THE CATEGORY OF GOOD MODULES

OVER A QUASI-HEREDITARY ALGEBRA

Claus Michael Ringel

Abstract

Let A be a quasi-hereditary algebra, and $\mathcal{F}(\Delta)$ the set of A-modules which have a filtration by standard modules. Since $\mathcal{F}(\Delta)$ has almost split sequences, the usual techniques of representation theory can be adapted. The topics which we consider are BrauerThrall I, the structure of stable components, the non-existence of sectional cyclic paths, and, for $\mathcal{F}(\Delta)$ finite, hammocks. In contrast to a complete module category, the composition of irreducible maps along a sectional path may be zero, and even if $\mathcal{F}(\Delta)$ is finite, certain bimodules of irreducible maps may have arbitrarily large dimension.

Let A be an artin algebra. We will consider (finitely generated left) A-modules, maps between A-modules will be written on the right hand of the argument, thus the composition of the maps f : $M_{1} \rightarrow M_{2}, \quad g: M_{2} \rightarrow M_{3}$ will be denoted by $f g$. The category of all A-modules will be denoted by A-mod. All subcategories considered will be full and closed under isomorphisms, so usually we will describe subcategories by just specifying their objects (up to isomorphism).

Given a class Θ of A-modules, we denote by $\mathcal{F}(\Theta)$ the class of all A-modules M which have a filtration $M=M_{0} \supseteq M_{1} \supseteq \cdots \supseteq$ $M_{n}=0$, such that all factors M_{i-1} / M_{i} belong to Θ, and we may call these modules the Θ-good modules.

Let $E(1), \ldots, E(n)$ be the simple A-modules; note that we fix a particular ordering for labelling the simples A-modules. For any i, let $P(i)$ be the projective cover of $E(i)$, and denote by $\Delta(i)$ the maximal factor module of $P(i)$ in $\mathcal{F}(E(1), \ldots, E(i))$. Let Δ be the subcategory of all $\Delta(i)$, where $1 \leq i \leq n$.

The algebra A, or better the pair (A, E) is called quasi-hereditary provided $\operatorname{End}(\Delta(i))$ is a division ring, for any $1 \leq i \leq n$ and the module ${ }_{A} A$ belongs to $\mathcal{F}(\Delta)$.

From now on, we will assume that A is quasi-hereditary. Without loss of generality, we also may assume that A is connected. We are going to investigate the subcategory $\mathcal{F}(\Delta)$ for a quasihereditary algebra. By definition, this subcategory is closed under extensions, thus under direct sums, and it is rather easy to see that $\mathcal{F}(\Delta)$ is also closed under direct summands.

We have shown in $[\mathbf{R} 3]$, see also $[\mathbf{R} 4]$, that $\mathcal{F}(\Delta)$ is functorially finite in $A-\bmod$, in particular, $\mathcal{F}(\Delta)$ has (relative) AuslanderReiten sequences. Also, we have shown that the relative projective objects in $\mathcal{F}(\Delta)$ are just the projective A-modules, and we have constructed the relative injective objects in $\mathcal{F}(\Delta)$. This information is sufficient to establish some fundamental properties of $\mathcal{F}(\Delta)$. Most of these are analogues of properties of the complete module category of an artin algebra. In case there are only finitely many isomorphism classes of indecomposable A-modules which belong to $\mathcal{F}(\Delta)$, we say that A is $\mathcal{F}(\Delta)$-finite.

1. Basic results

We are going to review some basic facts of the subcategory $\mathcal{F}(\Delta)$ of $A-\bmod$. For the missing proofs, we refer to [R3].

First, we need an additional class of modules. Let $Q(i)$ be the injective envelope of $E(i)$, and $\nabla(i)$ the maximal submodule of $Q(i)$ belonging to $\mathcal{F}(E(1), \ldots, E(i))$, let ∇ be the subcategory of the $\nabla(i)$ where $1 \leq i \leq n$.

1. We have $\operatorname{Ext}^{t}(X, Y)=0$ for all $X \in \mathcal{F}(\Delta), Y \in \mathcal{F}(\nabla)$, and all $t \geq 1$. Conversely, if $\operatorname{Ext}^{1}(X, \nabla(j))=0$ for all j, then $X \in \mathcal{F}(\Delta)$, and if $\operatorname{Ext}^{1}(\Delta(i), Y)=0$ for all i, then $Y \in \mathcal{F}(\nabla)$.
2. Let M be an A-module in $\mathcal{F}(E(1), \ldots, E(i))$. There are exact sequences

$$
0 \rightarrow{ }^{\prime \prime} M \rightarrow^{\prime} M \rightarrow M \rightarrow 0, \quad \text { and } \quad 0 \rightarrow M \rightarrow M^{\prime} \rightarrow M^{\prime \prime} \rightarrow 0
$$

where ${ }^{\prime \prime} M \in \mathcal{F}(\nabla(1), \ldots, \nabla(i-1)), \quad ' M \in \mathcal{F}(\Delta), \quad M^{\prime} \in \mathcal{F}(\nabla)$, and $M^{\prime \prime} \in \mathcal{F}(\Delta(1), \ldots, \Delta(i-1))$.
3. For any $1 \leq i \leq n$, there is a unique indecomposable module $T(i)$ in $\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla) \cap \mathcal{F}(E(1), \ldots, E(i))$ and not in $\mathcal{F}(E(1), \ldots, E(i-1))$. There are exact sequences
$0 \rightarrow \Delta(i) \rightarrow T(i) \rightarrow X(i) \rightarrow 0, \quad$ and $\quad 0 \rightarrow Y(i) \rightarrow T(i) \rightarrow \nabla(i) \rightarrow 0$, with $X(i) \in \mathcal{F}(\Delta(1), \ldots, \Delta(i-1))$, and $Y(i) \in \mathcal{F}(\nabla(1), \ldots, \nabla(i-$ 1)).

Let $T=\bigoplus T(i)$, thus $\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla)=\operatorname{add} T$.
4. The Ext-projective modules in $\mathcal{F}(\Delta)$ are the projective A-modules, the Ext-injective modules in $\mathcal{F}(\Delta)$ are the A-modules in add T.
5. Let d be the maximum of $\operatorname{proj} \cdot \operatorname{dim} \Delta(i)$. For any $A-$ module $M \in \mathcal{F}(\Delta)$, there exists a T-coresolution of M of length d (i.e. an exact sequence $0 \rightarrow M \rightarrow T_{0} \rightarrow \cdots \rightarrow T_{d} \rightarrow 0$ with all $\left.T_{i} \in \operatorname{add} T\right)$ and there are A-modules in $\mathcal{F}(\Delta)$ with no T coresolution of length $d-1$.

Proof: Assertion 2 yields an exact sequence $0 \rightarrow M \rightarrow T_{0} \rightarrow$ $M^{\prime} \rightarrow 0$ with $T_{0} \in \mathcal{F}(\nabla)$ and $M^{\prime} \in \mathcal{F}(\Delta)$. Assertion 1 shows that $\operatorname{Ext}^{t}\left(\Delta(i), M^{\prime}\right) \cong \operatorname{Ext}^{t+1}(\Delta(i), M)$ for all $t \geq 1$. Since $\mathcal{F}(\Delta)$ is closed under extensions, we see that T_{0} also belongs to $\mathcal{F}(\Delta)$, thus to add T. Inductively, we obtain an exact sequence $0 \rightarrow M \rightarrow T_{0} \rightarrow$ $\cdots \rightarrow T_{d} \rightarrow 0$ with $T_{i} \in \operatorname{add} T$ for $1 \leq i<d$, and $T_{d} \in \mathcal{F}(\Delta)$. Also, $\operatorname{Ext}^{1}\left(\Delta(i), T_{d}\right) \cong \operatorname{Ext}^{d+1}(\Delta(i), M)=0$, thus $T_{d} \in \mathcal{F}(\nabla)$, according to assertion 1. A similar argument shows that proj. $\operatorname{dim} \Delta(i) \leq m$ for all i, in case any module in $\mathcal{F}(\Delta)$ has a T-coresolution of length m.
6. $\mathcal{F}(\Delta)$ has (relative) Auslander-Reiten sequences.
7. Let $U(i)$ be the submodule of $P(i)$ with $P(i) / U(i)=\Delta(i)$. The sink map for $P(i)$ in $\mathcal{F}(\Delta)$ is of the form $g(i): R(i) \rightarrow P(i)$, where $R(i)$ has $U(i)$ as a submodule, so that all composition factors of $R(i) / U(i)$ are of the form $E(j)$ with $j<i$, and $g(i) \mid U(i)$ is the identity.

We consider the algebra $B=\operatorname{End}(T)$, the bimodule ${ }_{A} T_{B}$. and the functor $\operatorname{Hom}(T,-)$ from $A-\bmod$ to $B-\bmod$. The algebra B has n simple modules, and we order them so that the indecomposable projective B-module $\operatorname{Hom}(T, T(i))$ has the label $n+1-i$. When dealing with B-modules, we will add an index B, say we write $P_{B}(i), \Delta_{B}(i)$, and so on.
8. The algebra B is quasi-hereditary, and $\operatorname{Hom}_{A}\left({ }_{A} T_{B},-\right)$ yields an equivalence from $\mathcal{F}(\nabla)$ onto $\mathcal{F}\left(\Delta_{B}\right)$ and it maps exact sequences in $\mathcal{F}(\nabla)$ to exact sequences in $\mathcal{F}\left(\Delta_{B}\right)$.

Note that k-duality shows that $\mathcal{F}(\Delta)$ is the opposite of the category of ∇-good modules for A^{op}.

