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ABSTRACT. The first Brauer-Thrall conjecture asserts that algebras of
bounded representation type have finite representation type. This conjec-
ture was solved by Roiter in 1968. The induction scheme which he used in
his proof prompted Gabriel to introduce an invariant which we propose to
call Gabriel-Roiter measure. This invariant is defined for any finite length
module and it will be studied in detail in this paper. Whereas Roiter and
Gabriel were dealing with algebras of bounded representation type only, it
is the purpose of the present paper to demonstrate the relevance of the
Gabriel-Roiter measure for algebras in general, in particular for those of
infinite representation type.

Let A be an artin algebra (thus A is a ring, its center is artinian and A is finitely
generated as a module over its center), we always may (and will) assume that A is
connected (the center is a local ring). Let Mod A denote the category of all (left)
A-modules and mod A the full subcategory of all finitely generated modules.

Usually, we will deal with finitely generated modules and call them just mod-
ules, given such a module M, we denote by |M]| its length. The paper deals with an
invariant attached to such a module which has been introduced by Gabriel (under
the name “Roiter measure”) in order to explain Roiter’s induction scheme in his
solution of the first Brauer-Thrall conjecture. Most of the results presented here
are inspired by the methods used by Roiter in his proof, and by Gabriel’s refor-
mulations. Recall that the first Brauer-Thrall conjecture asserts that if A is of
bounded representation type (this means that there is a bound on the length of the
indecomposable representations), then A is of finite representation type (meaning
that there are only finitely many isomorphism classes of indecomposable modules).
Both Roiter and Gabriel have assumed from the beginning that A is of bounded
representation type, however this assumption is really misleading: A proper read-
ing of these papers shows that the methods exhibited by Roiter and the invariant
introduced by Gabriel shed light on the structure of the category of A-modules for
an arbitrary artin algebra A, especially for A of infinite representation type!
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The Gabriel-Roiter measure u(M) of a A-module M (as we propose to call this
invariant) may be considered as a rational number (say between 0 and 1) which
only depends on the submodule lattice of M. The main property is the following:
the class of modules which are direct sums of modules M with u(M) < r for a fixed
real number 7 is closed under submodules. In this way, one obtains an interesting
filtration of the category of all A-modules by subcategories which are closed under
submodules.

We say that r is a Gabriel-Roiter measure for A, provided there are inde-
composable A-modules M with u(M) = r. We will show that for A of infinite
representation type, there are Gabriel-Roiter measures ¢, rt for A with

rT<ro<rg< - <rd<ri<yt

such that any other Gabriel-Roiter measure r for A satisfies 7, < r < rt forallt € N;.
Also, for any t, there are only finitely many isomorphism classes of indecomposable
modules with Gabriel-Roiter measure r; or rt. Note that any infinite set of Gabriel-
Roiter measures for A provides arbitrarily large indecomposable modules, thus, in
particular, we encounter in this way two different proofs of the first Brauer-Thrall
conjecture.

We will say that the indecomposable modules with Gabriel-Roiter measure of
the form r; form the take-off part, those with Gabriel-Roiter measure of the form
r® the landing part of the category. We get in this way a partition of the module
category into three parts: the take-off part, the central part and the landing part,
where both the take-off part and the landing part are in some sense of combinatorial
nature. The paper will provide additional information on the take-off and the
landing modules.

This is a slightly polished version of a paper which has been finished in May
2003 and the author is grateful to Philipp Fahr, Masahisa Sato and the referee for
spotting misprints and inaccuracies. The paper is essentially self-contained, as basic
reference one may consult the book of Auslander, Reiten and Smalg[ARS]. As we
will mention, some assertions are well-known, but there do not seem to be well-
distributed references; for the convenience of the reader, the corresponding proofs
have been included. In particular, this concerns Roiter’s coamalgamation lemma.
For further results concerning the Gabriel-Roiter measure, we refer to the forthcom-
ing lectures notes [Ri4]. In these notes, the relationship between the Gabriel-Roiter
measure and Auslander-Reiten theory will be made explicit (for any Gabriel-Roiter
inclusion N C M, the factor module M/N turns out to be an epimorphic image
of the Auslander-Reiten translate 7=!N). This provides alternative proofs of some
results of the present paper. But let us stress that the Gabriel-Roiter measure has
to be considered as being more elementary than the Auslander-Reiten invariants,
since the latter rely on the complete module category and not only on the individual
module. For this reason, we feel that the direct approach of the present paper is of
interest in its own.
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1. Definition and Main Properties.

Let Ny = {1,2,...} be the set of natural numbers. Note that we use the
symbol C to denote proper inclusions. Let P(N;) be the set of all subsets I C Nj.
We consider this set as a totally ordered set as follows: If I, J are different subsets
of Ny, write I < J provided the smallest element in (I \ J) U (J \ I) belongs to .J.
(The subsets of N; to be considered usually will be finite ones; for a visualization
of this totally ordering on the subset P¢(N) of all finite subsets of Ny, we refer to
appendix B.) Also, write I < J provided I C J and for all elements a € I,b € J\ 1,
we have a < b. We say that J starts with I provided I = J or I < J.

e The totally ordered set P(N) is complete.
o If I CJCN;, thenl<J.
e If Iy < Iy < I3 and I3 starts with Iy, then I starts with I.

For a (not necessarily finitely generated) A-module M, let u(M) be the supre-
mum of the sets {|M|,...,|M;|}, where M; C My C --- C M; is a chain of
indecomposable submodules of M, we call u(M) the Gabriel-Roiter measure of M.
In case there exists a chain of submodules (the index set being finite or countable)

MyCM,C---C|J) Mi=M suchthat p(M)={M;|i},

then we call this chain a Gabriel-Roiter filtration of M. Note that a finitely generated
A-module M has a Gabriel-Roiter filtration if and only if M is indecomposable. We
will see below that an infinitely generated module with a Gabriel-Roiter filtration
is indecomposable (Theorem 1), but conversely there are indecomposable infinitely
generated modules without a Gabriel-Roiter filtration (of course, any module with
a Gabriel-Roiter filtration is countably generated, an example of a countable gen-
erated indecomposable module without a Gabriel-Roiter filtration will be given in
Appendix B).

Finally, we call an inclusion N C M of finitely generated indecomposable A-
modules a Gabriel-Roiter inclusion provided pu(M) = p(N) U {|M|}, thus if and
only if every proper submodule of M has Gabriel-Roiter measure at most u(N).
Note that a chain M1 C My C --- C UZ M; = M 1is a Gabriel-Roiter filtration if
and only if all the inclusions M; C M; 1 are Gabriel-Roiter inclusions.

o If M' is a submodule of M, then pu(M’) < u(M).
e For any module M, the Gabriel-Roiter measure u(M) is the supremum of
w(M"), where M’ is a finitely generated indecomposable submodule of M.

