p)
which is direct or inverse. By definition,

o*(w) = w' @) and o, (w) = w=W),
If w is direct, then
o*(w) = w?) =v*(w) and o.(w) =w* Y = (W),

thus we are in the following situation:

12
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If w is inverse, then
o*(w) =w?* Y and o, (w) =w?),

thus we deal with the following words:

It remains to observe that our recipes for o?(w) and o, (w) are just of the following
kind: We have

n*(i+1) =n°(i) + 0(wiwit1) and  n.(i+ 1) = n.(i) + 6(wiwit1),
thus Lemma (6.2) assures that all the concatenations are defined and yield standard fac-

torizations.

Corollary (6.4). For every word w € W, we have

7 (w) = {o*(w), 0. (w) | z € Z}.

Let a, 8 be arrows in Q. We denote by W(a ™!, ) the set of words in W such that
the first letter is a1, the last one is 8. We denote by W(a~!, 8)4 the set of words in

W(a~1,8) of defect d. Similarly, let V/V(a[z]_l, B[Z']) be the set of words in W with first
letter a[z] ™! and last letter 3[2'].

Corollary (6.5). Let o, 8 be arrows of Q, let d € Z. Then

. W(a™t, B)aa) = W(alz] ™Y, Blz+d]).

Let us now assume that «, 8 are different arrows of () with the same end point and
that d = 0. In this case the sets W(a™1, 8)g and W(a[z] 7, B[z]) with z € Z are semigroups
with respect to concatenation.

Proposition (6.6). Let o # [ be arrows ending in the same vertex. Then o, is a
semigroup isomorphism

o W(a™t, B)g — W(alz] %, Bl2])

13
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with inverse .

Proof: We know that the map o is injective and that 7o is the identity. The previous
assertions yield that the image of W(a™1, 8)o under o is just W(a[z]~1, 8[2]). It remains
to observe that o, is compatible with concantenation, thus it is a semigroup isomorphism.

7. The repetitive algebra A and its factor algebra A.

Let (Q, p) be a gentle quiver and A = kQ/(p) the corresponding gentle algebra. Let
A be its repetitive algebra. As we know, A is special biserial, thus there are two kinds
of indecomposable A—modules namely strings and bands. The set W is the index set for
describing the string modules which are neither simple nor injective. Let us outline more
details: The quiver Q(A) of the repetitive algebra A is the quiver Q). As set p of relations
one takes the union of three sets: namely the set Zp, second the set of all differences w—w’,
where w,w’ are full paths for Z(Q, p) with same starting point and same end point, and
third, the set of all paths for Z(Q), p) which properly contain a full path.

Let us denote by p the union of the sets Zp and the set of all full paths for Z(Q, p).
Note that A is a self-injective algebra (this means that the indecomposable projective

modules and the indecomposable injective modules coincide), and the factor algebra A of
A modulo its socle is given by the quiver @ and the relation set p. The indecomposable

A-modules are just the non-projective indecomposable A-modules. Thus we see that W

describes the string modules for A which are not simple.

8. The z-y-Lemma.

Here we deal with an arbitrary quiver @); there is no reference to any set of relations.

Given a vertex a in the quiver @), we denote by W(a) the set of words starting in a
and ending in a. Given a word w =l ---[,, of length n > 1, we denote by ¢(w) = [; its
first letter.

Lemma (8.1). Let Q be a quiver with at least two cycles. Then there are a vertex a
of Q and words x,y € W(a) such that the letters

h=¢x), lo=9¢(™"), ls=0(y), ba=0y").

satisfy the following two properties:
(1) The letters ly,12,l3 are pairwise different, whereas l3 = ly.
(2) The letters l3 and 13_1 do not occur in x, and they occur just once in y.

o

Proof: Since we assume that ) has at least two cycles, there are two elementary cycles
v,w in @ such that w cannot be obtained from v by rotation and inversion.

14
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We distinguish two cases:

Case 1. There are two cycles v,w in () which have no vertex in common. We can
assume that both cycles v, w are elementary. Since () is connected, there exists a path
from some vertex involved in v to a vertex involved in w and we choose such a path u of
shortest possible length. Then clearly u belongs to W. Let a be the starting point of u
and b its end point. We can assume that v starts (and ends) in a and that w starts (and
ends) in b. The minimality assures that all the paths

Us(v)uwe(w)

with €(v), e(w) € {1, —1} belong to W.

Let

r=v and y=uwu .

Since u is of length at least one, we have ¢(y) = ¢(u) = ¢(y~!), and the three letters
é(x), p(z~1) and ¢(y) are pairwise different. Also, the letter ¢(u) will not occur as a letter
in x, and it will occur only once as a letter of y.

Case 2. Any two cycles v, w in Q have at least one vertex in common. Let us choose
two elementary paths v’,w’. Let u be a path which occurs both in v and w’ and which
is maximal with this property (note that u may have length zero). We may assume that
v’,w’ have no other vertices in common. Thus: There are paths wu, v, w such that all the
paths

Uv, VU, ,u_lw, wu_l,vw, WU

belong to W; in case u has length zero, we will need that also the paths wv~! and v~ 1w
belong to W. We deal with the following situation:

where u may have length zero. Let

r=vu and y=w ‘v lutw.