We denote by $\mathcal{P}_{>i}$ the set of modules $P(j)$ with $j>i$. Let J_{i} be the trace ideal of $\mathcal{P}_{>i}$ in A. (We recall that the trace of a set \mathcal{X}
of modules in a module M is the largest submodule of M generated by modules from \mathcal{X}; the trace of \mathcal{X} in ${ }_{A} A$ is a twosided ideal, the trace ideal of \mathcal{X} in A.) For any A-module M, the submodule $J_{i} M$ is the trace of $\mathcal{P}_{>i}$ in M. Note that an A-module N belongs to $\mathcal{F}(\Delta)$ if and only if $J_{i-1} N / J_{i} N$ is a projective A / J_{i}-module, for all $1 \leq i \leq n$, thus if and only if $J_{i-1} N / J_{i} N$ is a direct sum of copies of $\Delta(i)$. As an immediate consequence of this characterization, we see that $\mathcal{F}(\Delta)$ is closed under direct summands.

2. The Auslander-Reiten quiver of $\mathcal{F}(\Delta)$

Let X, Y be A-modules in $\mathcal{F}(\Delta)$. A map $f: X \rightarrow Y$ is said to be (relative) irreducible in $\mathcal{F}(\Delta)$, provided f is neither a split monomorphism nor a split epimorphism, and given any factorization $f=f_{1} f_{2}$ in $\mathcal{F}(\Delta)$, then f_{1} is a split monomorphism, or f_{2} is a split epimorphism. We define $\operatorname{rad}_{\mathcal{F}(\Delta)}^{2}(X, Y)$ as the set of maps $f: X \rightarrow Y$ which are of the form $f=f_{1} f_{2}$, with $f_{1} \in \operatorname{rad}(X, M), f_{2} \in \operatorname{rad}(M, Y)$, where M is a module in $\mathcal{F}(\Delta)$. We define the bimodule of (relative) irreducible maps $\operatorname{Irr}_{\mathcal{F}(\Delta)}(X, Y)=$ $\operatorname{rad}(X, Y) / \operatorname{rad}_{\mathcal{F}(\Delta)}^{2}(X, Y)$.

The Auslander Reiten quiver $\Gamma_{\mathcal{F}(\Delta)}$ of $\mathcal{F}(\Delta)$ is a valued translation quiver defined as follows: Its vertices are the isomorphism classes $[X]$ of the indecomposable A-modules in $\mathcal{F}(\Delta)$. There is an arrow $[X] \rightarrow[Y]$ provided there exists a (relative) irreducible map $X \rightarrow Y$ in $\mathcal{F}(\Delta)$, thus, if and only if $\operatorname{Irr}_{\mathcal{F}(\Delta)}(X, Y) \neq 0$. Given an arrow $[X] \rightarrow[Y]$ in $\Gamma_{\mathcal{F}(\Delta)}$, we add the valuation $\left(d_{X Y}, d_{X Y}^{\prime}\right)$, where $d_{X Y}$ is the length of $\operatorname{Irr}_{\mathcal{F}(\Delta)}(X, Y)$ as a right $\operatorname{End}(Y)$-module, and $d_{X Y}^{\prime}$ is the length of $\operatorname{Irr}_{\mathcal{F}(\Delta)}(X, Y)$, as a left $\operatorname{End}(X)$-module. Finally, the translation τ is defined by $\tau[X]=\left[\tau_{\Delta} X\right]$, for X a non-projective indecomposable A-module in $\mathcal{F}(\Delta)$, where $\tau_{\Delta} X$ is the left hand term in a relative Auslander-Reiten sequence $0 \rightarrow$ $\tau_{\Delta} X \rightarrow X^{\prime} \rightarrow X \rightarrow 0$ in $\mathcal{F}(\Delta)$.

A path $x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{n}=x_{0}$ in a quiver, with $n \geq 1$ is called cyclic. A cyclic path $x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{n}=x_{0}$ in $\Gamma_{\mathcal{F}(\Delta)}$ is called sectional provided $\tau x_{i+1} \neq x_{i-1}$ for all $1 \leq i \leq n$, where $x_{n+1}=x_{1}$.

Theorem. The translation quiver $\Gamma_{\mathcal{F}(\Delta)}$ has no loops and no sectional cyclic paths.

The proof of the Theorem will occupy the rest of this section.
First, let us show that there are no loops. This will be an immediate consequence of the following lemma. The length of an A-module M will be denoted by $l(M)$.

Lemma. Let X, Y be indecomposable A-modules in $\mathcal{F}(\Delta)$, with $l(X) \leq l(Y)$. If $f: X \rightarrow Y$ is an irreducible map in $\mathcal{F}(\Delta)$, then $f \mid J_{n-1} X$ is injective.

Proof: If $f \mid J_{n-1} X$ is not injective, then $\operatorname{Ker} f$ contains an indecomposable summand U of $J_{n-1} X$, and U belongs to a Δ^{-} filtration of X, thus $X / U \in \mathcal{F}(\Delta)$. But f factors through X / U, and this contradicts the fact that f is irreducible in $\mathcal{F}(\Delta)$.

Next, we consider the existence of sectional cyclic paths in $\Gamma_{\mathcal{F}(\Delta)}$. We call $\left(g_{1}, \ldots, g_{n}\right)$ a sectional path in $\mathcal{F}(\Delta)$, provided $g_{i}: X_{i-1} \rightarrow X_{i}$ is an irreducible map between indecomposable modules, for $1 \leq i \leq n$, and $\tau_{\Delta} X_{i+1} \not \neq X_{i-1}$ for $0<i<n$.

Warning: The composition $g_{1} \cdots g_{n}$ of a sectional path $\left(g_{1}, \ldots, g_{n}\right)$ may be zero. Let A have three simple modules $E(1), E(2), E(3)$, with $P(1)=E(1)=\operatorname{rad} P(2)$, and $\operatorname{rad} P(3)=E(2)$. Then $\mathcal{F}(\Delta)$ is the class of all projective A-modules, and there is a sectional path $(P(1) \rightarrow P(2), P(2) \rightarrow P(3))$ in $\mathcal{F}(\Delta)$ with zero composition.

However, there is the following result:
Proposition. Let $g_{i}: X_{i-1} \rightarrow X_{i}$ be maps such that $\left(g_{1}, \ldots, g_{n}\right)$ is a sectional path in $\mathcal{F}(\Delta)$ of length $n \geq 1$, and assume the following condition is satisfied: in case at least one of the modules X_{i} is projective, say $X_{i}=P\left(t_{i}\right)$, also X_{0} is projective, say $X_{0}=P\left(t_{0}\right)$, and $t_{0} \geq t_{i}$. Let $g_{n}^{\prime}: X_{n-1}^{\prime} \rightarrow X_{n}$ be a map such that $\left[\begin{array}{l}g_{n} \\ g_{n}^{\prime}\end{array}\right]: X_{n-1} \oplus X_{n-1}^{\prime} \rightarrow X_{n}$ is a sink map for X_{n} in $\mathcal{F}(\Delta)$. Then $g_{1} \cdots g_{n}$ does not factor through g_{n}^{\prime}. In particular, $g_{1} \cdots g_{n} \neq 0$.

Proof: We use induction on n. Assume there exists h_{n} such that $g_{1} \cdots g_{n}=h_{n} g_{n}^{\prime}$. Let $f_{n-1}: Y \rightarrow X_{n-1}$, and $f_{n-1}^{\prime}: Y \rightarrow$ X_{n-1}^{\prime}, be maps so that $\left[f_{n-1}, f_{n-1}^{\prime}\right]: Y \rightarrow X_{n-1} \oplus X_{n-1}^{\prime}$ is the kernel of $\left[\begin{array}{c}g_{n} \\ g_{n}^{\prime}\end{array}\right]$. Since $g_{1} \cdots g_{n}=h_{n} g_{n}^{\prime}$, there is a map $h_{n-1}: X_{0} \rightarrow$ Y, such that $h_{n-1}^{\prime} f_{n-1}=g_{1} \cdots g_{n-1}\left(\right.$ and $\left.h_{n-1}^{\prime} f_{n-1}^{\prime}=-h_{n}\right)$.

First, assume $X_{n}=P\left(t_{n}\right)$ is projective. In this case, also $X_{0}=P\left(t_{0}\right)$ is projective and $t_{0} \geq t_{n}$. On the other hand, the kernel Y of the sink map for $P\left(t_{n}\right)$ belongs to $\mathcal{F}\left(E(1), \ldots, E\left(t_{n}-1\right)\right)$, according to Assertion 7 in Section 1. Since $t_{0}>t_{n}-1$, it follows that $\operatorname{Hom}\left(P\left(t_{0}\right), Y\right)=0$, thus $g_{1} \cdots g_{n-1}=0$. For $n=1$, this would mean that $1_{X_{0}}=0$, impossible, for $n \geq 2$, we see that $g_{1} \cdots g_{n-1}$ can be factorized through the corresponding map g_{n-1}^{\prime}.

