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Quasi-hereditary algebras were introduced by L.Scott [S] in order to deal with highest
weight categories as they arise in the representation theory of semi–simple complex Lie
algebras and algebraic groups. Since then, also many other algebras arising naturally, such
as the Auslander algebras, have been shown to be quasi-hereditary. It seems to be rather
surprising that the class of quasi-hereditary algebras, defined in purely ring–theoretical
terms, has not been studied before in ring theory.

The central concept of the theory of quasi-hereditary algebras are the notions of a
standard and a costandard module; these modules depend in an essential way, on a (par-
tial) ordering of the set of all simple modules. So we start with a finite dimensional algebra
A, and a partial ordering of the simple A–modules, in order to define the standard modules
∆(i) and the costandard modules ∇(i); we have to impose some additional conditions on
their endomorphism rings, and on the existence of some filtrations, in order to deal with
quasi-hereditary algebras. This is the content of the first chapter. The second chapter
collects some properties of quasi-hereditary algebras, in particular those needed in later
parts of the paper. The third chapter presents the process of standardization: here, we
give a characterization of the categories of ∆–filtered modules over quasi-hereditary al-
gebras. In fact, we show that given indecomposable A–modules Θ(1), . . . ,Θ(n) over a
finite–dimensional algebra such that rad(Θ(i),Θ(j)) = 0, and Ext1(Θ(i),Θ(j)) = 0 for all
i ≥ j, the category F(Θ) of all A–modules with a Θ–filtration is equivalent (as an exact
category) to the category of all ∆–filtered modules over a quasi-hereditary algebra.

The forth and the fifth chapter consider cases when the standard modules over a
quasi-hereditary algebra have special homological properties: first, we assume that any
∆(i) has projective dimension at most 1, then we deal with the case that the dominant
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dimension of any ∆(i) is at least 1. Both these properties, as well as their duals, are
satisfied for the Auslander algebras of a uniserial algebra, and we are going to present the
Auslander–Reiten quivers of the category of ∆–filtered modules for some examples.

These notes give a unified treatment of some basic results of Cline–Parshall–Scott
[PS,CPS], Dlab–Ringel [DR2], Donkin [D], Ringel [R2] and Soergel [So]; they are intended
as a guideline for understanding further investigations in [PS] and [R4]. We will not cover
those developments of the theory of quasi-hereditary algebras which are formulated in terms
of the internal ring structure (these results are rather easily available in the literature, some
of the references are listed in the bibliography at the end of the paper).

1. Definition of a quasi-hereditary algebra

Let k be a field, and A a finite–dimensional k–algebra. We denote by A–mod the cate-
gory of all (finite–dimensional left) A–modules. If Θ is a class of A–modules (closed under
isomorphisms), F(Θ) denotes the class of all A–modules M which have a Θ–filtration, i.e.
a filtration M = M0 ⊇ M1 ⊇ · · · ⊇ Mt−1 ⊇ Mt ⊇ · · · ⊇ Mm = 0 such that all factors
Mt−1/Mt, 1 ≤ t ≤ m, belong to Θ.

Let E(λ), λ ∈ Λ, be the simple A–modules (one from each isomorphism class),
and we assume that the index set Λ is endowed with a partial ordering. If M is an A–
module, we denote the Jordan–Hölder multiplicity of E(λ) in M by [M : E(λ)]. For each
λ ∈ Λ, let P (λ) be the projective cover, and Q(λ) the injective hull of E(λ). Denote by
∆(λ) = ∆A(λ) = ∆Λ(λ) the maximal factor module of P (λ) with composition factors of
the form E(µ) where µ ≤ λ; these modules ∆(λ) are called the standard modules, and
we set ∆ = {∆(λ)|λ ∈ Λ}. Similarly, denote by ∇(λ) = ∇A(λ) = ∇Λ(λ) the maximal
submodule of Q(λ) with composition factors of the form E(µ) where µ ≤ λ; in this way,
we obtain the set ∇ = {∇(λ)|λ ∈ Λ} of costandard modules. Let us point out that ∇(λ)
is the dual of a corresponding standard module: Let D = Homk(−, k) be the duality
with respect to the base field. Let Ao be the opposite algebra of A, with simple modules
EAo(λ) = DEA(λ) (note that we use the same index set!). Then ∇A(λ) = D∆Ao(λ).
It follows that any statement on standard modules yields a corresponding statement for
costandard modules, we often will refrain from stating the dual results explicitly.

Note that the only moduleM with Hom(∆(λ),M) = 0 for all λ ∈ Λ is the zero module
M = 0. [For M 6= 0, let E(λ) be a submodule, then Hom(∆(λ),M) 6= 0.] Dually, the only
module M with Hom(M,∇(λ)) = 0 is the zero module.

Given a set X of A–modules, then for any A–module M, we denote by ηXM the trace
of X in M, it is the maximal submodule of M generated by X .
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The standard modules may be characterized as follows:

Lemma 1.1. For any A–module M, and λ ∈ Λ the following assertions are equiva-
lent:
(i) M ∼= ∆(λ),
(ii) topM ∼= E(λ), all composition factors of M are of the form E(µ), with µ ≤ λ, and

Ext1(M,E(µ)) = 0 for all µ ≤ λ,
(iii) M ∼= P (λ)/η{P (µ)|µ6≤λ}P (λ).

Lemma 1.2. Let M be an A–module, and λ, µ ∈ Λ. Then:
(a) Hom(∆(λ),M) 6= 0 implies [M : E(λ)] 6= 0.
(b) Hom(∆(λ),∆(µ)) 6= 0 implies λ ≤ µ.
(c) Hom(∆(λ),∇(µ)) 6= 0 implies λ = µ.

For the proof of (c), we use both (a) and its dual statement.

The sets ∆ and ∇ depend, in an essential way, on the given partial ordering of Λ.
We will say that two partially ordered sets Λ,Λ′ used as index sets for the simple A–
modules are equivalent provided the sets {∆Λ(λ)|λ ∈ Λ} and {∆Λ′(λ)|λ ∈ Λ′} coincide,
and {∇Λ(λ)|λ ∈ Λ} and {∇Λ′(λ)|λ ∈ Λ′} coincide.