15
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Since w is of length at least one, we see that ¢(y) = ¢(w™1) = ¢(y~!). Also, the three
letters ¢(x), p(z~1) and ¢(y) are pairwise different. In addition, the letter ¢(u) will not
occur as a letter in x, and it will occur only once as a letter of y.

This completes the proof.

9. Construction of cyclic words of defect zero.

Here and in the next section, we assume that a set p of paths of length 2 are given.
This allows us to consider the cyclic defect of any cyclic word in (). We assume that @)
has at least two cycles, thus we know that there are elements x,y as constructed in the
previous section.

Lemma (9.1). The words

xnyw—ny—l
are primitive cyclic words in Q) of zero cyclic defect.

Proof: The defect is calculated as follows:

Sc(a"ya "y ™M) = 6(a™) + 6(y) + 0z + Sy )
+6(x,y)+0(y, 2z )+ oz y ) + oy x)

and there is pairwise cancellation: the rule 6(w™!) = —d¢(w) with arbitrary w can be
applied to the first four terms; for the last four terms, we use the rule §(w=1,v71) =
—d(v,w) for words v, w with concatenation vw, and in addition that the first letter of
y coincides with the first letter of y~!, so that §(x,y) = 6(z,y~ ') = —d(y,z~!) and
5($_1,y_1) = 5($_1,y> = —5(y_1,$>.

The first letter of y appears just twice in the word z"yx "y~ !. The first time, its
predecessor is the last letter of z, the second time its predecessor is the last letter of z 1.
Since the last letters of z and 2! are different, we see that we deal with a primitive cyclic
word.

Lemma (9.2). The words
(zy)" (@ y )"
are primitive cyclic words of zero cyclic defect.

The calculation of the defect is as above. In order to see that all the words are
primitive, consider again the first letter of y. It occurs 2n times. The first n times, its
predecessor is the last letter of x, the last n times, its predecessor is the last letter of 1.
Again we use that the last letters of  and = are different.

Remark. All the words constructed above contain both direct and inverse letters
(since both word z and 2! are of length at least 1 and are subwords). Thus, we may
rotate the words in order to obtain a cyclic word starting with an inverse letter a~! and
ending in a direct letter 5 (and o # [ have the same end point). Of course, if a word
w starts in the inverse letter a~! and ends in the direct letter 3, where o # 3 have the
same end point, then w is a cyclic word and its cyclic defect coincides with its defect.
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Thus we see that we have constructed many primitive elements belonging to W(a ™!, 8).
Proposition (6.6) shows that this completes the proof of Theorem (1.1).

10. Cyclic words of defect zero with subwords of large defect.
Lemma (10.1). At least one of the words z,zy, z~ 'y has non-zero cyclic defect.

Proof: As we have mentioned above, we can assume that there are given two paths
x,y from a to a, with the following properties: let [} ! be the first letter and Iy the last
letter of x, let l3_1 be the first letter and [4 the last letter of y. Then I3 = 4 and the letters
l1, 12,13 are pairwise different, of course with end point a. Let us assume that x has cyclic
defect zero, thus é(x) = —d(z, x).

We note the following: Since the letters l1,ls,[3 are pairwise different and have the
same end point, we can consider the three paths l1l2_1, lglg_l, lgll_l. Since we deal with
a gentle algebra, we see that two of these paths have defect zero, the remaining one has
defect 1 or -1.

Consider the two cyclic words zy and x~!y. Note that we have §(z 1, y) = —6(y 1, x) =
—d(y, x) since the last letters of y and y~! are equal. As a consequence:

bc(wy) = —0(, w)+5(y)+5(w y)+5(y, ),
Sc(xty) = =0(z" 2™ ) +6(y) +6(x " y) + 6y, 2 t)
= +i(x, x) +5(y) d(y,x) — 5(m,y).

Thus we see that

Sc(zy) —de(zly) =2(0(z ", 271 + 6(x,y) + 0(y, x))

is either 2 or —2; here we use the remark above where [,[5,[3 are the last letters of
x~1, x,y, respectively. It follows that at least one of the words zy and x 'y has non-zero

cyclic defect. This shows the assertion.

Corollary (10.2). Let Q be a gentle quiver with at least two cycles. Then there are
primitive cyclic words in W of zero cyclic defect which have subwords of arbitrarily large
defect.

Proof: In case x has non-zero cyclic defect, consider the words z"yz "y~ !. Otherwise,
we can assume that xy has non-zero cyclic defect (replacing, if necessary, x by z—!), and
then we consider the words (zy)™(z71y~!)". In both cases, we obtain subwords w’ with
|0(w")| arbitrarily large. Since the cyclic defect of w is zero, w will contain corresponding

subwords with d(w’) being positive.
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