Next, assume X_{n} is not projective, thus $Y=\tau_{\Delta} X_{n}$, and f_{n-1} is an irreducible map. If $n=1$, there is the factorization $1_{X_{0}}=$
$g_{1} \cdots g_{n-1}=h_{0}^{\prime} f_{0}$, but then f_{0} is a split epimorphism, imposssible. Thus $n \geq 2$. Since $\left(g_{1}, \ldots, g_{n}\right)$ is a sectional path in $\mathcal{F}(\Delta)$, we know that $X_{n-2} \not \neq \tau_{\Delta} X_{n}=Y$, and therefore the sink map for X_{n-1} in $\mathcal{F}(\Delta)$ is of the form $\left[\begin{array}{l}g_{n-1} \\ f_{n-1} \\ g_{n-1}^{\prime \prime}\end{array}\right]$ for some $\operatorname{map} g_{n-1}^{\prime \prime}: X_{n-2}^{\prime \prime} \rightarrow X_{n-1}$. Let $X_{n-2}^{\prime}=Y \oplus X_{n-2}^{\prime \prime}$, and $g_{n-2}^{\prime}=\left[\begin{array}{l}f_{n-1} \\ g_{n-1}^{\prime \prime}\end{array}\right]: X_{n-2}^{\prime} \rightarrow X_{n-1}$, and $h_{n-1}=\left[h_{n-1}^{\prime}, 0\right]: X_{0} \rightarrow X_{n-2}^{\prime}$. Then $\left[\begin{array}{l}g_{n-1} \\ g_{n-1}^{\prime}\end{array}\right]: X_{n-2} \oplus X_{n-2}^{\prime} \rightarrow$ X_{n-1} is a sink map for X_{n-1} in $\mathcal{F}(\Delta)$, and $g_{1} \cdots g_{n-1}=h_{n-1} g_{n-1}^{\prime}$, but by induction, this is impossible, too.

Proof of Theorem: Let $X_{0}, \ldots, X_{n-1}, X_{n}=X_{0}$ be indecomposable modules in $\mathcal{F}(\Delta)$, and assume $\left[X_{0}\right] \rightarrow\left[X_{1}\right] \rightarrow \cdots \rightarrow\left[X_{n}\right]$ is a sectional cyclic path in $\Gamma_{\mathcal{F}(\Delta)}$. Note that with $\left(g_{1}, \ldots, g_{n}\right)$ also $\left(g_{1}, \ldots, g_{n}, g_{1}, \ldots, g_{n}\right)$ is a sectional cyclic path; thus we may suppose that $n \geq 2^{b}$, where b is an upper bound for the length of the modules X_{i}. In case one of the modules X_{i} is projective, we may rotate the indices so that $X_{0}=P\left(t_{0}\right)$ is projective, and that $t_{0} \geq t_{j}$ for any j with $X_{j}=P\left(t_{j}\right)$ projective. Choose an irreducible map $g_{i}: X_{i-1} \rightarrow X_{i}$ in $\mathcal{F}(\Delta)$, for any $1 \leq i \leq m$. The Proposition now asserts that the composition $g_{1} \cdots \bar{g}_{n}$ is non-zero, in contrast to the Harada-Sai lemma. This completes the proof.

3. Brauer-Thrall I

Let Γ be a component of $\Gamma_{\mathcal{F}(\Delta)}$. Let \mathcal{C}_{Γ} be the subcategory closed under direct sums and direct summands whose indecomposable objects are the A-modules M with $[M]$ in Γ. The subcategories of the form \mathcal{C}_{Γ} will be called the Auslander-Reiten components of A-mod. Investigations of Auslander yield the following result:

Theorem. Let \mathcal{C} be an Auslander-Reiten component of $\mathcal{F}(\Delta)$, and assume the indecomposable modules in \mathcal{C} are of bounded length. Then $\mathcal{C}=\mathcal{F}(\Delta)$, and $\mathcal{F}(\Delta)$ is finite.

In particular, there is the following analogue to the assertion of the first Brauer-Thrall conjecture:

Corollary. Assume the indecomposable modules in $\mathcal{F}(\Delta)$ are of bounded length. Then A is $\mathcal{F}(\Delta)$-finite and the AuslanderReiten quiver $\Gamma_{\mathcal{F}(\Delta)}$ is connected.

Proof of Theorem: There is the following general assertion due to Auslander [A]:

Theorem. Let B be a connected artin algebra. Let \mathcal{X} be a subcategory of B-mod which is functorially finite, closed under extensions and direct summands, and suppose \mathcal{X} contains all projective B-modules. Let \mathcal{X}^{\prime} be an Auslander-Reiten component of \mathcal{X}, and assume the indecomposable modules in \mathcal{X}^{\prime} are of bounded length. Then $\mathcal{X}^{\prime}=\mathcal{X}$ and \mathcal{X} is finite.

Let us outline a proof of the general assertion following Yamagata (see [R1]): Assume the indecomposable modules in \mathcal{X}^{\prime} have length at most b. Let M be an indecomposable module in \mathcal{X}^{\prime} and assume $\operatorname{Hom}(P(i), M) \neq 0$. The Harada-Sai lemma implies that there is a path in $\Gamma_{\mathcal{X}}$ of length at most $2^{b}-2$ from $P(i)$ to M, here we work inductively with factorizations which are given by using the minimal right almost split maps in \mathcal{X}. In particular, $P(i)$ belongs to \mathcal{X}^{\prime}. On the other hand, let X be an indecomposable module in \mathcal{X} and assume $\operatorname{Hom}(P(i), X) \neq 0$. Again, we use the Harada-Sai lemma in order to obtain a path in $\Gamma_{\mathcal{X}}$ of length at most $2^{b}-2$ from $P(i)$ to X, but now we work inductively with factorizations which are given by using the minimal left almost split maps in \mathcal{X}. Since we assume that B is connected, there are sufficiently many non-zero maps between the indecomposable projective B-modules, thus all $P(j)$ belong to \mathcal{X}^{\prime}. And any indecomposable module in \mathcal{X} is joined by a path of length at most $2^{b}-2$ to some $P(i)$, thus all belong to \mathcal{X}^{\prime} and there are only finitely many.

4. The stable Auslander-Reiten quiver

The stable Auslander-Reiten quiver $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$ is the full translation subquiver of $\Gamma_{\mathcal{F}(\Delta)}$ obtained by deleting all vertices of the form $\tau_{\Delta}^{-t} p$ where p is a projective vertex, and $t \in \mathbb{N}_{0}$, or of the form $\tau_{\Delta}^{n} q$ where q is an injective vertex, and $t \in \mathbb{N}_{0}$.

Recall that a vertex x of a translation quiver is said to be periodic provided there is some $t \geq 1$ such that $\tau^{t} x=x$. Let Γ be a component of the stable translation quiver $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$. Since $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$ is locally finite, the existence of a periodic vertex in Γ implies that all vertices of Γ are periodic, and, in this case, Γ is said to be periodic.

Given a valued quiver Q, we may form the stable translation quiver $\mathbb{Z} Q$, as introduced by Riedtmann (see [HPR]). The same reference may be used for looking up the well-known list of Dynkin diagrams, Euclidean diagrams and the graph A_{∞}. A valued quiver with underlying graph a Dynkin diagram, or a Euclidean diagram, or A_{∞}, will be called a Dynkin quiver, a Euclidean quiver, or to be of the form A_{∞}.

CLAUS MICHAEL RINGEL

Theorem. A periodic component of $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$ is of the form $\mathbb{Z} Q / G$, where Q is either a Dynkin quiver or a quiver of the form A_{∞}, and G is a non-trivial group of automorphisms of $\mathbb{Z} Q$.

In particular, we have the analogue of Riedtmann's theorem: a finite component of $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$ is of the form $\mathbb{Z} Q / G$ with Q a Dynkin quiver, and G a non-trivial group of automorphisms of $\mathbb{Z} Q$.

The proof uses the existence of the length function on the component Γ, it is a subadditive function on Γ_{0} with values in \mathbb{N}_{1}. In case this function is bounded, it cannot be additive (since otherwise Γ would be a component of $\Gamma_{\mathcal{F}(\Delta)}$ itself, in contrast to Auslander's theorem). The combinatorial considerations of [HPR] yield the result.

The structure of non-periodic components has been studied by Zhang [Z]. Her investigations yield the following result:

Theorem. A non-periodic component of $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$ is of the form $\mathbb{Z} Q$ where Q is a connected valued quiver without cyclic paths.

For the proof, we use again the existence of the length function on the component, Auslander's theorem, and the non-existence of loops and sectional cyclic paths.

Recall that a component of $\Gamma_{\mathcal{F}(\Delta)}$ which does not contain projective or injective vertices, is called a stable component of $\Gamma_{\mathcal{F}(\Delta)}$. Clearly, stable components of $\Gamma_{\mathcal{F}(\Delta)}$ are components of $\Gamma_{\mathcal{F}(\Delta)}^{(s)}$, but for stable components, the length function is additive, and not only subadditive.

Theorem. A stable component of $\Gamma_{\mathcal{F}(\Delta)}$ is either periodic and then of the form $\mathbb{Z} A_{\infty} / G$ for some non-trivial automorphism group G, or else non-periodic, and then of the form $\mathbb{Z Q}$ for some connected valued quiver Q without cyclic paths, and Q cannot be a Dynkin or a Euclidean quiver.

This is an immediate consequence of the previous results: Assume the component Γ is of the form $\mathbb{Z} Q / G$ with Q a quiver and G a group of automorphisms. If Q is a Dynkin quiver, then there is no additive function on Γ with values in \mathbb{N}_{1}. If Q is a Euclidean quiver, we consider the so called "defect" δ of the restriction of the length function l to some copy of Q. If $\delta \neq 0$, then the additivity of l enforces that l takes negative values, impossible. If $\delta=0$, then l is bounded, but then Auslander's theorem implies that Γ contains projective vertices, again a contradiction.

5. The multiplicities of $\Delta(i)$

Given $M \in \mathcal{F}(\Delta)$, say with a filtration $M=M_{0} \supseteq M_{1} \supseteq \cdots \supseteq$ $M_{t}=0$ with factors $M_{s-1} / M_{s} \in \Delta$, for all $1 \leq s \leq t$, we denote by [$M: \Delta(i)$] the number of factors M_{s-1} / M_{s} isomorphic to $\Delta(i)$; note that this number is independent of the particular filtration which we have used. There are different ways for calculating $[M: \Delta(i)]$, as we want to show.