In general, the standard, and the costandard modules will change when we refine the
ordering. In order to avoid this to happen, we usually will consider only adapted orderings
in the sense of the following definition: A partial ordering Λ of the set of simple A–modules
{E(λ)|λ ∈ Λ} is said to be adapted, provided the following condition holds: for every A–
module M with topM ∼= E(λ1) and socM ∼= E(λ2), where λ1 and λ2 are incomparable,
there is some µ ∈ Λ with µ > λ1 and µ > λ2 such that [M : E(µ)] 6= 0. [Observe that
we may weaken the condition as follows: we only have to require the existence of some
µ ∈ Λ with µ > λ1 or µ > λ2 such that [M : E(µ)] 6= 0. Indeed, in case the weaker
condition is satisfied, assume that there exists a module M with top E(λ1), socle E(λ2),
where λ1 and λ2 are incomparable, and such that there is no µ ∈ Λ with µ > λ1, µ > λ2

and [M : E(µ)] 6= 0. We may assume that M is of smallest possible length, and we know
that there is at least a µ with [M : E(µ)] 6= 0 and either µ > λ1 or µ > λ2. Assume
we have µ > λ1. Now M has a submodule M ′ with top E(µ). Note that µ cannot be
comparable with λ2. The minimality of M implies that there is ν such that ν > µ, ν > λ2,
and [M ′ : E(ν)] 6= 0. But ν > µ > λ1, ν > λ2, and [M : E(ν)] 6= 0, contrary to our
assumption.] As an example of non–adapted partial orderings, the reader should have in
mind any non–semisimple algebra with the discrete ordering of the simple modules.
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If Λ′ is a refinement of Λ, and Λ is adapted, then clearly ∆Λ′(λ) = ∆Λ(λ) and
∇Λ′(λ) = ∇Λ(λ) for all λ ∈ Λ, thus Λ and Λ′ are equivalent, and Λ′ also is adapted.
Thus, for Λ adapted, we always may assume that we deal with a total ordering. In such a
case, we may replace Λ by the equivalent index set {1, 2, . . . , n} with its natural ordering.

In case we deal with an adapted partial ordering, we may reformulate Lemma 1.1 as
follows:

Lemma 1.1′. For any A–module M, and λ ∈ Λ, where Λ is adapted, the following
assertions are equivalent:
(i) M ∼= ∆(λ),
(ii) topM ∼= E(λ), all composition factors of M are of the form E(µ), with µ ≤ λ, and

Ext1(M,E(µ)) 6= 0 implies µ > λ,
(iii) M ∼= P (λ)/η{P (µ)|µ>λ}P (λ).

As an immediate consequence, we see:

Lemma 1.3. Assume Λ is adapted. Let M be an A–module, and λ, µ ∈ Λ. Then
(a) If Ext1(∆(λ),M) 6= 0, then [M : E(µ)] 6= 0, for some µ > λ.
(b) If Ext1(∆(λ),∆(µ)) 6= 0, then λ < µ.
(c) Ext1(∆(λ),∇(µ)) = 0.

For (a), note that Ext1(∆(λ),M) 6= 0 implies that Ext1(∆(λ), E) 6= 0 for some com-
position factor E of M. Let E = E(µ), then µ > λ, according to Lemma 1.1′(ii). For
the proof of (b), assume Ext1(∆(λ),∆(µ)) 6= 0. Then [∆(µ) : E(ν)] 6= 0, for some ν > λ,
according to (a). However [∆(µ) : E(ν)] 6= 0 implies ν ≤ µ, therefore λ < ν ≤ µ. Sim-
ilarly, for the proof of (c), we use (a) in order to see that Ext1(∆(λ),∇(µ)) 6= 0 implies
λ < µ. But in this case, the duality also yields the dual statement λ > µ, so we obtain a
contradiction.

The main interest will lie on the subcategory F(∆) of all A–modules with a ∆–
filtration. First of all, let us point out that usually F(∆) is closed under direct summands:

Lemma 1.4. Let Λ = {1, 2, . . . , n}, with the canonical ordering. For any A–module
M, and 0 ≤ i ≤ n, let ηiM = η{P (j)| j>i}M. Then M belongs to F(∆) if and only if for all
1 ≤ i ≤ n, the factor ηi−1M/ηiM is a direct sum of copies of ∆(i).

Proof: Assume M belongs to F(∆). According to Lemma 1.3 (b), there is a filtration
M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = 0 such that for all 1 ≤ i ≤ n, the factor Mi−1/Mi is
isomorphic to a direct sum of copies of ∆(i). It follows that Mi = ηiM.
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Lemma 1.5. Assume Λ is adapted. Then F(∆) is closed under kernels of epimor-
phisms.

Proof: We may assume that Λ = {1, 2, . . . , n} with its canonical ordering. Let X, Y
belong to F(∆), and let f : X → Y be an epimorphism, say with kernel K. Clearly
f(ηiX) = ηiY for all i, since any map P (j) → Y lifts to X. For any 1 ≤ i ≤ n, we obtain
the following commutative diagram

0 −−−−→ ηiX ∩K
ι

−−−−→ ηiX
f

−−−−→ ηiY −−−−→ 0




y

ιX





y





y

ιY

0 −−−−→ ηi−1X ∩K
ι

−−−−→ ηi−1X
f

−−−−→ ηi−1Y −−−−→ 0

with exact rows (the maps being the canonical inclusions or induced by f.) As cokernels of
the vertical maps, we obtain the exact sequence 0 → Ki → X〈i〉 → Y 〈i〉 → 0 with Ki =
ηi−1X ∩K/ηiX ∩K, X〈i〉 = ηi−1X/ηiX, and Y 〈i〉 = ηi−1Y/ηiY. Now, both X〈i〉, and
Y 〈i〉 are direct sums of copies of ∆(i), thusKi as a submodule ofX〈i〉 has only composition
factors of the form E(j), with j ≤ i. Since we know that Ext1(∆(i), E(j)) = 0, for j ≤ i,
it follows that the cokernel sequence splits, thus Ki is a direct sum of copies of ∆(i). In
this way, we see that K has the filtration K = η0X ∩K ⊇ η1X ∩K ⊇ · · · ⊇ ηnX ∩K = 0,
with factors in F(∆), thus K belongs to F(∆).

We consider now the case that the endomorphism rings of standard modules and
of costandard modules are division rings. Note that modules with a division ring as
endomorphism ring are called Schurian.

Lemma 1.6. The following statements are equivalent, for any λ ∈ Λ :
(i) ∆(λ) is a Schurian module.
(ii) [∆(λ) : E(λ)] = 1.
(iii) If M is an A–module with top and socle isomorphic to E(λ), and [M : E(µ)] 6= 0 only

for µ ≤ λ, then M ∼= E(λ).
(ii)* [∇(λ) : E(λ)] = 1.
(i)* ∇(λ) is a Schurian module.

With these preparations, we are able to present the definition of a quasi-hereditary
algebra.

Theorem 1. Assume that Λ is adapted, and that all standard modules are Schurian.
Then the following conditions are equivalent:

5



(i) F(∆) contains AA.
(ii) F(∆) = {X | Ext1(X,∇) = 0}.
(iii) F(∆) = {X | Exti(X,∇) = 0 for all i ≥ 1}.
(iv) Ext2(∆,∇) = 0

An algebraA with an adapted partial ordering Λ, whose standard modules are Schurian
and such that the equivalent conditions of Theorem 1 are satisfied, is said to be quasi-
hereditary. The usual definition is (i), or an equivalent form in terms of ”heredity chains”,
see [S, PS, CPS, DR2], and Soergel [So] presented the last condition (iv). In fact, the de-
cisive implication (iv) =⇒ (ii) can be traced back to Donkin [D]. Condition (iv) obviously
is self–dual, thus we may add the dual form of the remaining conditions:

(i)* F(∇) contains D(AA).
(ii)* F(∇) = {Y | Ext1(∆, Y ) = 0}.
(iii)* F(∇) = {Y | Exti(∆, Y ) = 0 for all i ≥ 1}.