Main Property (Gabriel). Let X,Yq,...,Y; be indecomposable A-modules
of finite length and assume that there is a monomorphism f: X — @:‘:1 Y;.
(a) Then pu(X) < max u(Y;).
(b) If u(X) = max u(Y;), then f splits.
(c) If max pu(Y;) starts with u(X), then there is some j such that m;f is injective,
where wj: €, Y; — Y; is the canonical projection.
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Parts (a) and (b) have been formulated and proven by Gabriel in [G] (using the
additional assumption that A is of bounded representation type, with a footnote
that this assumption may be deleted).

Proof: We write Y = @, Y; and py = max p(Y;) (it will follow from the main
property that puy = u(€ Y;:), see Corollary 1, but at this stage, this is not known).
Denote by 7m;: Y = @, Y; — Y; the projection maps. We are going to show (a) and
(¢) by induction. Note that (c) immediately implies (b): namely, if we have equality
w(X) = py, then according to (c) we find an index j such that the composition of
f and the projection m;: Y — Yj is injective. An injective map X — Y} implies
that p(X) < p(Y;); together with p(Y;) < py = pu(X) we see that p(X) = p(Y;),
in particular | X| = |Y;|. As a consequence, the injective map 7;f: X — Y; has to
be bijective, thus f is a split monomorphism.

For the proof of (a) and (c), we use induction on ¢t = | X| + |Y/|, starting with
trivial cases, say t = 0 or ¢ = 1. First, we claim that we can assume that 7;f
is surjective, for all 4. If not, then let ¥/ = m;f(X), this is a submodule of ¥;.
Decompose Y; = € ; Y;; with indecomposable modules Y;;. Note that X embeds
under f into P, Y; = @,; Yij, and | X|+ [Y| > [X|+ >, [Yi;], thus by induction
we know the first of the following two inequality signs:

p(X) < max p(Y;5) < py,

the second inequality sign is due to the fact that any Y;; is a submodule of Y;. This
shows (a). Also, assume py starts with p(X), then we see that max pu(Y;;) starts
with p(X) and therefore by induction we know that there is some projection map
Tyt @ij Y:; — Y, such that the composition of the inclusion f': X — @ij Yi;
with 7,5 is a monomorphism. Now, the projection 7,4 is the composition of first the
projection ;. : ®D,; Yi; = D, Y/ — Y, and then the projection Y,/ = @D, Y = Yos.
It follows that =, f': X — Y, is a monomorphism. If we compose this monomor-
phism with the embedding Y,! — Y;., we just obtain 7, f. This shows (c).

Next, note that we even may assume that m; f is a proper epimorphism, for all
1. Namely, in case some 7; f is an isomorphism, then X is a direct summand of Y,
and since Y; is indecomposable, X is isomorphic to Y;. Thus, (a) is satisfied, but of
course also (c).

Since we assume now that m; f is a proper epimorphism, for all 7, we know that
| X| > |Y;], for all ¢. In particular, X cannot be simple, since otherwise f would be
an embedding of the non-zero module X into the zero module. In particular, there
is an indecomposable submodule X’ of X such that the embedding g: X' — X is a
Gabriel-Roiter inclusion. Now apply the induction to the embedding gf: X' — Y.
It follows that u(X') < py, according to (a).

The case u(X’) = py can be ruled out for the following reason: Since (c)
implies (b), the inclusion map X’ C Y would be a split monomorphism. However,
this map factors through the inclusion map X’ C X, thus also X’ C X would be a
split monomorphism. However X is indecomposable.

Now let us recall what it means that p(X’) < p(Y;): there is a natural number
a which belongs to p(Y;) \ p(X’) and p(X’)N[1,a—1] = p(Y;) N[1,a—1]. Since a
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does not belong to p(X’), we have in particular a # | X’|. Now, a < |Y;| < | X/, thus
a does not belong to p(X) = p(X’)U{|X|} and therefore a belongs to pu(Y;) \ u(X).
Second, again using that a < |X| and that u(X) = p(X’) U {|X|}, we also see that
p(X)N[1,a—1] = pu(X')N[1, a—1], and therefore p(X)N[1,a—1] = p(Y;)N[1,a—1].
Both assertions together yield p(X) < p(Yj), thus (a).

For the proof of (c), we only have to observe that our assumption |X| > |Y;|
for all ¢ excludes that py may start with u(X). Namely, uy = p(Y,) for some r,
and if p(Y;) starts with p(X), then in particular | X| < |Y;|. This completes the
induction step.

Corollary 1. If My,..., M; are (not necessarily finitely generated) indecom-
posable A-modules, then u(E@ M;) = max u(M;).

Proof: Since M; is a submodule of M = @ M;, we have max u(M;) < u(@ M;).
Conversely, u(M) is the supremum of u(M’), where M’ is a finitely generated
indecomposable submodule of M, thus we have to show p(M') < max p(M;). Now
M' C @ M/, where M is a finitely generated submodule of M;. We can write
M = @j M;; with indecomposable modules M;;. Note that M;; is a submodule
of M;, thus p(M;;) < p(M;). According to part (a) of the main property, we get
p(M') < max;; p(M;j) < max; p(M;), this concludes the proof.

Corollary 2. Let N C M be a Gabriel-Roiter inclusion, and f: N — M an
injective map. Then for any factorization f = f" f', where f": N' — M is a proper
monomorphism, the map f': N — N’ is a split monomorphism.

Actually, it is sufficient to formulate the case of dealing with inclusion maps: If
N C M is a Gabriel-Roiter inclusion and N’ is a proper submodule of M containing
N, then the embedding N C N’ splits.

Proof of Corollary 2: Write N’ = @, N; with indecomposable modules N;. The
main property (a) asserts that p(N) < max p(N;) and trivially max pu(N;) < u(M).
The main property (b) asserts that f’ is a split monomorphism.

Corollary 3. Assume N C M is a Gabriel-Roiter inclusion. Then M/N is
indecomposable.

Note that the fact that an embedding N C M is a Gabriel-Roiter inclusion
depends only on the isomorphism classes of N and M, thus we see: If N C M is
a Gabriel-Roiter inclusion, then the cokernel of any monomorphism f: N — M is
indecomposable. One should be aware that there are plenty of pairs of modules N, M
such that there do exist monomorphisms f: N — M both with indecomposable and
with decomposable cokernels.