Let $d_{i}=\operatorname{dim}_{k} \operatorname{End}(E(i))=\operatorname{dim}_{k} \operatorname{End}(\Delta(i))$.
Proposition. Let $M \in \mathcal{F}(\Delta)$. Then $d_{i}[M: \Delta(i)]=\operatorname{dim}_{k} \operatorname{Hom}(M, \nabla(i))$.
Proof: Consider a filtration $M=M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{t}=0$ with factors $M_{s-1} / M_{s} \cong \Delta\left(i_{s}\right)$. We use induction on t, the case $t=0$ being trivial. We apply $\operatorname{Hom}(-, \nabla(i))$ to the exact sequence $0 \rightarrow M_{1} \rightarrow M \rightarrow \Delta\left(i_{1}\right) \rightarrow 0$. On the one hand, we have $\operatorname{dim}_{k} \operatorname{Hom}\left(\Delta\left(i_{1}\right), \Delta(i)\right)=d_{i}$ for $i=i_{1}$, and zero otherwise, on the other hand, $\operatorname{Ext}^{1}\left(\Delta\left(i_{1}\right), \nabla(i)\right)=0$. This completes the proof.

Corollary. Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence in $\mathcal{F}(\Delta)$. Then $[M: \Delta(i)]=\left[M^{\prime}: \Delta(i)\right]+\left[M^{\prime \prime}: \Delta(i)\right]$ for all i.

Proof: We use the previous formula and the fact that $\operatorname{Ext}^{1}\left(M^{\prime \prime}, \nabla(i)\right)=$ 0.

Corollary. The function $[M] \mapsto[M: \Delta(i)]$ is an additive function on $\Gamma_{\mathcal{F}(\Delta)}$.

Recall that an A-module N belongs to $\mathcal{F}(\Delta)$ if and only if $J_{i-1} N / J_{i} N$ is a projective A / J_{i}-module, for all $1 \leq i \leq n$, and, in this case, $J_{i-1} N / J_{i} N \cong[N: \Delta(i)] \cdot \Delta(i)$.

Given A-modules X, Y, and a class \mathcal{M} of A-modules, let $\operatorname{Hom}(X, \mathcal{M}, Y)$ be the set of maps $X \rightarrow Y$ which factor through a module in the class add \mathcal{M}. (For example, $\operatorname{Hom}\left(X,{ }_{A} A, Y\right)$ is the set of maps $X \rightarrow$ Y which factor through a projective A-module.) Note that, for any A-module M, a map $f: P(i) \rightarrow M$ belongs to $\operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, M\right)$ if and only if $P(i) f \subseteq J_{i} M$. (For, $J_{i} M$ is generated by $\mathcal{P}_{>i}$, thus the projective cover of $J_{i} M$ belongs to add $\mathcal{P}_{>i}$.)

Proposition. Let $M \in \mathcal{F}(\Delta)$. Then

$$
d_{i}[M: \Delta(i)]=\operatorname{dim}_{k} \operatorname{Hom}(P(i), M) / \operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, M\right)
$$

Proof: For any i, choose a primitive idempotent e_{i} such that $P(i) \cong A e_{i}$. The evaluation map $\operatorname{Hom}(P(i), M) \rightarrow M$ sending f to
$e_{i} f$ has as image $e_{i} M$, and it sends $\operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, M\right)$ onto $e_{i} J_{i} M$. In this way, we see that

$$
\frac{1}{d_{i}} \operatorname{dim}_{k} \operatorname{Hom}(P(i), M) / \operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, M\right)
$$

counts the Jordan-Hölder multiplicity of $E(i)$ in $M / J_{i} M$, thus the multiplicity of $\Delta(i)$ in a direct decomposition of $J_{i-1} M / J_{i} M$.

We also introduce $\mathcal{T}_{<i}$ as the set of modules $T(j)$ with $j<i$.
Proposition. For any $M \in \mathcal{F}(\Delta)$, the composition of maps yields a non-degenerate bilinear map on
$\left(\operatorname{Hom}(P(i), M) / \operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, M\right)\right) \times\left(\operatorname{Hom}(M, T(i)) / \operatorname{Hom}\left(M, \mathcal{T}_{<i}, T(i)\right)\right)$
with values in $\operatorname{Hom}(P(i), T(i))$.
Proof: First, we have to show that $\operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, T(i)\right)=$ 0 . But, for $j>i$, we know that $[T(i): E(j)]=0$, therefore $\operatorname{Hom}(P(j), T(i))=0$. Similarly, $\operatorname{Hom}\left(P(i), \mathcal{T}_{<i}, T(i)\right)=0$, since for $j<i$, we have $\operatorname{Hom}(P(i), T(j))=0$. This shows that the composition of maps yields a bilinear form as stated.

It remains to be seen that this bilinear form is non-degenerate. Let $f: P(i) \rightarrow M$ be a map which does not belong to $\operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, M\right)$. Let $g: M \rightarrow M / J_{i} M$ be the canonical projection. The image of the map $f g: P(i) \rightarrow M / J_{i} M$ is isomorphic to $\Delta(i)$, and the cokernel Q of $f g$ belongs to $\mathcal{F}(\Delta)$. Let $f g=f_{1} f_{2}$ be a factorization of f with $f_{1}: P(i) \rightarrow \Delta(i)$, and $f_{2}: \Delta(i) \rightarrow M / J_{i} M$. Let $u: \Delta(i) \rightarrow T(i)$ be the canonical embedding. Since $\operatorname{Ext}^{1}(Q, T(i))=0$, it follows that there is $h: M / J_{i} M \rightarrow T(i)$ such that $f_{2} h=u$. Altogether we see that $f g h=f_{1} f_{2} h=f_{1} u \neq 0$.

Conversely, assume that $f^{\prime}: M \rightarrow T(i)$ is not in $\operatorname{Hom}\left(M, \mathcal{T}_{<i}, T(i)\right)$.
There is a surjective map $g^{\prime}: T(i) \rightarrow \nabla(i)$ with kernel $V(i) \in$ $\mathcal{F}(\nabla(1), \ldots, \nabla(i-1))$. We claim that f^{\prime} does not map into $V(i)$. So assume f^{\prime} maps into $V(i)$. There is an exact sequence $0 \rightarrow{ }^{\prime \prime} V(i) \rightarrow$ ${ }^{\prime} V(i) \rightarrow V(i) \rightarrow 0$, such that ${ }^{\prime \prime} V(i) \in \mathcal{F}(\nabla(1), \ldots, \nabla(i-1))$, and ${ }^{\prime} V(i) \in \mathcal{F}(\Delta)$. Since ${ }^{\prime} V(i)$ belongs both to $\mathcal{F}(\Delta)$ and to $\mathcal{F}(\nabla)$, it is in add T, and, in fact in $\mathcal{T}_{<i}$. On the other hand, we know that $\operatorname{Ext}^{1}\left(M,{ }^{\prime \prime} V(i)\right)=0$, since $M \in \mathcal{F}(\Delta)$, and ${ }^{\prime \prime} V(i) \in \mathcal{F}(\nabla)$. This implies that the map $f^{\prime}: M \rightarrow V(i)$ can be lifted to ${ }^{\prime} V(i)$, thus f^{\prime} factors through $\mathcal{T}_{<i}$, in contrast to our assumption. It follows that $f^{\prime} g^{\prime} \neq 0$, thus we see that the image of $f^{\prime}: M \rightarrow T(i)$ has $E(i)$ as a composition factor. Therefore, there is a map $P(i) \rightarrow M$ whose composition with f^{\prime} is non-zero. This completes the proof.

In order to understand the behaviour of the function $[M] \mapsto$ $[M: \Delta(i)]$ on $\Gamma_{\mathcal{F}(\Delta)}$, it remains to consider the sink maps in $\mathcal{F}(\Delta)$ for the projective modules $P(i)$, and the source maps in $\mathcal{F}(\Delta)$ for the relative injective modules $T(i)$.

Proposition. Let $R(j) \rightarrow P(j)$ be the sink map in $\mathcal{F}(\Delta)$ for $P(j)$. Then

$$
\begin{gathered}
{[P(j): \Delta(i)]=0 \quad \text { for } \quad i<j} \\
{[P(j): \Delta(j)]=1, \quad[R(j): \Delta(j)]=0} \\
{[P(j): \Delta(i)]=[R(j): \Delta(i)] \quad \text { for } \quad i>j}
\end{gathered}
$$

Similarly, for the source map $T(j) \rightarrow S(j)$ for $T(j)$ in $\mathcal{F}(\Delta)$, we have

$$
\begin{gathered}
{[T(j): \Delta(i)]=[S(j): \Delta(i)] \quad \text { for } \quad i<j} \\
{[T(j): \Delta(j)]=1, \quad[S(j): \Delta(j)]=0} \\
{[T(j): \Delta(i)]=0 \quad \text { for } \quad i>j}
\end{gathered}
$$

Proof: Let $U(j)$ be the submodule of $P(j)$ with $P(j) / U(j)=$ $\Delta(j)$. Then $U(j) \in \mathcal{F}(\Delta(j+1), \ldots, \Delta(n))$, thus $[P(j): \Delta(i)]=0$ for $i<j$, and $[P(j): \Delta(j)]=1$. Also, $[P(j): \Delta(i)]=[U(j): \Delta(i)]$ for $i>j$. As we know, the sink map for $P(j)$ in $\mathcal{F}(\Delta)$ is of the form $g(j): R(j) \rightarrow P(j)$, where $R(j)$ has $U(j)$ as a submodule, and all composition factors of $R(j) / U(j)$ are of the form $E(t)$ with $t<j$. Thus $[R(j): \Delta(i)]=[U(j): \Delta(i)]+[R(j) / U(j): \Delta(i)]$ and $[R(j) / U(j): \Delta(i)]=0$ for $i \geq j$.