Since under the assumption that Λ is adapted, F(∆) is closed under direct summands,
and under kernels of surjective maps, the condition (i) may be reformulated that F(∆)
contains all projective modules, or also that F(∆) is resolving. Recall that a full subcat-
egory of A–mod is said to be resolving provided it is closed under extensions, kernels of
surjective maps, and contains all projective modules. Of course, there is the dual concept
of a coresolving subcategory (closed under extensions, cokernels of injective maps, and con-
taining all injective modules). So, condition (i)* may be reformulated that F(∇) contains
all injective modules, or also that F(∇) is coresolving.

Proof of Theorem 1: (iii) implies (iv): this is trivial.
(iv) implies (ii): According to Lemma 1.3 (c), we know that any module X in F(∆)

satisfies Ext1(X,∇) = 0. We are going to prove the converse. We may assume that
Λ = {1, 2, . . . , n}. Let X be a module with Ext1(X,∇) = 0. Let i be minimal with ηiX = 0.
By induction on i, we are going to show that X belongs to F(∆). For i = 0, we deal with
the zero module, so nothing has to be shown. So assume i ≥ 1. Let X ′ = ηi−1X, and
X ′′ = X/X ′.

First, let us show that X ′′ belongs to F(∆). For s < i, we have Hom(X ′,∇(s)) = 0,
since X ′ is generated by P (i), and [∇(s) : E(i)] = 0. For s > i, we have Hom(X ′,∇(s)) = 0,
since ηs−1X

′ = 0, whereas ∇(s) is cogenerated by Q(s). The exact sequence 0 → X ′ →
X → X ′′ → 0 induces for any s an exact sequence

Hom(X ′,∇(s)) → Ext1(X ′′,∇(s)) → Ext1(X,∇(s)).
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We have seen that the first term is zero for s 6= i, and by assumption, the last term is
always zero, thus Ext1(X ′′,∇(s)) = 0 for s 6= i. The same is true for s = i, according to
the dual of Lemma 1.1’, since the composition factors of X ′′ are of the form E(j), with
j < i. Since Ext1(X ′′,∇) = 0, and ηi−1X

′′ = 0, we know by induction that X ′′ belongs to
F(∆).

Next, let us note that Ext1(X ′,∇) = 0. Namely, the exact sequence 0 → X ′ → X →
X ′′ → 0 yields for any s an exact sequence

Ext1(X,∇(s)) → Ext1(X ′,∇(s)) → Ext2(X ′′,∇(s)),

again, the first term is zero by assumption, the last term is zero according to condition
(iv), and the fact that X ′′ belongs to F(∆).

Since X ′ is generated by P (i), and ηiX
′ = 0, it follows that there exists an exact

sequence 0 → K → Z → X ′ → 0, where Z is a direct sum of copies of ∆(i), and K is
contained in the radical of Z. In particular, ηi−1K = 0. The exact sequence 0 → K →
Z → X ′ → 0 yields an exact sequence

Hom(Z,∇(s)) → Hom(K,∇(s)) → Ext1(X ′,∇(s)),

the last term is always zero, as we have shown, the first term is zero at least for s 6= i,
according to Lemma 1.2 (c), thus we see that Hom(K,∇(s)) = 0, for s 6= i. The same is
true for s = i, since the composition factors of K are of the form E(j) with j < i, and ∇(i)
is cogenerated by Q(i). However, Hom(K,∇) = 0 implies K = 0, as we have remarked
before Lemma 1.1. This shows that X ′ is isomorphic to a direct sum of copies of ∆(i),
thus both X ′ and X ′′ belong to F(∆), and therefore also X.

(ii) implies (i): this again is trivial.
(i) implies (iii): We assume that AA belongs to F(∆). We show that any module X

in F(∆) satisfies Exti(X,∇) = 0 for all i ≥ 1. According to Lemma 1.3 (c), we know it for
i = 1, thus consider some i ≥ 2. Take any exact sequence 0 → X ′ → P → X → 0, where
P is a free A–module. Since both P and X belong to F(∆), also X ′ belongs to F(∆),
according to Lemma 1.5. On the other hand, Exti(X,∇(µ)) = Exti−1(X ′,∇(µ)), and, by
induction, the latter group is zero. Thus we see

F(∆) ⊆ {X | Exti(X,∇) = 0 for all i ≥ 1} ⊆ {X | Ext1(X,∇) = 0},

in particular, the first inclusion shows that (iv) is satisfied. Since we know already that
(iv) implies (ii), we see that all inclusions are equalities. This finishes the proof.
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2. Some properties of quasi-hereditary algebras

Let A be a quasi-hereditary algebra with respect to Λ. We are going to give bounds
for the Loewy length, and the projective or injective dimension of modules in terms of Λ.
Also, we will consider the Jordan–Hölder multiplicities of selected modules.

If Λ′ is a subset of Λ, let h(Λ′) be the maximal number m such that there exists a
chain λ0 < λ1 < · · · < λm in Λ, with all λi ∈ Λ′.

Given an A–module M, its support suppM is the set of all λ ∈ Λ, such that [M :
E(λ)] 6= 0.

Lemma 2.1. Let M be an A–module, and h = h(suppM). Then the Loewy length
of M is at most 2h+1 − 1.

Remark: The algebraA does not have to be quasi-hereditary in order that the assertion
holds. It is sufficient to know that Λ is adapted, and that the standard modules are
Schurian.

Proof: We use induction on h. For h = −1, we have M = 0, and the zero module has
Loewy length zero. Assume now that h ≥ 0, and let µ1, . . . , µt be the maximal elements of
suppM. Let M ′ be the smallest submodule of M such that none of the elements µi, with
1 ≤ i ≤ t, belongs to the support of M/M ′. Let M ′′ be the largest submodule of M ′ such
that none of the elements µi, with 1 ≤ i ≤ t belongs to its support. By induction, the
Loewy length of both M/M ′ and of M ′′ is at most 2h − 1. We claim that N = M ′/M ′′ is
semisimple. Otherwise, there are submodules N ′′ ⊂ N ′ ⊆ N such that N ′/N ′′ has length
at least two, and simple top E(µr) and simple socle E(µs), with r, s ∈ {1, . . . , t}. Note that
N ′/N ′′ is a factor module of ∆(µr), since µr is maximal in suppN ′/N ′′, and Λ is adapted
(see Lemma 1.1’). However, [N ′/N ′′ : E(µs)] 6= 0 shows that µs ≤ µr. Thus µs = µr, since
µs is maximal. But since ∆(µr) is standard, we cannot have [N ′/N ′′ : E(µr)] ≥ 2. This
contradiction shows that N has to be semisimple, and therefore the Loewy length of M is
at most 2 · (2h − 1) + 1 = 2h+1 − 1.