Proof of Corollary 3: Assume M/N = Q1 & Q2 with non-zero modules Q1, Q5.
For i = 1,2, write Q; = N;/N, where N C N; C M. According to Corollary 2, we
find submodules N/ of N; such that N; = N @ N/. Then M = N @ N{ @ N, in
contrast to the fact that M is indecomposable.

5
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Theorem 1. Any module M with a Gabriel-Roiter filtration is indecomposable.

Proof: The case when M is finitely generated, is trivial. Thus, we can assume
that there is given an infinite chain

MicMycC---C|J Mi=M

where all the inclusions M; C M;,; are Gabriel-Roiter inclusions. Assume that
there is given a direct decomposition M = U & V with U,V both nonzero. Note
that if UNM; =0 for all ¢, then U =UNM =UnN(JM;) = J({UNM,;) =0. This
shows that there is some index s such that UN M, # 0 and also VN M, # 0. Choose
finitely generated submodules U’ C U and V' C V such that M, C M' =U" @ V',
and decompose U' = @QU;, V' = @V, with indecomposable modules U; and Vj.
Finally, choose t such that M’ C M,.
Now we consider the Gabriel-Roiter measures: We get

p(Ms) < max{p(U;), w(V5)} < p(My)

(the first inequality is the main property (a), the second is trivial). Since M, and
M, are connected by Gabriel-Roiter inclusions, u(M;) starts with u(Mjy), thus also
max{p(U;), p(V;)} starts with p(M,) and we can apply the main property (b).
Without loss of generality, we can assume that the composition of the inclusion
Ms; — @D, Ui ® @D, V; = M’ and the projection 7. M’ — U, is injective (where
i = 1 is one of the indices). Recall that there is a non-zero element v € V N M.
Since My, C M' = U' @ V', we can write v = «' +v' with v/ € U’ and v' € V.
However v/ = v —v" € U'NV = 0 shows that v = v’ belongs to V’. Since v belongs
to V! = @V}, it is mapped under 7¥ to zero. This contradicts the fact that =¥ is
injective.

2. Main Results.

As abbreviation, we write A = mod A. For any finite subset I C N;, we denote
by A(I) the class of indecomposable A-modules M with p(M) = I. Similarly, let
A(<1I) be the class of indecomposable A-modules M with u(M) < I. According to
the main property, add A(<1) is closed under submodules and any monomorphism
f: X =Y with X in A(I) and Y in add A(<1I) splits.

We say that I is a Gabriel-Roiter measure for A provided A(I) is non-empty.
A Gabriel-Roiter measure I for A is said to be of finite type provided there are only
finitely many isomorphism classes in A(T).

Note that the indecomposable A-modules of length at most n belong to the
classes A(I) with I C {1,2,...,n}, and that there are just finitely many such
classes. Thus A is of unbounded representation type if and only if there are infinitely
many Gabriel-Roiter measures for A.

Recall that the first Brauer-Thrall conjecture has asserted that in case A is
of infinite representation type, then A is of unbounded representation type. The

6
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conjecture has been shown in 1968 by Roiter [Ro] and the following result should
be considered as a refinement of the paper.

Theorem 2. Let A be of infinite representation type. Then there are Gabriel-
Roiter measures Iy, It for A (with t € Ny ) such that

L<h<Iz< - <IB<I?<]I!

and such that any other Gabriel-Roiter measure I for A satisfies I, < I < It for all
t € N;. Moreover, all these Gabriel-Roiter measures Iy and It are of finite type.

We call the modules in | J, A(I¢) (or the additive category with these indecom-
posable modules) the take-off part of the category A, and | J, A(I*) (or the additive
category with these indecomposable modules) the landing part of A.

Note that for any n, there are only finitely many isomorphism classes of inde-
composable modules of length n which belong to the take-off part (since they belong
to only finitely many classes A(I;) and any class A(I}) is of finite type). Similarly,
there are also only finitely many isomorphism classes of indecomposable modules of
length n which belong to the landing part.

It is obvious that the modules in A(I;) are just the simple modules, those
in A(I3) are the local modules of Loewy length 2 of largest possible length. On
the other hand, the modules in A(I!) are the indecomposable injective modules of
largest possible length. For general ¢, it seems to be difficult to characterize the
modules in A(I;) or A(I') in a direct way.

Theorem 3. Let A be of infinite representation type. There do exist modules
which are not finitely generated and which have a Gabriel-Roiter filtration

M1CM2C"'QU.MZ':M

such that all the modules M; belong to the take-off part.

Note that according to Theorem 1, such a module M is indecomposable. Also,
any finitely generated submodule M’ of M is contained in some Mj;, thus belongs
to the take-off part. In particular, for any natural number n, M has only finitely
many isomorphism classes of submodules of length n.

The existence of infinitely generated indecomposable modules for any artin
algebra of infinite representation type was first shown by Auslander [A]. For a
discussion of the question whether a union of a chain of indecomposable modules
of finite length is indecomposable or not, we refer to [Ril].

Recall that Auslander-Smalg have introduced in [AS] the notion of preprojec-
tive and preinjective modules (actually with reference to the work of Roiter and
Gabriel).

Theorem 4. The modules in the landing part are preinjective.

7
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Since modules which have infinitely many different Gabriel-Roiter measures
cannot have bounded length, we obtain in this way a new proof for the assertion
that the indecomposable preinjective modules are of unbounded length ([AS],5.11).
Two additional remarks should be useful. First, there usually will exist preinjective
indecomposable modules which do not belong to the landing part. For example, any
simple module belongs to A(I7), thus a simple injective module is preinjective and
in the take-off part, thus not in the landing part. But there may be even infinitely
many isomorphism classes of preinjective indecomposable modules which do not
belong to the landing part (see an example in appendix B). Second, in contrast to
Theorem 4, the modules in the take-off part are usually not preprojective. Note
that in order to deal also with preprojective modules, we have to invoke the dual
considerations, thus to work with a corresponding Gabriel-Roiter comeasure which
is based on looking at indecomposable factor modules in contrast to the Gabriel-
Roiter measure which is based on indecomposable submodules (see Appendix C).

The proofs of Theorems 2, 3 and 4 will be given in the following two sections.
Section 3 will deal with the take-off part, section 4 with the landing part of A.

3. The Take-Off Part.

Before we construct the sets I and the corresponding classes A(l;), we need
some preparation. Note that the methods mentioned here when dealing with mod-
ules of finite length are all due to Roiter [Ro|, we just present an elaboration. This
concerns in particular the essential coamalgamation lemma and its use in order to
show the finiteness of A(I;y1). It is very amazing that these consideration allow to
bound the number of isomorphism classes with fixed length.