The second assertion will be derived from the first one using duality and the equivalence $F=\operatorname{Hom}(T,-): \mathcal{F}(\nabla) \rightarrow \mathcal{F}\left(\Delta_{B}\right)$. Given a module M in $\mathcal{F}(\nabla)$, let $[M: \nabla(i)]$ be the multiplicity of $\nabla(i)$ in a ∇-filtration of M. Consider the source map $S^{\prime}(j) \rightarrow T(j)$ for $T(j)$ in $\mathcal{F}(\nabla)$. We have $F T(j)=P_{B}(n+1-j), F S^{\prime}(j)=$ $R_{B}(n+1-j)$ and $F \nabla(i)=\Delta(n+1-i)$. For an arbitrary module $M \in \mathcal{F}(\nabla)$, we have $[M: \nabla(i)]=[F M: \Delta(n+1-i)]$, so we can transform the assertions concerning $P_{B}(n+1-j)$ and $R_{B}(n+1-j)$ to corresponding assertions for $T(j)$ and $R^{\prime}(j)$. Using k-duality we know that $\mathcal{F}(\Delta)$ is the opposite of the category of ∇-good modules for A^{op}, and under this duality, the relative injective objects of $\mathcal{F}(\Delta)$ correspond to the relative projective objects in the category of ∇-good modules for A^{op}.

6. Multiple arrows in the Auslander-Reiten quiver

CLAUS MICHAEL RINGEL

Let A be a finite-dimensional k-algebra where k is an algebraically closed field.

Warning: Even if A is $\mathcal{F}(\Delta)$-finite, there may exist indecomposable A-modules $X_{0}, X_{1} \in \mathcal{F}(\Delta)$ such that $\operatorname{dim}_{k} \operatorname{Irr}_{\mathcal{F}(\Delta)}\left(X_{0}, X_{1}\right) \geq$ 2. We exhibit the following examples:

First, assume that $\operatorname{rad}(P(i), P(j))=0$ for $i \geq j$. In this case, we have $\Delta(i)=P(i)$ for all i, thus the modules in $\mathcal{F}(\Delta)$ are the projective A-modules, and clearly $\operatorname{dim}_{k} \operatorname{Irr}_{\mathcal{F}(\Delta)}\left(X_{0}, X_{1}\right)$ may be arbitrarily large. Of course, in this case all objects of $\mathcal{F}(\Delta)$ are both relative projective and relative injective in $\mathcal{F}(\Delta)$.

A less trivial example is given as follows: Let A be a quasihereditary algebra with two simple modules $E(1), E(2)$ such that

$$
\operatorname{dim}_{k} \operatorname{Hom}(E(1), E(2))=1 \quad \text { and } \quad \operatorname{dim}_{k} \operatorname{Hom}(E(2), E(1))=d
$$

Then the indecomposable modules in $\mathcal{F}(\Delta)$ are $E(1), P(1), P(2)$ and the vector space $\operatorname{rad}(E(1), P(2))=\operatorname{Hom}(E(1), P(2))$, is $d-$ dimensional, whereas we observe that $\operatorname{rad}_{\mathcal{F}(\Delta)}^{2}(E(1), P(2))=0$, thus $\operatorname{dim}_{k} \operatorname{Irr}_{\mathcal{F}(\Delta)}(E(1), P(2))=d$.

Theorem. Let k be an algebraically closed field. Let A be $\mathcal{F}(\Delta)$-finite. Let X_{0}, X_{1} be indecomposable A-modules in $\mathcal{F}(\Delta)$, with $\operatorname{dim}_{k} \operatorname{Irr}_{\mathcal{F}(\Delta)}\left(X_{0}, X_{1}\right) \geq 2$. Then $X_{0}=T(j)$, and $X_{1}=P(i)$ for some $j<i$.

Proof: We are going to define modules X_{i} for certain $i \geq 0$ inductively as follows: Assume X_{i} and X_{i+1} are already defined, and X_{i} is not relative injective in $\mathcal{F}(\Delta)$, then $X_{i+2}=\tau_{\mathcal{F}(\Delta)}^{-} X_{i}$. Note that the modules obtained in this way are indecomposable, belong to $\mathcal{F}(\Delta)$ and $\operatorname{dim}_{k} \operatorname{Irr}_{\mathcal{F}(\Delta)}\left(X_{i}, X_{i+1}\right)=\operatorname{dim}_{k} \operatorname{Irr}_{\mathcal{F}(\Delta)}\left(X_{0}, X_{1}\right)$.

We claim that there is some $t \geq 0$ such that the modules X_{0}, \ldots, X_{t+1} are defined and X_{t} is relative injective in $\mathcal{F}(\Delta)$. Otherwise, we have an infinite sequence $X_{i}, i \geq 0$. Let $l\left(X_{i}\right) \leq l\left(X_{i+1}\right)$, for some i. There is a relative almost split sequence $0 \rightarrow \bar{X}_{i} \rightarrow Y_{i} \rightarrow$ $X_{i+2} \rightarrow 0$ and X_{i+1}^{2} is a direct summand of Y_{i}, thus $l\left(X_{i+1}\right) \leq$ $l\left(X_{i+2}\right)$. Deleting, if necessary, finitely many of these modules, we can assume that $l\left(X_{i}\right) \leq l\left(X_{i+1}\right)$ for all $i \geq 0$. Let $f_{i}: X_{i} \rightarrow X_{i+1}$ be an irreducible map. The Lemma asserts that $f_{i} \mid J X_{i}$ is injective. We can assume that $J X_{i} \neq 0$ for some i, otherwise we replace A by A / J. Since with $J X_{i} \neq 0$, also $J X_{i+1} \neq 0$, we can assume that $J X_{i} \neq 0$ for all $i \geq 0$, deleting, if necessary, finitely many of the modules. It follows that the composition $f_{0} f_{1} \ldots f_{i}$ is non-zero for all $i \geq 0$, a contradiction to the Harada-Sai lemma.

Duality shows that we can assume, in addition, that X_{1} is projective. (For, the equivalence of the category $\mathcal{F}(\nabla)$ of ∇-good modules with a category of Δ-good modules for some other quasihereditary algebra shows that the same assertion is true for $\mathcal{F}(\nabla)$, and k-duality shows that $\mathcal{F}(\Delta)$ is the opposite of the category of ∇-good modules for A^{op}. It just remains to renumber the modules X_{i}.)

Let $X_{1}=P(i)$. Note that X_{0}^{2} is a direct summand of $R(i)$, say $R(i)=X_{0} \oplus X_{0} \oplus R^{\prime}$, and we can write $g(i)=\left[g_{1}, g_{2}, g^{\prime}\right]$ with $g_{1}, g_{2}: X_{0} \rightarrow P(i)$ and $g^{\prime}: R^{\prime} \rightarrow P(i)$. For $\alpha \in k$, consider the maps $g_{\alpha}=g_{1}+\alpha g_{2}: X_{0} \rightarrow P(i)$. We will use the following fact: if $\alpha, \beta \in k$ are given such that $g_{\alpha} h-g_{\beta}$ is not irreducible, for some automorphism h of $P(i)$, then $\alpha=\beta$. For, since $g=$ $g_{\alpha} h-g_{\beta}: X_{0} \rightarrow P(i)$ is not irreducible in $\mathcal{F}(\Delta)$, the residue class of $g=g_{1}(h-1)+g_{2}(\alpha h-\beta 1)$ in $\operatorname{Irr}_{\mathcal{F}(\Delta)}\left(X_{0}, P(i)\right)$ is zero. But this implies that $h-1 \in \operatorname{rad} \operatorname{End} P(i)$ and $\alpha=\beta$.

We claim that the composition factors of X_{0} are of the form $E(j)$ with $j<i$. For the proof, assume that X_{0} has a composition factor $E(j)$ with $j \geq i$. Then, a Δ-good filtration of X_{0} has some factor of the form $\Delta(j)$ with $j>i$, since X_{0} is a direct summand of $R(i)$. Thus X_{0} has a submodule X^{\prime} isomorphic to some $\Delta(j), j>i$, such that $X_{0} / X^{\prime} \in \mathcal{F}(\Delta)$. Let $u: X^{\prime} \rightarrow X_{0}$ be the embedding. Note that $X^{\prime} \oplus X^{\prime}$ is contained in $U(i) \subseteq R(i)$, and $U(i) /\left(X^{\prime} \oplus X^{\prime}\right) \in$ $\mathcal{F}(\Delta)$. For $\alpha \in k$, let $u_{\alpha}=u g_{\alpha}$, clearly, this is an injective map. We denote by Q_{α} the cokernel of u_{α}, so that Q_{α} is indecomposable and in $\mathcal{F}(\Delta)$. We claim that for $\alpha \neq \beta \in k$, the modules Q_{α} and Q_{β} are not isomorphic. Assume they are. Since $P(i)$ is projective, we find an automorphism h of $P(i)$ such that $u_{\alpha} h=h^{\prime} u_{\beta}$ for some automorphism h^{\prime} of X^{\prime}. However, $\operatorname{End}\left(X^{\prime}\right)=\operatorname{End}(\Delta(j))=k$, thus h^{\prime} is scalar multiplication by some non-zero element of k, and we can assume $h^{\prime}=1$. It follows that $g=g_{\alpha} h-g_{\beta}$ is not irreducible, since $u g=0$, so that g factors over the cokernel X_{0} / X^{\prime} of u. As a consequence, $\alpha=\beta$. The existence of this one-parameter family of indecomposable modules Q_{α} in $\mathcal{F}(\Delta)$ contradicts the assumption that $\mathcal{F}(\Delta)$ is of finite type.