Given λ ≤ µ in Λ, we denote by [λ, µ] the subset {ν|λ ≤ ν ≤ µ}, the interval
between λ and µ. Similarly, [λ,−] = {ν|λ ≤ ν} is the principal filter generated by λ, and
[−, µ] = {ν| ν ≤ µ} is the principal ideal generated by µ.

Lemma 2.2. Let λ ∈ Λ. Then

proj. dim.∆(λ) ≤ h([λ,−]), proj. dim. E(λ) ≤ h(Λ) + h([−, λ]).
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Consequently, the projective dimension of a module in F(∆) is bounded by h(Λ), and the
global dimension of A is bounded by 2 h(Λ).

Proof: If λ is maximal, then ∆(λ) is projective. So assume that λ is not maximal.
There is a submodule U of P (λ) such that ∆(λ) = P (λ)/U, and U is filtered with factors
some standard modules ∆(µ) with µ > λ. Note that for µ > λ, we have h([µ,−]) <
h([λ,−]), thus by induction we have

proj. dim. U ≤ max
µ>λ

proj. dim.∆(µ) ≤ max
µ>λ

h([µ,−]) < h([λ,−]).

It follows that proj. dim.∆(λ) ≤ 1 + proj. dim. U ≤ h([λ,−]).

If λ is minimal, then E(λ) = ∆(λ), thus by the previous considerations, proj. dim. E(λ) ≤
h(Λ). Assume that λ is not minimal. The composition factors of rad∆(λ) are of the form
E(ν) with ν < λ, thus by induction proj. dim. E(ν) ≤ h(Λ) + h([−, ν]) < h(Λ) + h([−, λ]),
and proj. dim.∆(λ) ≤ h(Λ). This shows that proj. dim. E(λ) ≤ h(Λ) + h([−, λ]).

In order to consider the various Jordan–Hölder multiplicities of a module as a vector
with integer coefficients, it seems to be convenient to replace Λ by a totally ordered re-
finement. Thus, let Λ = {1, 2, . . . , n}, with the canonical ordering. For any A–module M,
we may consider the n-tuple dimM with coordinates (dimM)j = [M : E(j)], called the
dimension vector of M, and we consider dimM as an element of the Grothendieck group
K0(A) = Z

n. The sets ∆ and ∇ yield n× n–matrices dim∆,dim∇, (the rows with index
i being dim∆(i),dim∇(i), respectively).

Lemma 2.3. Let Λ = {1, 2, . . . , n}, and assume the standard modules are Schurian.
Then both matrices dim∆,dim∇ are unipotent lower triangular matrices.

In particular, we see that under the assumptions of Lemma 2.3, both the dimension
vectors dim∆(λ), as well as the dimension vectors dim∇(λ), form a Z-basis of K0(A).
The basis dim∆(λ) of K0(A) will be called the standard basis, the basis dim∇(λ) the
costandard basis of K0(A). If M is an A–module, the coefficients of dimM expressed in
the standard basis will be denoted by [M : ∆(i)], its coefficients in terms of the costandard
basis will be [M : ∇(i)], thus

dimM =
n
∑

i=1

[M : ∆(i)]dim∆(i) =
n
∑

i=1

[M : ∇(i)]dim∇(i).
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For M in F(∆), the number of copies of ∆(i) in any ∆–filtration of M is [M : ∆(i)].
Namely, if di is the number of copies of ∆(i) in some ∆–filtration of M, then dimM =
∑

didim∆(i), therefore di = [M : ∆(i)].

For any λ ∈ Λ, let dλ = dimk End(∆(λ)).

Lemma 2.4. The restriction of the functor Hom(−,∇(λ)) to F(∆) is exact, and
for M ∈ F(∆), we have

dimk Hom(M,∇(λ)) = dλ · [M : ∆(λ)].

Proof: We know from 1.3 (c) that Ext1(F(∆),∇(λ)) = 0, thus the restriction of the
functor Hom(−,∇(λ)) toF(∆) is exact. Also, by 1.2 (c), we know that Hom(∆(µ),∇(λ)) =
0 for λ 6= µ, thus given a ∆–filtration of M , the functor Hom(−,∇(λ)) will pick out those
factors which are of the form ∆(λ).

The following equality is sometimes called Bernstein–Gelfand–Gelfand reciprocity law:

Lemma 2.5. For all λ, µ in Λ

[P (µ) : ∆(λ)] · dλ = [∇(λ) : E(µ)] · dµ.

Proof: Lemma 2.4 withM = P (µ) shows that the left hand side is equal to dimk Hom(P (µ),∇(λ))
However, for any A–module N, we have dimk Hom(P (µ), N) = [N : E(µ)] · dµ.

Consider the case where dλ = 1 for all λ ∈ Λ (for example, if the base field k is
algebraically closed), then we can reformulate the reciprocity law as follows: recall that
the Cartan matrix C(A) of A is, by definition, the matrix whose columns are just the
transpose of the vectors dimP (λ). Then

C(A) = (dim∆)t · (dim∇);

in particular, the determinant of the Cartan matrix is equal to 1.

3. Standardization
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Let C be an abelian k–category and Θ = {Θ(λ)|λ ∈ Λ} a finite set of objects of C.
The set Θ is said to be standardizable provided the following conditions are satisfied:

(F) dimk Hom(Θ(λ),Θ(µ)) < ∞, and dimk Ext
1(Θ(λ),Θ(µ)) < ∞, for all λ, µ ∈ Λ.

(D) The quiver with vertex set Λ which has an arrow λ → µ (and just one) provided
rad(Θ(λ),Θ(µ)) 6= 0 or Ext1(Θ(λ),Θ(µ)) 6= 0, has no (oriented) cycles.

(Here, rad(Θ(λ),Θ(µ)) denotes the set of non–invertible maps Θ(λ) → Θ(µ).) Let us
point out that condition (D) asserts, in particular, that all the objects Θ(λ) are Schurian,
and do not have self–extensions.

Given a standardizable set Θ indexed by Λ, then condition (D) defines a partial
ordering on Λ, with λ ≤ µ provided there exists a chain of arrows λ = λ0 → λ1 → · · · →
λm = µ. The set Λ with this ordering may be called the weight set for Θ.

As before, we denote by F(Θ) the full subcategory of all objects in C having a Θ–
filtration.

Theorem 2. Let Θ be a standardizable set of objects of an abelian category C. Then
there exists a quasi-hereditary algebra A, unique up to Morita equivalence, such that the
subcategory F(Θ) of C and the category F(∆A) of all ∆A–filtered A–modules are equivalent.

Proof: Without loss of generality, we may refine Λ to a total ordering, thus we may
assume that Λ = {1, 2, . . . , n}, with its natural ordering.