For any pair of finitely generated A-modules M, N, the groups Hom(M, N) and
Ext'(M, N) are k-modules of finite length, where k is the center of A, and we write
dim Hom(M, N) and dimExt'(M, N) in order to denote the length as a k-module.

Ext-Lemma. Let N be an indecomposable module. Let
0>N"@N 55X —-Q—0
be an exact sequence. If dim Extl(Q, N) < n, then for at least one of the canonical

inclusions u;: N — N™ @ N', the composition uu; s a split monomorphism.

This is a basic and well-known result in homological algebra. Proof: Consider
the projection maps m;: N* & N’ — N with 1 < i # n and the induced exact
sequences €; (these are the lower exact sequences):

u

0 —— N"oN —— X > Q > 0
0 —— N > X; > Q > €;

8
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Since dimExt'(Q, N) < n, there is a non-trivial linear combination > digg = 0.
This means that the induced exact sequence

0 —— N"¢N —— X y Q s 0
S o] |
0 —— N . ¢ > Q s 0 > i€

splits, thus there is a map ¢': X' — N with g’gu = > A\;m;. Now, we can assume
that A\ = 1. If we denote by u;: N — N™® N’ the first inclusion, so that mju; =1
and m;u; = 0 for ¢ > 2, then g'guu; = > A\jmyu; = 1y. This shows that uwu; is a
split monomorphism.

Recall that a module homomorphism f: M — N is said to be a radical map
provided for any indecomposable direct summand M’ of M with inclusion map
u and any indecomposable direct summand N’ of N with projection map p, the
composite map pfu is not an isomorphism. The conclusion of the Ext-lemma means
in particular that under the assumption dim Extl(Q, N) < n, the map u is not a
radical map.

Boundedness Lemma. Let N be a finite set of indecomposable modules.
Then there is a bound b such that any indecomposable module with a mazximal sub-
module in add N is of length at most b.

Proof of the boundedness lemma: Let N = {Ny,..., N;}. For 1 <i <t, let
e; = max{dimExt'(S, NV;) | S a simple A-module}

(there are only finitely many simple A-modules, thus we can form the maximum).
Let

b=1+ Zezu\m

We claim that this is a bound we are looking for. Let M be indecomposable,
and M’ a maximal submodule of M which belongs to add N. Thus we can write
M' = @, N;** with natural numbers n;. It follows that |[M| =1+ )" n,;|N;|. Now,
assume |M| > b. Then there is an index ¢ such that n; > e;, but then the Ext-
lemma asserts that the inclusion map M’ — M is not a radical map. However, this
inclusion map is a proper monomorphism and M is indecomposable, a contradiction.

Let N be any set of indecomposable modules, closed under cogeneration (this
means that add NV is closed under submodules). Any module M has a maximal
factor module fN M which belongs to add N, namely f¥M = M/M’, where M’
is the intersection of the kernels of all the maps M — N with N in add A/. Note
that any map f: M — N with N in add N factors through the projection M —
M/M' = fNM.
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We call a A-module M N -critical provided M does not belong to add NV, but
any proper submodule of M belongs to add V. Of course, any N -critical module is
indecomposable. We denote by x(N') the class of all N-critical modules.

The boundedness lemma shows: If N is a finite set of indecomposable modules,
then the modules in k(N') are of bounded length.

The following lemma deals with the essential construction in Roiter’s proof of
the first Brauer-Thrall conjecture [Ro]:

Coamalgamation Lemma. Let N be a set of indecomposable modules, closed
under cogeneration. Take a set My, ..., M,, of indecomposable modules of equal
length, which belong to kK(N). Assume that there exists a mnon-zero module Q in
add N such that fN M; is isomorphic to Q for alli, say with epimorphism q;: M; —
Q. Let M = D, M; and consider the kernel K of the map ¢ = [q1,...,qm]: M — Q.
Then, the inclusion map f: K — M is a radical map.

f1
Proof (following [Ro]): We write f = [ ] : K - M = @~ M;, where

fm
fi: K — M;. In order to show that f is not a radical map, we have to rule out the

existence of a map u: M; — K with f;u = 1. Assume such a map exists for some
1. Without loss of generality, we can assume ¢ = 1.

Consider the maps f;u: M; — M; for + > 2. Since M; and M; are not isomor-
phic, the map f;u cannot be an isomorphism. Since M; and M; are of equal length,
the image of f;u is a proper submodule of M;, thus in add N'. Thus f;u = g;q1, for
some map g;: Q — M,;.

The exact sequence

0—>Ki>M:@i:1Mii>Q—>0

yields an anticommutative square
M,
5N
K Q
/ q
N A /

f2
where M' = @,5,M;, and f' = [ : ] and ¢ = [qa2, - ,qm]- We also define
fm

10
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g2
g = [ : ] , thus ¢’q1 = f'u. We add the map u to the picture:
gm

We see:
o =qfiu=—¢fu=—-¢¢q,

thus, since ¢ is surjective, ¢’ = —1. In particular, ¢’ is split epi, thus Q is
isomorphic to a direct summand of M’. However, @ is a non-zero module in add N,
whereas no indecomposable direct summand of M’ belongs to N'. This contradiction
completes the proof.

Proof of the take-off part of Theorem 2. We let I; = {1}, so that A(I;)
is just the class of all simple modules.

We use induction. Assume we have already constructed Gabriel-Roiter mea-
sures I; < Iy < --- < I for A of finite type, such that any other Gabriel-Roiter
measure I for A satisfies I; < I.

Let N = [J!_, A(L;), this is a finite class of indecomposable modules (up to
isomorphism). Let us assume that not all indecomposable modules belong to A
(this assumption is always satisfied in case A is of infinite representation type).

We form x(N). Note that any indecomposable A-module M which does not
belong to N contains an indecomposable submodule which belongs to x(N') (namely,
just take any indecomposable submodule of M which does not belong to N' and
which is minimal with this property). In particular, we see that x(A\) is not empty.
According to the boundedness lemma, the modules in k(N') are of bounded length,
thus there are only finitely many possible Gabriel-Roiter measures for x(N'). Let
I; 11 be the smallest Gabriel-Roiter measure a module in £(N') can have. Since the
indecomposable modules with Gabriel-Roiter measure ;11 do not belong to N, we
see that Iy < Iyy1.

If M is an arbitrary indecomposable module which does not belong to N, then,
as we know, M has an indecomposable submodule M’ which belongs to x(N'). But
then Iy 1 < u(M') < p(M). This shows that any Gabriel-Roiter measure I different
from I, Iy, ..., I;y; satisfies [, < I.