Next, we claim that $\operatorname{Ext}^{1}\left(\Delta(j), X_{0}\right)=0$ for $j<i$. Assume not, let $v: X_{0} \rightarrow Y$ be a non-split embedding with cokernel Y / X_{0} isomorphic to $\Delta(j)$, with $j<i$. For any $\alpha \in k$, we may consider
the induced exact sequence

Note that v_{α} cannot split, since otherwise $g_{\alpha}=v w$, for some w : $Y \rightarrow P(i)$, but by assumption, v is not a split monomorphism, and w is not surjective, since $E(i)$ is not a composition factor of Y. Since $\operatorname{Hom}(P(i), \Delta(j))=0$, it follows that Y_{α} is indecomposable. The module Y_{α} is an extension of $P(i)$ by $\Delta(j)$, thus it belongs to $\mathcal{F}(\Delta)$. We claim that for $\alpha \neq \beta \in k$, the modules Y_{α} and Y_{β} are not isomorphic. Assume there is an isomorphism $f: Y_{\alpha} \rightarrow Y_{\beta}$. Since $\operatorname{Hom}(P(i), \Delta(j))=0, f$ induces an automorphism f^{\prime} of $P(i)$ such that $v_{\alpha} f=f^{\prime} v_{\beta}$, and an automorphism $f^{\prime \prime}$ of $\Delta(j)$, such that $p_{\alpha} f^{\prime \prime}=f p_{\beta}$. Since $\operatorname{End}(\Delta(j))=k$, we can assume that $f^{\prime \prime}=1$. The exact sequence $0 \rightarrow X_{0} \rightarrow Y \rightarrow \Delta(j) \rightarrow 0$ gives rise to the exact sequence

$$
\operatorname{Hom}(Y, P(i)) \xrightarrow{v^{*}} \operatorname{Hom}\left(X_{0}, P(i)\right) \xrightarrow{\delta} \operatorname{Ext}^{1}(\Delta(j), P(i))
$$

with δ the connecting homomorphism, and, as we have seen, $\delta\left(g_{\alpha} f^{\prime}\right)=$ $\delta\left(g_{\beta}\right)$, thus $g_{\alpha} f^{\prime}-g_{\beta}$ is in the image of v^{*}, so there is a map $y: Y \rightarrow P(i)$, such that $g_{\alpha} f^{\prime}-g_{\beta}=v y$. But, by assumption, v is not a split monomorphism, and y is not surjective, since $E(i)$ is not a composition factor of Y. As a consequence, $g_{\alpha} f^{\prime}-g_{\beta}$ is not irreducible. Again, we conclude that $\alpha=\beta$, so that we obtain a one-parameter family of indecomposable modules Y_{α} in $\mathcal{F}(\Delta)$ contradicting the fact that $\mathcal{F}(\Delta)$ is of finite type.

Since the composition factors of X_{0} are of the form $E(j)$, with $j<i$, it follows that $\operatorname{Ext}^{1}\left(\Delta(j), X_{0}\right)=0$ for all $j \geq i$, thus $\operatorname{Ext}^{1}\left(\Delta(j), X_{0}\right)=0$ for all j, and therefore $X_{0}=T(j)$ for some j. Clearly, $X_{0}=T(j)$ for some $j<i$, since the composition factors of X_{0} are of the form $E(j)$, with $j<i$. Also, since $X_{0}=T(j)$ is relative injective in $\mathcal{F}(\Delta)$, we see that $t=0$. This completes the proof.

Since we assume that k is algebraically closed, the valuation of the arrows of $\Gamma_{\mathcal{F}(\Delta)}$ is symmetric (i.e we have $d_{X Y}=d_{X Y}^{\prime}$ for all $X, Y)$ As usual, we may replace an arrow $[X] \rightarrow[Y]$ with $d_{X Y}=m$ by m arrows $[X] \rightarrow[Y]$ (and delete the valuation). We are happy to
know that for an $\mathcal{F}(\Delta)$-finite algebra A, multiple arrows in $\Gamma_{\mathcal{F}(\Delta)}$, say from x to y, exist only in case x is an injective vertex and y is a projective vertex. For translation quivers (with possibly multiple arrows) with this property we may define the corresponding mesh category as usual (without having to choose a "polarization" [R2]).

7. Hammocks

Let $\pi: \tilde{\Gamma}_{\mathcal{F}(\Delta)} \rightarrow \Gamma_{\mathcal{F}(\Delta)}$ be the universal cover of $\Gamma_{\mathcal{F}(\Delta)}$ as defined in [BG], but with the valuation of $\Gamma_{\mathcal{F}(\Delta)}$ lifted to $\tilde{\Gamma}_{\mathcal{F}(\Delta)}$ (i.e., if $x \rightarrow y$ is an arrow of $\tilde{\Gamma}_{\mathcal{F}(\Delta)}$, let $d_{x y}=d_{\pi x, \pi y}, d_{x y}^{\prime}=$ $\left.d_{\pi x, \pi y}^{\prime}\right)$. We will consider only the case of a translation quiver $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, \tau, d, d^{\prime}\right)$ with symmetric valuation, thus $d=d^{\prime}$. In this case, we are tempted to replace any arrow $x \rightarrow y$ by $d_{x y}$ arrows, but note that the universal cover $\tilde{\Gamma}$ of Γ will be formed before we insert multiple arrows. The valuation of the translation quiver $\tilde{\Gamma}$ again will be symmetric, and we may do the corresponding replacements for $\tilde{\Gamma}$. Considering Γ and $\tilde{\Gamma}$ as translation quivers with multiple arrows, the map $\pi: \tilde{\Gamma} \rightarrow \Gamma$ still is a covering map (but no longer "universal").

Assume now that k is an algebraically closed field and that A is $\mathcal{F}(\Delta)$-finite.

Let $\Gamma=\Gamma_{\mathcal{F}(\Delta)}$, and $\tilde{\Gamma}=\tilde{\Gamma}_{\mathcal{F}(\Delta)}$. Fix some $1 \leq i \leq n$, and let $\tilde{\mathcal{P}}_{>i}$ be the set of all vertices $p \in \tilde{\Gamma}$ such that $\pi p=[P(j)]$ with $j>i$. In view of the second characterization of $[M: \Delta(i)]$ for $M \in \mathcal{F}(\Delta)$, it seems to be reasonable to consider besides $\tilde{\Gamma}$ also the full translation subquivers $\tilde{\Gamma}^{(i)}$ obtained from $\tilde{\Gamma}$ by deleting all vertices $\tilde{\mathcal{P}}_{>i}$. We consider the mesh categories $k(\tilde{\Gamma})$ and $k\left(\tilde{\Gamma}^{(i)}\right)$ (taking into account the possible multiple arrows).

Theorem. Let $p \in \pi^{-1}([P(i)])$, for some i. Define h_{p} : $\Gamma_{0} \rightarrow \mathbb{N}_{0}$ by

$$
h_{p}(x)=\operatorname{dim}_{k} \operatorname{Hom}_{\tilde{\Gamma}^{(i)}}(p, x) .
$$

Then the support of h_{p} is a hammock, and h_{p} is the corresponding hammock function.

We extend h_{p} to $\tilde{\Gamma}$ by $h_{p}(x)=0$ for $x \notin \tilde{\Gamma}_{0}^{(i)}$. Then, for $M \in$ $\mathcal{F}(\Delta)$, we have $[M: \Delta(i)]=\sum_{x \in \pi^{-1}([M])} h_{p}(x)$.

The proof will occupy the rest of this section.
Given any path w in $\tilde{\Gamma}$, we denote the corresponding residue class in the mesh category $k(\tilde{\Gamma})$ by \bar{w}; in particular, $\bar{\alpha}$ denotes the
residue class of the arrow α of $\tilde{\Gamma}$. A functor $F: k(\tilde{\Gamma}) \rightarrow \mathcal{F}(\Delta)$ will be called well-behaved provided the following two properties are satisfied: First, for any object x of $k(\tilde{\Gamma})$, the module $F(x)$ belongs to the isomorphism class πx, and second, if $\alpha_{1}, \ldots, \alpha_{r}$ are the arrows $x \rightarrow y$ in $\tilde{\Gamma}$, then the residue classes of $F\left(\bar{\alpha}_{1}\right), \ldots, F\left(\bar{\alpha}_{r}\right)$ modulo $\operatorname{rad}_{\mathcal{F}(\Delta)}^{2}$ yield a k-basis of $\operatorname{Irr}_{\mathcal{F}(\Delta)}(F(x), F(y))$.

According to [BG], there exists a well-behaved functor F : $k(\tilde{\Gamma}) \rightarrow \mathcal{F}(\Delta)$ (the existence of multiple arrows does not add any difficulty), and we may assume that for any projective vertex p of $\tilde{\Gamma}$, with $\pi p=[P(i)]$, we have $F(p)=P(i)$.