First, let us observe that for any 1 ≤ i ≤ n, there exists an indecomposable Ext–
projective object PΘ(i) of F(Θ) with an epimorphisms PΘ(i) → Θ(i) with kernel in
F(Θ). In order to show the existence, we fix some i. We want to construct inductively
indecomposable objects P (i,m), with i ≤ m ≤ n, such that there is an exact sequence
0 → K(i,m) → P (i,m) → Θ(i) → 0, with K(i,m) in F(Θ(i + 1), . . . ,Θ(m)) and
such that Ext1(P (i,m),Θ(j)) = 0, for 1 ≤ j ≤ m. Let P (i, i) = Θ(i), and there-
fore K(i, i) = 0; the condition (D) shows that the Ext–condition is satisfied. Now as-
sume i < m, and that P (i,m − 1) and K(i,m − 1) are already defined. Let d(i,m) =
dimExt1(P (i,m− 1),Θ(m))End(Θ(m)), then there is a ”universal extension”

0 → d(i,m)Θ(m) → P (i,m) → P (i,m− 1) → 0

(the induced map Hom(d(i,m)Θ(m),Θ(m)) → Ext1(P (i,m− 1),Θ(m)) being surjective).
It is easy to see that Ext1(P (i,m),Θ(j)) = 0, for all j ≤ m.Also, since Hom(Θ(m), P (i,m−
1)) = 0, it follows that P (i,m) is indecomposable. We define K(i,m) as the kernel of the
composition of the given maps P (i,m) → P (i,m−1) and P (i,m−1) → Θ(i), thus K(i,m)
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is an extension of d(i,m)Θ(m) by K(i,m− 1). This finishes the induction step. We define
PΘ(i) = P (i, n).

Given any object X ∈ F(Θ), we claim that there exists an exact sequence 0 → X ′ →
P0(X) → X → 0, with P0(X) ∈ addPΘ, and X ′ again in F(Θ). For X = Θ(i), we
take P0(Θ(i)) = P (i), and we proceed by induction: assume there is given an object X
in F(Θ) with a non–zero proper submodule U such that both U and Y = X/U belong
to F(Θ). By induction, there are epimorphisms ǫU : P0(U) → U and ǫY : P0(Y ) → Y
such that P0(U), P0(Y ) belong to addPΘ, whereas the kernels U ′ of ǫU , and Y ′ of ǫY
belong to F(Θ). Let ι : U → X be the inclusion map, and π : X → Y the projection.
Since Ext1(P0(Y ), U) = 0, there is some α : P0(Y ) → X such that απ = ǫY . Then
[ǫU ι, α] : P0(U)⊕ P0(Y ) → X is surjective, and its kernel is an extension of U ′ by Y ′.

Let P =
⊕n

i=1 PΘ(i), and A its endomorphism ring. We consider the functor F =
Hom(P,−) : C → A–Mod. Condition (F) asserts that A is a finite–dimensional algebra,
and that the images F (X), where X belongs to F(Θ), are finite dimensional A–modules.
Finally, since Ext1(P,X) = 0, for X ∈ F(Θ), we see that F is exact on exact sequences
0 → X → Y → Z → 0 in C, with X ∈ F(Θ).

Let PA(i) = F (PΘ(i)), and consider for 1 ≤ i ≤ n, the modules ∆(i) = F (Θ(i)). Since
F is exact on exact sequences of C whose objects lie inside F(Θ), it follows that F maps
F(Θ) into F(∆). We claim that the restriction of F to F(Θ) is fully faithful. Of course,
this is true for the restriction of F to addPΘ. Let X be in F(Θ). As we have seen above,
there is a map δX : P1(X) → P0(X) in C such that its cokernel is X, and such that the
kernel X ′′ and the image X ′ of δX both belong to F(Θ). We denote the projection map by
ǫX : P0(X) → X. Note that under F, the exact sequences P1(X) → P0(X) → X → 0 goes
to a projective presentation of F (X). Now assume X, Y in F(Θ) are given. Let f : X → Y
be a map with F (f) = 0. Since Ext1(P0(X), Y ′) = 0, and Ext1(P1(X), Y ′′) = 0, it follows
that there are maps f0 : P0(X) → P0(Y ), and f1 : P1(X) → P1(Y ) such that f0ǫY = ǫXf,
and f1δY = δXf0. Since F (f) = 0, there is a map g′ : F (P0(X)) → F (P1(Y )) such
that gF (δY ) = F (f0). However, g′ = F (g) for some g : P0(X) → P1(Y ), and f0 = gδY ,
using the fact that the restriction of F to addPΘ is fully faithful. Hence ǫXf = f0ǫY =
gδY ǫY = 0, thus f = 0. This shows that the restriction of F to all of F(Θ) is faithful.
In order to show that it is full, let f ′ : F (X) → F (Y ) be a map. Since there are given
projective presentations, we obtain maps f ′

i : F (Pi(X)) → F (Pi(Y )), for i = 0, 1 such
that f ′

0F (ǫY ) = F (ǫX)f ′, and f ′
1F (δY ) = F (δX)f ′

0. Since the restriction of F to addPΘ

is fully faithful, we can write f ′
i = F (fi), with maps fi : Pi(X) → Pi(Y ), and we have

f1δY = δXf0. Since δXf0ǫY = 0, there is f : X → Y in C such that f0ǫY = ǫXf. Under
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F we obtain F (ǫX)F (f) = F (f0ǫY ) = F (ǫX)f ′, therefore F (f) = f ′, since F (ǫX) is an
epimorphism. Thus, the restriction of F to F(Θ) is also full.

As a consequence, we see thatA is quasi-hereditary relative to the ordering {1, 2, . . . , n},
and that the modules ∆(i) are the standard modules. For, PA(i) = F (PΘ(i)) has a ∆–
filtration, the upper factor being ∆(i), the remaining ones being of the form ∆(j), with
j > i. In particular, ∆(i) has simple top E(i). Since Hom(PA(j),∆(i)) 6= 0 only for j ≤ i,
it follows that ∆(i) is the maximal factor module of PA(i) with composition factors of the
form E(j), where j ≤ i.

It remains to be seen that any A–module in F(∆) is of the form F (X) withX in F(Θ).
Let M be a non–zero module in F(∆), let U be a submodule isomorphic to some ∆(i),
such that also M/U belongs to F(∆). Denote by ι : ∆(i) → M a monomorphism with
image U, and by π : M → M/U the projection map. By induction, there is an object Y in
F(Θ) such that F (Y ) = M/U. As we know, there is an epimorphism ǫY : P0(Y ) → Y with
P0(Y ) ∈ addPΘ, such that its kernel Y ′ also belongs to F(Θ). Let u : Y ′ → P0(Y ) be the
inclusion map. Since F (P0(Y )) is projective, there is a map α : F (P0(Y )) → M such that
απ = F (ǫY ). Then [ι, α] : ∆(i)⊕F (P0(Y )) → M is surjective, and its kernel is easily seen to
be isomorphic to F (Y ′), with kernel map of the form [φ, F (u)] : F (Y ′) → ∆(i)⊕F (P0(Y ))
where φ : F (Y ′) → ∆(i) is some map. Since the objects F (Y ′), and ∆(i) = F (Θ(i)) are
images under F, and F is full, there is a map h : Y ′ → Θ(i) with F (h) = φ. With u also

[h, u] : Y ′ → Θ(i)⊕P0(Y ) is a monomorphism, let X be its cokernel. Since u = [h, u]

[

0
1

]

,

the cokernel X of [h, u] maps onto the cokernel Y of u, say by e : X → Y, and the kernel

of e is the same as the kernel of

[

0
1

]

, thus just Θ(i). In this way, we see that X as an

extension of Y ∈ F(Θ) and Θ(i) belongs to F(Θ). The exact sequence

0 −−−−→ Y ′ [h,u]
−−−−→ Θ(i) ⊕ P0(Y ) −−−−→ X −−−−→ 0

goes under F to an exact sequence, since Y ′ belongs to F(Θ), thus F (X) is isomorphic to
the cokernel of F ([h, u]) = [φ, F (u)], thus to M. This finishes the proof.