It remains to be shown that A(I;y1) is of finite type. First of all, we note
that A(lz1+1) C k(N). Namely, let M be indecomposable and p(M) = I;11. As we
know, there is an indecomposable submodule M’ of M which belongs to x(N). but
then I+ < p(M') < pu(M) = Ii4q shows that pu(M') = p(M), thus M’ = M and
therefore M belongs to x(N).

11
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Since the modules in A(I;41) have the same Gabriel-Roiter measure, they have
the same length, say I. Fix a module Q # 0 in add N of length smaller ! and
let A(I;41,Q) be the class of all modules M; in A(I;1) with f~M; isomorphic
to Q. We are going to show that A(I;y1,Q) contains only finitely many isomor-
phism classes of modules. Take pairwise non-isomorphic modules My, ..., M,, in
A(I;11,Q). As we have shown, they belong to x(N') so that all the assumptions of
the coamalgamation lemma are satisfied. Thus, choose an epimorphism ¢;: M; — Q
and form the kernel f: K — M of the map ¢ = [q1,...,qm]: M = @, M; — Q.
The coamalgamation lemma asserts that f is a radical map. Since all the modules
M; belong to A(I;41), the submodule K of M belongs to add A(< I;41), accord-
ing to the main property (a). If any direct summand K’ of K would belong to
A(I;41), then the corresponding embedding K’ — M would be a split monomor-
phism by the main property (b), but this is impossible, since f is a radical map.
This shows that K belongs to add A. If we denote by Ny, ..., Ny the indecompos-
able modules in NV, one from each isomorphism class, then, up to isomorphism, we
can write K = @ N;". Let e; = dim Ext!(Q, N;). According to the Ext-lemma,
we must have n; < e;, since the inclusion map f is a radical map. This shows that

(M| < |Q|+ " ei|N;|. On the other hand, |M| = | @], M;| = m-1. Altogether, we
see that

1
m < 2(1Q| + D eilNil).

This shows that A(I;41,Q) contains only finitely many isomorphism classes.

Now, for every module M; in A(Iy41), the factor module f~M; is non-zero,
has length smaller than ! and belongs to add A. Since there are only finitely many
isomorphism classes @ of non-zero modules in add N of length smaller than [, it
follows that A(I;41) itself contains only finitely many isomorphism classes.

Proof of Theorem 3. Consider the GR~inclusion graph for the modules in the
various classes A(I;): its vertices are the isomorphism classes of these modules (we
will denote the isomorphism class of M by [M]) and there is an arrow [N]| — [M]
provided there is a Gabriel-Roiter inclusion N — M. Obviously the only sources of
this graph are the simple modules, thus there are only finitely many sources.

We are going to show that every vertex [N]| has only finitely many successors.
Namely, if N — M is a Gabriel-Roiter inclusion, and N belongs to A(I;), then
every proper indecomposable submodule belongs to A(< I;). The boundedness
lemma asserts that there is a bound b such that any indecomposable module with
all proper submodules in add A(< I;) is of length at most b. Thus |[M| < b. But
there are only finitely many Gabriel-Roiter measures I; C [1,b]. Since any class
A(I;) contains only finitely many isomorphism classes, it follows that there are only
finitely many possibilities for [M].

Since we deal with an infinite, but locally finite graph with finitely many
sources, Konig’s graph theorem asserts that there exists an infinite path.

4. The Landing Part.

12



1Rl UGADBRIBL-DVOINTER IVIKASURK

Construction of the measures I'. We denote by [1,¢] the set of natural
numbers ¢ with 1 < 4 < ¢. Let I' = [1,¢t], where ¢ is the maximal length of an
indecomposable injective module. Note that a module N with Gabriel-Roiter mea-
sure [1,¢] is indecomposable injective and of maximal length (namely, it has simple
socle, thus its injective envelope also has simple socle and therefore has Gabriel-
Roiter measure [1,¢'] with ¢’ > t). This shows that [1,{] is the maximal possible
Gabriel-Roiter measure and that A([1,¢]) is the class of all indecomposable injective
modules of length ¢, in particular A([1,¢]) is a finite class of isomorphism classes.

Now assume we have constructed already Gabriel-Roiter measures I* for A with
1 <14 <'m, such that
) I'>12>..>1™,

(2) that I™ > I for any other Gabriel-Roiter measure I for A, and
(3) that any I is of finite type, for 1 < i < m.

Let X be the additive category with indecomposable modules in the various
A(I%), with 1 < 4 < m, and X’ the additive subcategory of all modules with no
indecomposable direct summand in these A(I*). Note that since X is finite, any
module in A has an X'-cover. ([AS],4.1). Let M be an additive generator of X
and let @ be an injective cogenerator of A. Let g : M' — M & Q be an X’-cover.
Now, let I™*1 be the maximal Gabriel-Roiter measure of the indecomposable direct
summands of M'. If N is any indecomposable module in X/, then N is cogenerated
by M @ Q. Since g is an X’-cover, and N is in X', we see that N is cogenerated
by M’'. The main property implies that u(N) is bounded by the maximum of the
Gabriel-Roiter measures of the indecomposable direct summands of M’, thus by
I™+1. Also, if u(N) = I™*1) then N actually is isomorphic to a direct summand
of M'. This shows that all the modules in A(I™*!) are indecomposable direct
summands of M’, in particular A(I™*!) is finite. This completes the induction.

Remark: The proof can be modified in order to show that all the modules in
the various A(I?) are preinjective. However, this also can be derived from Theorem
4 and the results in [AS], as we want to outline now. Let C be any full subcategory C
of a fixed abelian category. Auslander-Smalg denote by I(C) the class of all modules
I in C such that any monomorphism I — C' with C an arbitrary object in C splits.
Given our category A, they write I for I(A), and inductively I; = I(A;), where
A; is obtained from A by deleting all the modules which have an indecomposable
direct summand in Iy, ...,I; ;. Finally, I, is obtained from A by deleting all the
modules which have an indecomposable direct summand in any I;, with i € Np.
The modules in @ieN) I; are said to be preinjective.

Proposition. We have A(I*) C ToU---UT;_;.

Proof, by induction in t. Clear for t = 0, since the modules in A(I') are the
indecomposable injective modules of largest length (in particular, all are injective).
Now assume, we know by induction that

A C TgU---UT;_q,

13
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for all 1 <1 <t. As a consequence, we have
AINHU-- - UAIY C TgU---UT_;.

This implies that
Up T € At

(where the index 7 > ¢ should include also i = 00). It follows that
UiZt L= AT\ LU~ UL,
Now by the splitting part of the main property, we know that
A C© LA,
thus

AIFH\T U ULy € IATF)\Tg U UTmy) =1 | 1) = L.