For p in $\tilde{\Gamma}$, with $\pi p=[P(i)]$, and z an arbitrary vertex of $\tilde{\Gamma}$, we set

$$
\mathcal{H}_{i}(p, z)=\operatorname{Hom}(p, z) / \operatorname{Hom}\left(p, \tilde{\mathcal{P}}_{>i}, z\right)
$$

We should remark, that we may identify $\mathcal{H}_{i}(p, z)$ with $\operatorname{Hom}_{\tilde{\Gamma}^{(i)}}(p, z)$, in particular, we have $\operatorname{dim}_{k} \mathcal{H}_{i}(p, z)=h_{p}(z)$. Similarly, for $Z \in$ $\mathcal{F}(\Delta)$, let

$$
\mathcal{H}_{i}(P(i), Z)=\operatorname{Hom}(P(i), Z) / \operatorname{Hom}\left(P(i), \mathcal{P}_{>j}, Z\right)
$$

thus $\operatorname{dim}_{k} \mathcal{H}_{i}(P(i), Z)=[Z: \Delta(i)]$.
Lemma. For any vertex u of $\tilde{\Gamma}$, the functor F induces an isomorphism

$$
\bigoplus_{p} \mathcal{H}_{i}(p, u) \rightarrow \mathcal{H}_{i}(P(i), F(u)),
$$

where p ranges over all p with $\pi p=[P(i)]$.
Proof: Clearly, the functor F is dense, and it maps $\bigoplus_{p} \operatorname{Hom}\left(p, \tilde{\mathcal{P}}_{>i}, u\right)$ onto $\operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, F(u)\right)$. Consequently, we only have to show that given maps $\phi_{p} \in \operatorname{Hom}(p, u)$ with $\sum_{p} F\left(\phi_{p}\right)=0$, then all ϕ_{p} factor through $\tilde{\mathcal{P}}_{>i}$.

Let $\phi_{p} \in \operatorname{Hom}(p, u)$ be maps with $\sum_{p} F\left(\phi_{p}\right)=0$. For $t \geq 0$, let \mathcal{W}_{t} be the set of paths of length t in $\tilde{\Gamma}$ ending in u. For any $w \in \mathcal{W}_{t}$, let $s(w)$ be its starting vertex. We claim that, for any $t \geq 0$, we can write ϕ_{p} in the form $\phi_{p}=\sum_{w \in \mathcal{W}_{t}} \phi_{p, w} \bar{w}+\phi_{p}^{(t)}$, where $\phi_{p, w}: p \rightarrow s(w)$ and $\phi_{p}^{(t)}$ are maps in $k(\tilde{\Gamma})$, such that $\phi_{p}^{(t)}$ factors through $\tilde{\mathcal{P}}_{>i}$, and $F\left(\sum_{p} \phi_{p, w}\right)=0$ for all $w \in \mathcal{W}_{t}$. The proof is by induction on t. The case $t=0$ is trivial.

So assume for some $t \geq 0$, we know that $\phi_{p}=\sum_{w \in \mathcal{W}_{t}} \phi_{p, w} \bar{w}+$ $\phi_{p}^{(t)}$, where $\phi_{p}^{(t)}$ factors through $\tilde{\mathcal{P}}_{>i}$, and $F\left(\sum_{p} \phi_{p, w}\right)=0$ for all $w \in \mathcal{W}_{t}$. Consider a $w \in \mathcal{W}_{t}$, and let $z=s(w)$. We can assume that $z \notin \tilde{\mathcal{P}}_{>i}$, changing, if necessary $\phi_{p}^{(t)}$. Let $\alpha_{i}: y_{i} \rightarrow z$ be the arrows ending in z, where $1 \leq i \leq r$. We claim that

$$
\phi_{p, w}=\sum_{i} \phi_{p, w, i} \bar{\alpha}_{i},
$$

for suitable morphisms $\phi_{p, w, i}: p \rightarrow y_{i}$. This is trivially true in case $\phi_{p, w}$ is a linear combination of (residue classes of) paths of length at least one, therefore it is true in case $p \neq z$. Thus, we may assume $\pi z=[P(i)]$. Since $0=F\left(\sum_{p} \phi_{p, w}\right)=F\left(\phi_{z, w}\right)+\sum_{p \neq z} F\left(\phi_{p, w}\right)$, and $\sum_{p \neq z} F\left(\phi_{p, w}\right)$ belongs to $\operatorname{rad}_{\mathcal{F}(\Delta)}$, we see that $F\left(\phi_{z, w}\right)$ belongs to $\operatorname{rad}_{\mathcal{F}(\Delta)}$. On the other hand, $\phi_{z, w}$ is a scalar multiple of a path of length zero, thus $F\left(\phi_{z, w}\right)$ is the corresponding multiple of an identity map. It follows that $\phi_{z, w}=0$.

Since F is well-behaved, we see that $\left[F\left(\bar{\alpha}_{i}\right)\right]_{i}: Y=\bigoplus_{i} F\left(y_{i}\right) \rightarrow$ $F(z)$ is the sink map for $F(z)$ in $\mathcal{F}(\Delta)$. Let $f: X \rightarrow Y$ be the kernel of this map. Since $0=F\left(\sum_{p} \phi_{p, w}\right)=F\left(\sum_{p, i} \phi_{p, w, i} \bar{\alpha}_{i}\right)$, we see there is a map $h: P(i) \rightarrow X$ such that $h f=\left[F\left(\sum_{p} \phi_{p, w, 1}\right), \ldots, F\left(\sum_{p} \phi_{p, w, r}\right)\right]$.

First, consider the case of z being a projective vertex. By assumption, $z \notin \tilde{\mathcal{P}}_{>i}$, thus $\pi z=[P(j)]$ for some $j \leq i$. But X belongs to $\mathcal{F}(E(1), \ldots, E(j-1))$, and therefore $\operatorname{Hom}(P(i), X)=$ 0 . It follows that $F\left(\sum_{p} \phi_{p, w, i}\right)=0$ for all $1 \leq i \leq r$. In this case, let $\phi_{p, \alpha_{i} w}=\phi_{p, w, i}$, where $\alpha_{i} w$ denotes the path in \mathcal{W}_{t+1} obtained by composing the arrow α_{i} with the path w. It follows that $F\left(\sum_{p} \phi_{p, \alpha_{i} w}\right)=0$, and that

$$
\sum_{i} \phi_{p, \alpha_{i} w} \bar{\alpha}_{i} \bar{w}=\sum_{i} \phi_{p, w, i} \bar{\alpha}_{i} \bar{w}=\phi_{p, w} \bar{w} .
$$

Next, we assume that z is not projective, thus $X \cong \tau_{\Delta} F(z)$. Note that in this case there is a unique arrow $\beta_{i}: \tau z \rightarrow y_{i}$, since we know that multiple arrows can occur only from an injective vertex to a projective vertex. We can assume that $f=\left[F\left(\beta_{1}\right), \ldots, F\left(\beta_{r}\right)\right]$: $X=F(\tau z) \rightarrow \bigoplus_{i} F\left(y_{i}\right)$. Also, h may be written in the form $h=$ $F\left(\sum_{p} \psi_{p}\right)$, thus we have $F\left(\sum_{p} \psi_{p} \beta_{i}\right)=F\left(\sum_{p} \phi_{p, w, i}\right)$, for all i. In this case, let $\phi_{p, \alpha_{i} w}=\phi_{p, w, i}-\psi_{p} \beta_{i}$. It follows that $F\left(\sum_{p} \phi_{p, \alpha_{i} w}\right)=$ 0 . On the other hand, observe that

$$
\sum_{i} \phi_{p, \alpha_{i} w} \bar{\alpha}_{i} \bar{w}=\sum_{i}\left(\phi_{p, w, i}-\psi_{p} \bar{\beta}_{i}\right) \bar{\alpha}_{i} \bar{w}=\sum_{i} \phi_{p, w, i} \bar{\alpha}_{i} \bar{w}=\phi_{p, w} \bar{w}
$$

where we use that $\sum_{i} \bar{\beta}_{i} \bar{\alpha}_{i}=0$.
For any path $\alpha_{i} w$, we have defined $\phi_{p, \alpha_{i} w}$, such that $F\left(\sum_{p} \phi_{p, \alpha_{i} w}\right)=$ 0 , and such that $\sum_{i} \phi_{p, \alpha_{i} w} \bar{\alpha}_{i} \bar{w}=\phi_{p, w} \bar{w}$. The latter implies that

$$
\sum_{w \in \mathcal{W}_{t}} \sum_{i} \phi_{p, \alpha_{i} w} \bar{\alpha}_{i} \bar{w}+\phi_{p}^{(t)}=\phi_{p}
$$

This completes the induction.
However, for large t, we have $\operatorname{Hom}(p, s(w))=0$, for any $w \in$ \mathcal{W}_{t}, so in this case $\phi_{p}=\phi_{p}^{(t)}$. This shows that ϕ_{p} factors through $\tilde{\mathcal{P}}_{>i}$, and completes the proof of the Lemma.

Corollary 1. Let p_{0}, u_{0} be vertices of $\tilde{\Gamma}$, with p_{0} projective. Let $F\left(p_{0}\right)=P(i)$, and $F\left(u_{0}\right)=M$. Then

$$
[M: \Delta(i)]=\sum_{p \in \pi^{-1}([P(i)])} h_{p}\left(u_{0}\right)=\sum_{u \in \pi^{-1}([M])} h_{p_{0}}(u) .
$$

Proof: The first equality follows from the Lemma considering k-dimensions. The fundamental group G of Γ operates on $\tilde{\Gamma}$, and the fibers $\pi^{-1}(x)$ with $x \in \Gamma_{0}$ are just the G-orbits of $\tilde{\Gamma}_{0}$. Shifting by the various elements of G, the second term is transformed in the third one.

Corollary 2. The support of h_{p} is finite, for any projective vertex p of $\tilde{\Gamma}$.

Proof: For any indecomposable module M in $\mathcal{F}(\Delta)$, there can be only finitely many elements $u \in \pi^{-1}([M])$ with $h_{p}(u) \neq 0$, since these numbers add up to $[M: \Delta(i)]$.