Note that if Θ is a standardizable set of an abelian k–category C, this set is also
standardizable when considered in the opposite category Co, of course then its weight set
will be changed to the opposite partially ordered set. It follows that for any statement
dealing with standardizable sets, there also is a corresponding dual statement.
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In particular, we see that given a standardizable set Θ of modules, the category F(Θ)
always has sufficiently many Ext–projective modules. (This is a consequence of Theorem
2 as stated, but actually, it was the first step in its proof, and one may refer to the
proof in order to get further properties of the Ext–projective objects from the construction
presented there.) By duality, the category F(Θ) also has sufficiently many Ext–injective
modules.

Of course, given a quasi-hereditary algebra A, the set of standard modules is a stan-
dardizable set, its weight set will be called the weight set of A. Here, the Ext–projective ob-
jects of F(∆) are just the projective modules. The Ext–injective objects of F(∆) have been
considered in [R2]. The indecomposable Ext–injective A–modules have been denoted by
T (1), . . . , T (n), where ∆(λ) is embedded into T (λ), with T (λ)/∆(λ) ∈ F({∆(µ)|µ < λ}),
and T =

⊕

λ T (λ) has been called the characteristic module of A.
If A is quasi-hereditary, then also the set of costandard modules is a standardizable set,

its weight set is the opposite of the weight set of A. Note that the Ext–projective modules
in F(∇) will belong to F(∆), according to Theorem 1,(ii), and they are Ext–injective in
F(∆). Thus, the indecomposable Ext–projective modules in F(∇) are just the modules
T (1), . . . , T (n). Note that the construction of P∇(λ) shows that [P∇(λ) : E(λ)] = 1, and
that [P∇(λ) : E(µ)] 6= 0 only in case µ ≤ λ (here, ≤ is the given ordering of the weight set
of A.) This implies that P∇(λ) = T (λ). Altogether, we see:

Proposition 3.1. Let A be a quasi-hereditary algebra. Then there are indecompos-
able modules T (λ), λ ∈ Λ, and exact sequences

0 → ∆(λ) → T (λ) → X(λ) → 0,

and
0 → Y (λ) → T (λ) → ∇(λ) → 0,

where X(λ) is filtered with factors ∆(µ < λ, and Y (λ) is filtered with factors ∇(µ), µ < λ,
such that the module T =

⊕

λ∈Λ T (λ) satisfies

addT = F(∆) ∩ F(∇).

The characteristic module T =
⊕

λ∈Λ T (λ) is a generalised tilting and cotilting mod-
ule; a general context for the existence of such a module has been exhibited by Auslander
and Reiten [AR]; they also show:
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Proposition 3.2. Let T be the characteristic module of a quasi-hereditary algebra
A. Then

F(∆) = {X ∈ A–mod| Exti(X, T ) = 0 for all i ≥ 1},

and
F(∇) = {Y ∈ A–mod| Exti(T, Y ) = 0 for all i ≥ 1}.

A short version of the proof of Auslander and Reiten may be found in [R2]. Note
that any subset of a standardizable set again is standardizable. In particular, given the set
∆ of standard modules over a quasi-hereditary algebra, any subset will be standardizable
and we obtain corresponding quasi-hereditary algebras. Of course, starting with an ideal
of Λ, we will obtain just one of the factor algebras A/I, where I is an ideal belonging to a
heredity chain of A. Similarly, starting with a filter of Λ, we will obtain a quasi-hereditary
algebra of the form eAe, where e is an idempotent such that the ideal generated by e
belongs to a heredity chain. These two extreme cases have been considered in [PS] and in
[DR2].

4. Standard modules of small projective dimension

In this section, we are going to consider quasi-hereditary algebras with the property
that all the standard modules have projective dimension at most 1, and also those satisfying
the dual property that all costandard modules have injective dimension at most 1. In fact,
in case both properties are satisfied, we will see that a category rather similar to F(∆)
can be described very nicely.

15



Lemma 4.1. Let A be a quasi-hereditary algebra. Then the following conditions are
equivalent:

(i) The projective dimension of any standard module is at most 1.
(ii) The projective dimension of the characteristic module T is at most 1.

(iii) The subcategory F(∇) is closed under factor modules.

(iv) All divisible modules belong to F(∇).

Recall that a module is said to be divisible, provided it is generated by an injective
module. Dually, the torsionless modules are those which are cogenerated by projective
modules. There is the following dual statement:

Lemma 4.1*. Let A be a quasi-hereditary algebra. Then the following conditions
are equivalent:
(i) The injective dimension of any costandard module is at most 1.

(ii) The injective dimension of the characteristic module T is at most 1.
(iii) The subcategory F(∆) is closed under submodules.

(iv) All torsionless modules belong to F(∆).

Let us remark that quasi-hereditary algebras satisfying the latter conditions have been
studied rather carefully in [DR5]; there, one may find additional equivalent properties.

Proof of Lemma 4.1. (i) implies (ii): This is trivial, since T belongs to F(∆).
(ii) implies (iii): Let M ∈ F(∇), and let N be a submodule of M. We apply

Ext1(T,−) to the exact sequence 0 → N → M → M/N → 0 and obtain a surjective
map Ext1(T,M) → Ext1(T,M/N), since proj. dim. T ≤ 1. The first group is zero, since
M ∈ F(∇), thus Ext1(T,M/N) = 0. We use Proposition 3.2 in order to conclude that
M/N ∈ F(∇), again taking into account that proj. dim. T ≤ 1.

(iii) implies (iv): This is trivial, since the injective modules belong to F(∇).

(iv) implies (i): Let Y be an arbitraryA–module, we want to show that Ext2(∆(λ), Y ) =
0. Let 0 → Y → Q(Y ) → Y ′ → 0 be exact, with Q(Y ) injective. Then Ext2(∆(λ), Y ) ∼=
Ext1(∆(λ), Y ′). Now, Y ′ is divisible, thus by assumption Y ′ belongs to F(∇), therefore
Ext1(∆(λ), Y ′) = 0. This completes the proof.