This shows that

Appendix A. A third proof of the first Brauer-Thrall conjecture.

Theorem 2 yields two different proofs for Brauer-Thrall I: Since any infinite set
of Gabriel-Roiter measures for A provides indecomposable modules of arbitrarily
large length, both the take-off part as well as the landing part contain indecompos-
able modules of arbitrarily large length. The considerations concerning the take-off
part rely on the coamalgamation lemma. Here we want to outline that the coamal-
gamation lemma can be used in a slightly different way in order to obtain a third
proof for Brauer-Thrall I.

Proposition. Assume that A(I) contains an infinite set M of pairwise non-
isomorphic modules. Then there do exist arbitrarily large indecomposable modules
which are cogenerated by M.

Proof. Let N be the class of all indecomposable modules M which are either
simple or else cogenerated by M and not belonging to A(T).

Assume the length of the modules in N is bounded by b. In particular, only
finitely many Gabriel-Roiter measures I’ occur for the modules in N. Using induc-
tion on the number of such Gabriel-Roiter measures, we see that we can assume
that for any such Gabriel-Roiter measure I’, there are only finitely many isomor-
phism classes in A(I') NN (namely, if there is I’ < I such that A(I') NN contains
infinitely many isomorphism classes, then by induction there are arbitrarily large

14
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indecomposable modules which are cogenerated by A(I') N N, but these modules
are also cogenerated by M). Thus N is a finite set of isomorphism classes.

Note that the class N is closed under cogeneration, thus for any module M,
we may consider its maximal factor module f~ M which belongs to add N. Since
N contains all the simple modules, fV M is non-zero, for non-zero M.

Let I be the length of the modules in A(I). There are only finitely many
isomorphism classes of modules ) in add NV of length smaller /, but infinitely many
isomorphism classes M € M, thus there are infinitely many isomorphism classes
M; of modules in M with f¥'M; isomorphic to a fixed module Q.

Take pairwise non-isomorphic modules M, ..., M,, in M with epimorphisms
¢i: M; — Q = fNM;. Of course, all the modules in M belong to (), thus all the
assumptions of the coamalgamation lemma are satisfied. This means: consider the
map ¢ = [q1,---,qm): M = P, M; — Q and form the kernel f: K — M, then f is
a radical map. Since all the modules M; belong to M, the submodule K of M is
cogenerated by M. Since f is a radical map, the main property (b) asserts that no
direct summand of K can belong to A(I), thus K belongs to add N. Now, as in the
proof of theorem 2 (take-off part) , let Ny,. .., Ng be the indecomposable modules in
N, one from each isomorphism class, write K = @ N/*. Let e; = dim Ext'(Q, N;),
so that n; < e;. This shows that m < |@;~, M;| = [M| < |Q| + >_ ;| N;|, thus m
is bounded, a contradiction.

This contradiction shows that the length of the modules in A cannot be
bounded and completes the proof.

Remark 1. It should be noted that the indecomposable modules obtained by the
proposition usually will not belong to the take-off part (and none of them will belong
to the landing part). For example, if A is a tubular algebra (see [Ri3]), there are
non-sincere dimension vectors d and d’ which are not multiples of each other, which
occur as dimension vectors of one-parameter families of indecomposable modules.
One of these families will cogenerate only finitely many indecomposable modules
from the take-off part.

Remark 2. The coamalgamation lemma provides exact sequences of the form
0-KLmM=@" MLQ-o
=1 v

and in the application above, we have seen that K has large indecomposable direct
summands. One may wonder whether in such a situation K has to be indecom-
posable. As a typical example, consider modules M; which belong to the primitive
one-parameter family of the four-subspace quiver (thus any M; is indecomposable
and of length 6), let N be the class of all simple modules (so that the epimorphism
gi: M; — @ has as kernel the radical of M;). An easy calculation shows that in this
case K is always the direct sum of two indecomposable modules.

Appendix B. Visualization and Examples.

15
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We want to provide a more intuitive understanding of the Gabriel-Roiter mea-
sure, in particular of the total ordering on the set of Gabriel-Roiter measures for
an artin algebra A. Let P;(Ny) be the set of all subsets I of Ny such that for any
n € Ny, there is n’ > n with n’ ¢ I.

Lemma B1. The Gabriel-Roiter measure (M) of any module M belongs to
Pir(Ny).

Proof. There is m € N; such that any indecomposable injective A-module has
length at most m. Let pu(M) = {a1 < az < --- < a; < ---} and assume that for
some n we have ap41¢ =a, +tforallt e N;. Let s=m-a,

There is a chain of indecomposable submodules M; C My C -+ C M, 45 with
|MZ‘ = Q4 for 1 S 1 S n -+ s. Since ‘Mn-l-t‘ = Op+t = Op4t—1 +1= |Mn+t—1| + ]_, we
see that My 1;—1 is a maximal submodule of M,, ;. Since M, is indecomposable,
the socle of M, has to be contained in M, ; ;. Inductively, we see that the
socle of M, is contained in M, for any ¢ > 1, in particular, the socle of M,,
is contained in M,,, thus M, can be embedded into the injective envelope of M,,.
Since any indecomposable injective module is of length at most m, the injective
envelope of M,, has length at most m - a,, thus |[M, 4] < m-a,. But |[M,4s| =
|M,,| + s = (m + 1)a, > m - a,, a contradiction.

One may embed P;(N;) into the real interval [0, 1] as follows:

Lemma B2. The map r: Pi(N1) — R given by r(I) = > i1 >0 st for
I € Py(Ny) is injective, its image is contained in the interval [0,1] and it preserves
and reflects the ordering.

Proof: The essential consideration is the following: Let I, J belong to P;(Ny)
with I < J. Then r(I) =r(INJ)+r(I\J)and r(J) =r(INJ)+7r(J\I). Let
a be the smallest element in J\ I. Then r(J\ 1) > 5tr = 3,0, 501 > r(I\ J),
since I\ J is a proper subset of {i € Ny |7 > a}.

Remark 1: The map r can be defined not just on P;(Nj), but on all of P(Ny),
however it will no longer be injective (indeed, for any element I in P(Ny) \ P; (N7 ),
there is a unique finite set I’ with »(I) = r(I’)). Of course, one easily may change
the definition of r in order to be able to embed all of P(N;) into R: just use say 3
instead of 2. However, our interest lies in the Gabriel-Roiter measures which occur
for finite dimensional algebras and lemma B1 assures us that the definition of r as
proposed is sufficient for these considerations.