Corollary 3. Let p, z be vertices in $\tilde{\Gamma}$, with p projective. Then $h_{p}(p)=1$, and, for $z \neq p$,

$$
h_{p}(z)=\sum_{\alpha: y \rightarrow z} h_{p}(y)-h_{p}(\tau z),
$$

where, by definition, $h_{p}(\tau z)=0$ in case z is projective.
Proof: Clearly, $h_{p}(p)=1$, thus we may assume $z \neq p$. Let $\alpha_{s}: y_{s} \rightarrow z$, with $1 \leq s \leq t$ be the arrows ending in z. In case z is projective, the α_{s} induce an isomorphism

$$
\bigoplus_{s=1}^{t} \operatorname{Hom}\left(p, y_{i}\right) \rightarrow \operatorname{Hom}(p, z)
$$

thus $h_{p}(z)=\sum_{\alpha: y \rightarrow z} h_{p}(y)$ in this case. It remains to consider the case when z is non-projective. The α_{s} induce an exact sequence

$$
\operatorname{Hom}(p, \tau z) \rightarrow \bigoplus_{s=1}^{t} \operatorname{Hom}\left(p, y_{i}\right) \rightarrow \operatorname{Hom}(p, z) \rightarrow 0
$$

(see [BG] and the remarks in [RV]), thus we see that

$$
h_{p}(z) \geq \sum_{s=1}^{t} h_{p}(y)-h_{p}(\tau z) .
$$

Now, let $F(z)=Z, F\left(y_{s}\right)=Y_{s}, F(\tau z)=X$, and add up all these inequalities for $p^{\prime} \in \pi^{-1}([P(i)])$. Since we obtain as sum the equality

$$
[Z: \Delta(i)]=\sum_{s=1}^{t}\left[Y_{s}: \Delta(i)\right]-[X: \Delta(i)]
$$

it follows that all the inequalities had been, in fact, equalities. This completes the proof.

It remains to consider the behaviour of h_{p} at injective vertices of $\tilde{\Gamma}$.

Lemma. Let $j<i$, and let $[P(j): \Delta(i)]=t$. There are maps $f: P(i) \rightarrow P(j)$, and $g_{s} \in \operatorname{rad} \operatorname{End}(P(j)$, with $1 \leq s<t$, and $h: P(j) \rightarrow T(i)$, such that $f g_{1} \cdots g_{t-1} h$ is non-zero.

Proof: We want to show that the right $\operatorname{End}(P((j))$-module $\mathcal{H}_{i}(P(i), P(j))$ is serial.

First, consider the case $i=n$. Note that $\mathcal{H}_{i}(P(n), P(i))=$ $\operatorname{Hom}(P(n), P(i))$. Assume there are elements f_{1}, f_{2} in $\operatorname{Hom}(P(n), P(i))$ such that the subspaces $f_{1} \cdot \operatorname{Hom}(P(n), P(i))$ and $f_{2} \cdot \operatorname{Hom}(P(n), P(i))$ are incomparable. For $\alpha \in k$, let Q_{α} be the cokernel of $f_{1}+\alpha f_{2}$: $P(n) \rightarrow P(i)$. Clearly, Q_{α} is indecomposable, and belongs to $\mathcal{F}(\Delta)$. And, it is easy to see that for $\alpha \neq \beta$, the modules Q_{α} and Q_{β} are non-isomorphic. Thus we obtain a one-parameter family of indecomposable modules in $\mathcal{F}(\Delta)$, in contrast to our assumption on A to be $\mathcal{F}(\Delta)$-finite.

Assume the residue class of $f: P(i) \rightarrow P(j)$ modulo $\operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, P(j)\right)$ does not belong to $\mathcal{H}_{i}(P(i), P(j)) \cdot \operatorname{rad} \operatorname{End}(P(j))$. Since $\mathcal{H}_{i}(P(i), P(j))$ is serial as a right $\operatorname{End}\left((P(j))\right.$-module, we obtain elements $g_{s} \in$ $\operatorname{rad} \operatorname{End}(P(j))$, so that $f g_{1} \cdots g_{s-1}$ does not belong to $\operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, P(j)\right)$.

The bilinear pairing exhibited above yields a map $h: P(j) \rightarrow$ $T(i)$ such that the composition $f g_{1} \cdots g_{t-1} h$ does not belong to $\operatorname{Hom}\left(P(i), \mathcal{P}_{>i}, T(i)\right)$.

We will need the dual assertion which may be stated as follows:
Lemma. Let $j>i$, and let $[T(j): \Delta(i)]=t$. There are maps $f: P(i) \rightarrow T(j)$, and $g_{s} \in \operatorname{rad} \operatorname{End}(T(j))$, with $1 \leq s<t$, and $h: T(j) \rightarrow T(i)$, such that $f g_{1} \cdots g_{t-1} h$ is non-zero.

Lemma. Let p be a projective vertex, q an injective vertex of $\tilde{\Gamma}$, say $\pi p=[P(i)]$, and $\pi q=[T(j)]$. If $j<i$, then $h_{p}(q)=0$. If $j=i$, then $h_{p}(y)=0$ for any vertex $y \in q^{+}$. If $j>i$ and $h_{p}(q) \neq 0$, then $\sum_{q \rightarrow y} h_{p}(y) \leq 1$.

Proof: For $j<i$, we have $[T(j): \Delta(i)]=0$, thus $h_{p}(q)=0$. For $j=i$, we have $[S(j): \Delta(i)]=0$, thus $\sum_{q \rightarrow y} h_{p}(y)=0$. So let us assume $j>i$. In this case, and let $[T(j): \Delta(i)]=t$. We know that also $[S(j): \Delta(i)]=t$. According to the previous lemma, there are elements $f \in \operatorname{Hom}(P(i), T(j)), \quad g_{s} \in \operatorname{rad} \operatorname{End}(T(j)), \quad h \in$ $\operatorname{Hom}(T(j), T(i))$, with $1 \leq s<t$, such that $f g_{1} \cdots g_{t-1} h \neq 0$. This implies that in $\tilde{\Gamma}^{(i)}$, there is a path ϕ from p to q_{1}, and nonconstant paths γ_{s} from q_{s} to q_{s+1}, for $1 \leq s<t$, and η from q_{t} to q^{\prime}, where $\tau q_{s}=[T(j)]$, for all $1 \leq s \leq t$, and $\tau q^{\prime}=[T(i)]$, such that $\bar{\phi} \bar{\gamma}_{1} \cdots \bar{\gamma}_{t-1} \bar{\eta} \neq 0$ in $k\left(\tilde{\Gamma}^{(i)}\right)$. Since the paths γ_{s} and η are of length at least one, let $\alpha_{s}: q_{s} \rightarrow y_{s}$, with $1 \leq s<t$ be the first arrow of γ_{s}, and α_{t} the first arrow of η. Then $\bar{\phi} \bar{\gamma}_{1} \cdots \bar{\gamma}_{s-1} \bar{\alpha}_{s} \neq 0$ shows that $h_{p}\left(y_{s}\right) \geq 1$, for all $1 \leq s \leq t$. Thus

$$
t=[S(j): \Delta(i)]=\sum_{z \in \pi^{-1}([T(j)])} \sum_{z \rightarrow y} h_{p}(y) \geq \sum_{s=1}^{t} h_{p}\left(y_{s}\right) \geq t
$$

implies that the values $h_{p}\left(y_{s}\right)$ are the only non-zero summands in the double sum, and all these values are equal to 1 . As a consequence, we have $\sum_{z \rightarrow y} h_{p}(y)=1$ for $z=q_{s}$, and $\sum_{z \rightarrow y} h_{p}(y)=0$ otherwise. On the other hand, the vertices q_{s}, are the only vertices in $\pi^{-1}([T(j)])$ which belong to the support of h_{p}.

This finishes the proof.

Acknowledgement

The author is obliged to J. de la Peña and D. Simson for carefully reading the manuscript.

Remark

This paper is written in English in order to be accessible to readers throughout the world, but we would like to stress that this does not mean that we support any imperialism. Indeed, we were shocked when we heard that the Iraki military machinery was going to bomb Washington in reaction to the US invasion in Grenada and Panama, but maybe we were misinformed by the nowadays even openly admitted censorship.

References

[A] Auslander, M.: Applications of morphisms determined by objects. In: Representation Theory of Algebras. LN Pure Appl. Math 37. M.Dekker (1978), 245-327.
[BG] Bongartz, K. and Gabriel, P.: Covering spaces in representation theory. Invent. Math. 65 (1982), 331-378.
[HPR] Happel,D., Preiser.U., and Ringel,C.M.: Vinberg's characterization of Dynkin diagrams using subadditive functions with application to DTrperiodic modules. In: Representation Theory II. Springer LNM 832 (1980), 280-294.
[R1] Ringel, C.M.: Report on the Brauer-Thrall conjectures. In: Springer LNM 832 (1980), 104-136.
[R2] Ringel, C.M.: Tame algebras and integral quadratic forms. Springer LNM 1099 (1984).
[R3] Ringel, C.M.: The category of good modules over a quasi-hereditary algebra has almost split sequences. Math.Z. (to appear)
[R4] Ringel, C.M.: On contravariantly finite subcategories. This volume.
[RV] Ringel,C.M., and Vossieck,D.: Hammocks. Proc. London Math. Soc. (3) 54 (1987), 216-246
[Z] Zhang,Y.: The structure of regular components. Can. J. (to appear).

C.M. Ringel
Fakultät für Mathematik
Universität
D-4800 Bielefeld 1
West-Germany