Note that under the equivalent conditions exhibited in Lemma 4.1, the character-
istic module T is a tilting module in the sense of [HR1], thus it defines a torsion pair
(G(T ),H(T )), where

G(T ) = {Y ∈ A–mod| Ext1(T, Y ) = 0},
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and
H(T ) = {Y ∈ A–mod| Hom(T, Y ) = 0}.

The following lemma is an immediate consequence of Proposition 3.2 and Lemma 4.1.

Lemma 4.2. Assume that the projective dimension of any standard module is at
most 1. Then G(T ) = F(∇).

Theorem 3. Assume that the projective dimension of any standard module and the
injective dimension of any costandard module is at most 1. Let φ be the endofunctor
of A–mod defined by φ(M) = M/ηTM. This functor φ induces an equivalence between
F(∆)/〈T 〉 and H(T ).

By definition, the category F(∆)/〈T 〉 has the same objects as F(∆), the morphisms
being residue classes of maps in F(∆), two maps f, g : X → Y belong to the same residue
class if and only if f − g factors through a direct sum of copies of T. Similarly, we may
consider A–mod/〈T 〉, and F(∆)/〈T 〉 is a full subcategory. Note that the isomorphism
classes of indecomposable objects in A–mod/〈T 〉 are just the isomorphism classes of the
indecomposable A–modules which do not belong to addT.

Proof: We know that (G(T ),H(T )) is a torsion pair. Now ηTM is the torsion submod-
ule of M, thus M/ηTM belongs to H(T ). Of course, ηTT = T, thus φ(T ) = 0, therefore φ
induces a functor A–mod/〈T 〉 → H(T ), which we also denote by φ. We want to show that
the restriction of φ to F(∆)/〈T 〉 is fully faithful and dense.

First of all, let Y belong to H(T ). Take a universal extension 0 → mT → Ỹ → Y → 0
of Y by copies of T. In the corresponding long exact sequence

Hom(mT, T ) → Ext1(Y, T ) → Ext1(Ỹ , T ) → Ext1(mT, T )

the connecting homomorphism is surjective. Since Ext1(T, T ) = 0, it follows that Ext1(Ỹ , T ) =
0. Our assumption that the injective dimension of T is at most 1 and Proposition 3.2 imply
that Ỹ belongs to F(∆). Of course, the image of mT in Ỹ is just ηT Ỹ , thus φ(Ỹ ) = Y.
This shows that our functor is dense.

Given M in F(∆), we claim that ηTM always belongs to add T. As a submodule of
M ∈ F(∆), it also belongs to F(∆), since inj. dim. T ≤ 1; as a module in G(T ), it belongs
to F(∇), thus to F(∆) ∩ F(∇) = addT.

LetM1,M2 ∈ F(∆), and let f : M1 → M2 be a map. Assume that φ(f) : M1/ηTM1 →
M2/ηTM2 is the zero map, thus f maps into ηTM2, thus f factors through a module in
addT. This shows that φ : F(∆)/〈T 〉 → H(T ) is faithful.
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In order to show that φ : F(∆)/〈T 〉 → H(T ) is full, let us consider again M1,M2 ∈
F(∆), and let g : M1/ηTM1 → M2/ηTM2 be a map. Denote by πi : Mi → Mi/ηTMi the
canonical projections. Since Ext1(M1, ηTM2) = 0, the map π1g : M1 → M2/ηTM2 can
be lifted to M2, thus there is g′ : M1 → M2 such that g′π2 = π1g. But this means that
φ(g′) = g, thus our functor is also full. This completes the proof.

5. Quasi-hereditary algebras with many projective–injective modules

In this section we consider quasi-hereditary algebras such that the projective cover of
any costandard module is injective.

Lemma 5.1. Let A be a quasi-hereditary algebra. The following conditions are equiv-
alent:
(i) The projective cover of any costandard module is injective.
(ii) The projective cover of T is injective.
(iii) The projective cover of D(AA) is injective, and top∇(λ) belongs to add topD(AA),

for all λ ∈ Λ.
(iv) Every module in F(∇) is divisible, and F(∇) is closed under projective covers.

Proof:(i) implies (iv): If the projective cover of any costandard module is injective, the
same is true for the projective cover P (M) of any module M in F(∇). Thus any module
M in F(∇) is generated by an injective module. Also, P (M) as an injective module again
belongs to F(∇).

(iv) implies (iii): The module D(AA) belongs to F(∇), thus also its projective cover
P (D(AA)). Also, as a module in F(∇), we know that P (D(AA)) is divisible. But a
projective divisible module is injective. Also, since∇(λ) is divisible, we know that top∇(λ)
is in add topD(AA).

(iii) implies (ii): Since T ∈ F(∇), we know that every composition factor of topT
belongs to some top∇(λ), thus to add topD(AA). Thus, the projective cover of T belongs
to addP (D(AA)), and therefore is injective.

(ii) implies (i): For every λ ∈ Λ, we know that T (λ) maps onto ∇(λ), thus the
projective cover P (∇(λ)) is a direct summand of the projective cover P (T ). This completes
the proof.

Dually, we may consider the case where the injective envelope of any standard module
is projective. (Recall that the dominant dimension ddM of a module M (as introduced
by Tachikawa) is greater or equal to 1 if and only if its injective hull is projective.)
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Theorem 4. Let A be a quasi-hereditary algebra, and assume the projective cover
of any costandard module is injective. Let B = A/ηTA. Then H(T ) = B–mod.

Proof: By Lemma 5.1, we know that the projective cover of T is injective, thus belongs
to addT. It follows that ηTM = ηP (T )M, for any module M, and therefore Hom(T,M) = 0
if and only if Hom(P (T ),M) = 0. However, the modules M with Hom(P (T ),M) = 0 are
just the A/ηP (T )A–modules, thus the B–modules.

6. The preprojective algebra of type An

The preprojective algebra of a finite graph has been introduced by Gelfand and Pono-
marev [GP] in order to study the preprojective representations of a finite quiver without
oriented cycles. A general account which covers the more general situation of a valued
graph (thus dealing with the preprojective representations of a finite species) is [DR1].

It seems to be convenient to start with the following rather fancy definition of a
graph (possibly with loops and multiple edges): a graph G is a quiver with a fixpointfree
involution σ on the set of arrows such that for any arrow α : x → y, the arrow σ(α) points
from y to x. (The usual definition will replace the two arrows α and σ(α) by a single edge
between x and y.) Important graphs for representation theory are the Dynkin diagrams
An,Dn,E6,E7,E8, and the Euclidean diagrams Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8; note that according to
our convention we have to draw the graph D7 as follows:

◦
◦ ◦ ◦ ◦ ◦

◦.

Given a Dynkin diagram of the form An,Dm, or E6, where n ≥ 2, and m ≥ 5 is odd,
we denote by ν the unique automorphism of order precisely 2. For the remaining Dynkin
diagrams, we denote by ν the identity automorphism.