Remark 2: One may wonder why we use here the map r, and not just 7’: P;(N; ) —
R with 7/(I) = 3",/ 5v. The main reason is that the map r attaches 0 to the simple
modules; in this way the rhombic picture defined below fits quite well into one of
the quadrants of a coordinate system. Future investigations should decide which
choice is preferable.
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Example 1. The Kronecker quiver Aq;. This is the path algebra kA
of the quiver A with vertices a,b and two arrows b — a; its representations are
called Kronecker modules. There are two simple Kronecker modules, the projective
simple module S(a) and the injective simple module S(b). If M is a Kronecker
module, its dimension vector is of the from dim M = (d,,dp), where d, is the
Jordan-Hoélder multiplicity of S(a), and d; that of S(b). The dimension vectors of
the indecomposable modules are of the form (z,y) with |z — y| < 1. Here is the
complete list of the indecomposable representations in case k is algebraically closed:

e The preprojective modules P, for n € Ny, with dim P, = (n + 1,n) and
w(P,) ={1,3,5,...,2n+ 1}.

e The preinjective modules @, for n € Ny, with dim @Q,, = (n,n+1) and u(Q,,) =
{1,2,4,6,...,2n,2n+ 1}

e The regular modules Ry[n] for A € P1(k) and n € Ny, with dim Ry[n] = (n,n)
and p(Rx[n]) = {1,2,4,6,...,2n}.
The totally ordered set of all the Gabriel-Roiter measures for the Kronecker

quiver looks as follows:

S P PP RAURA2 Q@2 @

Here S = A({1}) = {S(a),S(b)}. Note that there are precisely two accumula-
tion points, indicated by the dotted vertical lines, they correspond to the only
two Gabriel-Roiter measures for infinitely generated modules: to the left, there is
{1,3,5,7,...}, this is the Gabriel-Roiter measure for all indecomposable torsionfree
modules; to the right, there is {1,2,4,6,8,...}, this is the Gabriel-Roiter measure
for the so-called Priifer modules (an account of the structure theory for infinitely
generated Kronecker modules can be found for example in [Ri2]).

In case k is not algebraically closed, we have to take into account field exten-
sions of k, or better indecomposable k[T]-module of finite length N, where k[T is
the polynomial ring over k in one variable 7. Any indecomposable k[T]-module
N of length n and with a simple submodule of dimension d gives rise to a regu-
lar Kronecker module with dimension vector (nd,nd) and Gabriel-Roiter measure
{1,3,5,...,2d—1,2d;4d,6d,...,2nd}. Thus we see that the Gabriel-Roiter measure
for the path algebra kA of a quiver A may depend on k (and usually will).
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Example 2. The tame hereditary algebra of type Ap;. This algebra
shows that even for a tame hereditary algebra infinitely many preinjective modules
may be outside the landing part. We also encounter some other features which one
should be aware of.

We deal with the path algebra of the following quiver

fy

In order to list all the indecomposable A-modules, we use that A is a string algebra.
Thus the indecomposable modules are string or band modules. Again, we restrict
to the case of k being algebraically closed.

e There is a unique one-parameter family of band modules; they are of the form
Ry[n], where X\ € k\ {0} and n € Ny, with Gabriel-Roiter measure p(Ry) =
{1,2,3;6,9,---,3n}.

In order to write down the string modules, we use word in ¢, 3, y~!; the relevant
distinction is given by fixing the vertices z,y such that the word starts in z and
ends in y (always n € Ny):

xy Properties dimension GR-measure

aa preprojective 3n+1 1
ab preprojective 3n+2 1,2,4
ac homogeneous n+3 1,2,3;6,9,...,3n

ba regular, non-homog. 3n+3 1,2,4,5,7,8,...,3n—2,3n—1,3n+1,3n+3
bb regular, non-homog. 3n+1 1,2,4,5,7,8,...,3n—2,3n—1,3n+1

bc preinjective 3n+2 1,2,3;6,9,...,3n;3n+2

ca regular, non-homog. 3n+2 1,2,3;5,6,8,9,...,3n—1,3n,3n+2

cb regular, non-homog. 3n+3 1,2,3;5,6,8,9,...,3n+2,3n+3

cc  preinjective 3n+1 1,2,3;5,6,8,9,...,3n—1,3n;3n+1

I II III

aa, ab, bb, ba. H | be ca, cb | cc

n>1 n>1 n>1

Here, H denotes the class of all homogeneous modules (the bands as well as the
strings of type ac), whereas S are the simple modules.

Some observations:
(1) There are many “maximal” GR-measures I (maximality should mean that
no other GR-measure starts with I), in particular see ba, but also bc and cc.
(2) The take-off part contains all the preprojective modules, but in addition also
half of the non-homogeneous tube (namely all the regular modules which have
the simple module S(b) as submodule.
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(3) The landing part contains only half of the preinjective modules (the modules
bc are preinjective)

(4) The GR-measure apparently does not distinguish modules which have quite
different behaviour, see aa and bb (however, aa and bb will be distinguished in
case we invoke the dual concepts, see the next appendix)

(5) There are three accumulation points 7, ', I":

I=1{1,2,4,5,7,8,10,11,...}
I'=1{1,2,3,6,9,12,15,...}
I"={1,2,3,5,6,8,9,11,12,...}

The first one I is the Gabriel-Roiter measure of the torsionfree modules; I’
is the Gabriel-Roiter measure for all the Priifer modules arising from homo-
geneous tubes; I"” is that of the Priifer module containing the 2-dimensional
indecomposable regular module as a submodule.

(6) There is one additional Priifer module, it contains the simple module S(b) as
a submodule: this module does not have a Gabriel-Roiter filtration!

Appendix C. Dualization and the Rhombic Picture.

Dualization. Almost all the considerations presented above can be dualized
and then they yield corresponding dual results. This means that instead of looking
at filtrations

0O=MyCM,C---CM =M

with M; indecomposable for 1 < ¢ < t, we now look at such filtrations with M/M; 4
indecomposable for 1 < 7 < t. We prefer to use now the opposite order on P(Ny ), we
denote it by <* (and <*), thus I <* J iff J < I. For a (not necessarily finitely gen-
erated) A-module M, let p*(M) be the infimum of the sets {|M /M|, ..., |M/M|}
in (P(Ny),<*), where My C My C --- C M, is a chain of submodules of M with
M /M;_, indecomposable for 1 < i < ¢, we call u*(M) the Gabriel-Roiter comeasure
of M. We say that J is a Gabriel-Roiter comeasure for A provided there exists an
indecomposable module M with p*(M) = J.

In order to visualize (P;(N;), <*), we use the embedding 7*: (P;(N1), <*) - Q
given by r*(I) = —r(I). Note that for any non-zero module M, we have —1 <
r*(ur(M)) < 0.

The dual version of the main property reads as follows:

Main Property*. Let Yi,...,Y;, Z be indecomposable A-modules of finite
length and assume that there is an epimorphism g: @fﬂ Y, = Z.
(a) Then max p*(Y;) <* p*(Z).
(b) If u*(Z) = max p*(Y;), then g splits.
(c) Ifmaxp*(Y;) starts with p*(Z), then there is some j such that gu; is surjective,
where uj: Y; — @, Y; is the canonical inclusion.
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As a consequence, we see that the class of modules which are direct sums of
modules M with I <* p*(M) for some set I C Nj is closed under factor modules. In
this way, one obtains a second interesting filtration of the category of all A-modules
by subcategories, now these subcategories are closed under factor modules.

Let us formulate the dual versions of Theorem 2 and Theorem 4 (there does
not seem to exist a dual version of Theorem 3, since Theorem 3 deals with infinitely
generated modules):

Theorem 2*. Let A be of infinite representation type. Then there are Gabriel-
Roiter comeasures Jy, Jt for A with

J1<*J2<*J3<* <*J3<*J2<*J1

such that any other Gabriel-Roiter comeasure J for A satisfies J, <* J <* Jt for
all t € Ny, and all these Gabriel-Roiter comeasures Jy and J¢ are of finite type.

(We do not have a suggestion how to call the modules in |J, A(J;) or in
U, A(J*). Maybe, J, A(J;) should be called the *-take-off part of the category
A, and U, A(J?) the *-landing part of A; but |J, A(J?) is really the dual (thus *) of
the take-off part.) The indecomposable modules which belong neither to (J, A(J;)
nor to | J, A(J*) may be said to be form the x-central part.

Note that for any n, there are only finitely many isomorphism classes of inde-
composable modules of length n which belong to J, A(J;) or to |, A(J?).

The modules in A(J') are just the simple modules, those in A(J?) are the
uniform modules of Loewy length 2 of largest possible length. On the other hand,
the modules in A(J;) are the indecomposable projective modules of largest possible
length.

Theorem 4*. The modules in | J, A(J:) are preprojective.

The Rhombus. We are going to use now both the measure and the comeasure
at the same time. Given a pair (J, I) of finite subsets I, J of Ny, we may consider
the module class

A(J,I)={M | M indecomposable, p*(M)=J, u(M) =1},

thus we attach to a module M the pair (pu*(M), u(M)). The possible pairs (J,I)
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can be considered (via r* and r) as elements in the rational plane Q? :

The horizontally dashed region is the central part (in between the take-off part
and the landing part); the vertically dashed region is the *-central part. The main
information one should keep in mind: The only possible pairs (J,I) of finite subsets
of Ny such that A(J,I) contains infinitely many isomorphism classes, are those
which belong both to the central and the x-central part.

Example 1: The Kronecker quiver, with & algebraically closed:

*

I

The picture obtained is nearly the same as the customary visualization, the
only exception being the position of the simple modules. One should be aware that
the commonly accepted visualization with the preprojective and the preinjective
modules being drawn horizontally and the tubes being drawn vertically in the middle
was based mainly on the feeling that this arrangement reflects much of the structure
of the category, but for the actual position of the individual modules there was no
further mathematical justification. The rhombic picture should be seen as a definite
reassurance in this case (but it suggests deviations in other cases). Even for the
Kronecker quiver, one should be aware that there does exist a deviation, namely the
position of the simple modules. Of course, they are usually drawn far apart, one at
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the left end, the other at the right end, now they are located at the same position:
in the middle lower corner. But note that the rhombic picture for the Kronecker
quiver and the algebra k[X,Y]/(X,Y)? do not differ, and the usual Auslander-
Reiten picture for the latter algebra puts its unique simple module precisely at
this position (and bends down the preprojective modules on the left as well as the
preinjective modules on the right to form half circles).

Example 2. The tame hereditary algebra of type Zgl. Here is the
rhombic picture, for k algebraically closed:

Two modules have to be specified separately, the indecomposable modules M, M’
of length 3 and Loewy length 2: M is local, M’ uniform; note that M has type ba,
M’ type cb. The accumulation points I,I’,I"” for the Gabriel-Roiter measure are
marked on the p-axis; similarly, the accumulation points J, J’, J” for the Gabriel-
Roiter comeasure are marked on the p*-axis (note that J =1",J' =1I',J" =1 in
P(Ny)). The intersection of the central and the *-central part has been dotted, this
region contains for every n € Ny a P!(k)-family of indecomposable representations
of length 3n.

One immediately realizes that the rhombic picture again corresponds quite well
to the commonly used visualization, at least after deleting the simple modules. The
preprojective and the preinjective modules are arranged horizontally, the regular
modules vertically (there is one exceptional tube of rank 2, it has four types of in-
decomposable modules, namely the types ca, ba (including M), bb and cd (inclusing
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M"). Let us take apart these three parts of the category:

Preprojectives Regular modules Preinjectives

Appendix D. Take-off algebras.

We call A a take-off algebra provided any indecomposable projective A-module
belongs to its take-off part.

Lemma. Let A be a representation-infinite artin algebra, and let A be the anni-
hilator of the take-off part. Then A/A is a (not necessarily connected) representation-
infinite take-off algebra.

Recall that a module M is said to be torsionless if it can be embedded into
a projective module. If A is a take-off algebra, then there are only finitely many
isomorphism classes of indecomposable torsionless modules. Namely, there are only
finitely many indecomposable projective modules. If they belong to the take-off
part, they belong to A(< I;) for some ¢; but then all indecomposable torsionless
modules belong to A(< Iy).

Of course, the annihilator A of the take-off part is the set of all elements A € A
such that AM = 0 for any module M in the take-off part of A. This is a two-sided
ideal of A, and the direct sum @ M of all indecomposable take-off modules (one
from each isomorphism class) is a faithful A/A-module. Already a suitable finite
direct sum of indecomposable take-off modules will be faithful as A/A-module, say
the direct sum of the indecomposable modules in A( < I;) for some ¢t € N;. But
since A( < I;) is closed under cogeneration, it follows that all the indecomposable
projective A/A-modules belong to A(<1I;). Thus A/A is a take-off algebra.

In order to see that A/A is not necessarily connected, consider the path algebra
of the quiver

-

a<—5p) 2 c

Here, A is generated by the arrow a < b. This example shows also that an ideal A’
of A such that A/A’ is a take-off algebra, may be incomparable with respect to A:
just let A’ be the ideal generated by the double arrows.
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