The preprojective algebra P(G) of the graph G is the factor ring of of the path algebra
kG (here, G is considered as a quiver) modulo the ideal 〈ρx| x ∈ G0〉 generated by the
elements ρx =

∑

t(α)=x σ(α) · α (where t(α) denotes the terminal vertex of the arrow α,

and G0 is the set of vertices of G). [Note that we may consider any graph as a (stable)
polarized translation quiver, as defined in [R1], using the identity map on G0 as translation,
and then P(G) is just the mesh algebra.]
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The following result is due to Riedtmann [Rm] and Gelfand–Ponomarev [GP], see also
[Ro]. Several proofs are available, we may refer also to [G], [DR1], and [R1].

Proposition 6.1.

The preprojective algebra P(G) is finite dimensional if and only if G is the disjoint
union of Dynkin diagrams An,Dn,E6, E7,E8.

Proposition 6.2. Let G be a disjoint union of Dynkin diagrams An,Dn,E6,E7,E8.
Then P(G) is a self–injective algebra with Nakayama functor given by ν.

Proof: Let ex be the primitive idempotent of P(G) corresponding to the vertex x of
G. We consider the indecomposable projective P(G)–module P(G)ex. It follows from the
hammock considerations in [RV] that the socle of P(G)ex is simple and not annihilated by
eν(x). Consequently, P(G) is self–injective, and ν is its Nakayama permutation.

We denote by Ω the Heller functor: Ω(M) is the kernel of a projective cover P (M) →
M, and we recall from [G] that for any self–injective algebra B with Nakayama functor ν,
we have τ = Ω2ν = νΩ2.

We are going to consider the case G = An in more detail.

Proposition 6.3. Let G be a Dynkin diagram of type An. The algebra B = P(G) is
representation–finite in case n ≤ 4. For n = 5, the algebra is of tubular type E8.

The proof will use the universal cover B̃ of B, as introduced by Bongartz and Gabriel
[BG]. Note that B̃ is an infinite dimensional algebra without 1, but with sufficiently many
idempotents. We may construct B̃ as the mesh algebra of the translation quiver ZAn. We
recall that a graph G is said to be a tree provided it is connected, but is no longer connected
when a pair α, σ(α) is deleted. Of course, for a tree, there are no loops, and σ is determined
by the underlying quiver. Given a tree G, there exists a stable translation quiver ZG
without oriented cycles such that ZG/τ ∼= G, and ZG is unique up to isomorphism. The
translation quivers ZG have been introduced by Riedtmann [Rm], those of the form ZAn

already have appeared in [GR].

Proof of Proposition 6.3. The consideration of representation–finite algebras is by
now standard, so we only deal with the case n = 5 (and here, the arguments are similar
to those used in [HR2]). There exists a convex subquiver of ZA5 of the form

◦ ◦
◦ ◦ ◦

◦ ◦
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and the corresponding factor algebra C0 of B̃ is tame concealed of type D̃6, thus of tubular
type (4,2,2). The convex subquiver

◦ ◦ ◦
◦ ◦

◦ ◦ ◦
◦ ◦

of ZA5 (with the induced relations) yields a tubular extension C of C0 of extension type
(6,3,2), thus C is a tubular algebra of tubular type E8. Note that the algebra C∞ obtained
from C by removing all sinks is a tame concealed algebra of type Ẽ7, and the opposite
algebra Co of C is a tubular extension of C∞. This completes the proof.

Let us add the following remark:

Lemma 6.4. Let G be a Dynkin diagram of type An. For B = P(G), we have

Ω3E(x) ∼= E(ν(x)) ∼= τ3E(x).

Proof: It is easy to verify that Ω radP (x) ∼= P (x)/ socP (x), and this implies that
Ω3E(x) ∼= E(ν(x)).The second isomorphism is a direct consequence: τ3E(x) ∼= ν3Ω6E(x) ∼=
E(ν(x)).

In case n ≤ 5, any indecomposable non–projective P(An)–module M satisfies

Ω3M ∼= ν(M) ∼= τ3M,

and it seems that this is true for any n.

7. The Auslander algebra of k[T ]/〈Tn〉

Let Rn = k[T ]/〈Tn〉, this is a representation finite algebra, with indecomposable
modules M(i), 1 ≤ i ≤ n, where M(i) is of length n − i + 1. Let An = End(

⊕

i M(i))
be its Auslander–algebra with the corresponding indexing of the simple An–modules, thus
the indecomposable projective An–modules embed as follows into each other

P (1) ⊃ P (2) ⊃ · · · ⊃ P (n− 1) ⊃ P (n).
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Note that An is quasi-hereditary in a unique way, with weight set the canonically ordered
set {1, 2, . . . , n}.

Lemma 7.1. The standard modules are the serial modules with socle E(1). The class
F(∆) of all ∆–filtered modules is just the set of all torsionless modules, and also the set
of all modules with socle generated by P (1).

Of course, dually, the costandard modules are the serial ones with top E(1), and F(∇)
is the set of all divisible modules, and also the set of all modules generated by P (1). The
modules T (i) are the indecomposable modules with top and socle isomorphic to E(1).

If we set P (n+ 1) = 0, then we have exact sequences

0 → P (i+ 1) → P (i) → ∆(i) → 0

for all 1 ≤ i ≤ n, therefore all standard modules have projective dimension at most 1.
Dually, the costandard modules have injective dimension at most 1. This shows that we
can apply Theorem 3, thus the categories F(∆)/〈T 〉 and H(T ) are equivalent. Also, since
all costandard modules are generated by P (1), and P (1) is projective–injective, we see that
the projective cover of any costandard module is injective. As a consequence, Theorem 4
can be applied, and it yields an equivalence of H(T ) and Bn–mod, where Bn = An/ηTAn.
It remains to calculate Bn. It is easy to see that Bn is just the preprojective algebra of
type An−1, thus it follows:

Proposition 7.2. Let A = An. The category F(∆) is finite for n ≤ 5, and of tubular
type E8 for n = 6.

Remark: It is known that the module category An–mod itself is finite only for n ≤ 3,
and that it is of tubular type E7 for n = 4.

The following pages exhibit the Auslander–Reiten quivers of F(∆) for 3 ≤ n ≤ 5,
the vertical dashed lines have to be identified in order to form some kind of cylinder (for
n = 3, 5) or Möbius strip (for n = 4). We use the following conventions: Let Ãn be the
universal cover of the algebra An, note that the Galois group is just Z. Let 3 ≤ n ≤ 6.
In this case, for any indecomposable module M in F(∆), there exists an Ãn–module M̃
(unique up to shift by the Galois group) with push–down M. Always, the tables present the
support and the Jordan–Hölder multiplicities of the modules M̃. For a better identification
of the support of different modules M̃ inside the quiver of Ãn, one vertex is encircled. As
our presentation has shown, for the indecomposable modules M in F(∆) which are not
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relative injective, it is sufficient to know the factor module M/ηTM = M/ηP (1)M. Let

P(1) be the set of indecomposable projective Ãn–modules with push–down of the form
P (1). In our tables, the composition factors belonging to ηP(1)M̃ are given by crosses, the
remaining ones by a digit.
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