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Abstract. A famous result of Zimmermann-Huisgen, Hille and Reineke
asserts that any projective variety occurs as a quiver Grassmannian for
a suitable representation of some wild acyclic quiver. We show that this
happens for any wild acyclic quiver.

Let k be an algebraically closed field, and Q a finite acyclic quiver. The modules
which we consider are the (finite-dimensional) kQ-modules, where kQ is the path algebra
of Q, thus the (finite-dimensional) representations of Q (with coefficients in k). We denote
by mod kQ the corresponding module category.

Let M be a representation of Q and d a dimension vector for Q. The quiver Grass-
mannian Gd(M) is the set of submodules of M with dimension vector dimM = d; this is
a projective variety. A famous result of Zimmermann-Huisgen, Hille and Reineke asserts
that any projective variety occurs as the quiver Grassmannian for a representation of some

wild acyclic quiver Q, see for example [R2]. We are going to show:

Theorem. Let Q be any wild acyclic quiver. Any projective variety occurs as a quiver
Grassmannian Gd(M) for some representation M of Q and some dimension vector d.

Typical wild acyclic quivers are the Kronecker quivers Q = K(n) with n ≥ 3 (the
Kronecker quiver K(n) has two vertices 1 and 2 and n arrows pointing from 2 to 1). A
representation of K(n) will be said to be reduced provided N has no simple injective direct
summand. In [R3] we have shown that for any projective variety V there is a natural
number n (depending on V) such that V can be realized as the quiver Grassmannian
G(1,1)(N) of a reduced representation N of K(n) (see also [H]). Our present investigation
relies on this special case.

Note that the elements of G(1,1)(N) are certain submodules of N of length 2, and all
the indecomposable submodules of length 2 belong to G(1,1)(N). We call indecomposable
modules of length 2 bristles. For any representation N of K(n), the set β(N) of bristle
submodules of N is an open subset of G(1,1)(N) which we call the bristle variety of N . In
general, β(N) is a proper subset of G(1,1)(N), but for a reduced representation N , we have
β(N) = G(1,1)(N).

The procedure of the present paper is as follows: Given any wild acyclic quiver Q, and
a natural number m, we will construct for some n ≥ m an orthogonal pair X, Y of bricks
with dimExt1(Y,X) = n (a brick is a module with endomorphism ring k and X, Y are said
to be orthogonal provided Hom(X, Y ) = 0 = Hom(Y,X)). Always, x and y will denote
the dimension vectors of X and Y , respectively. Let E = E(Y,X) be the full subcategory
of all kQ-modules M with an exact sequence of the form

0 −→ Xa −→ M −→ Y b −→ 0,
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where a, b are natural numbers. Note that E is equivalent to mod kK(n) with an equivalence
being given by an exact fully faithful functor

η : mod kK(n) → mod kQ

with image E . We say that a moduleM in E is E-reduced provided it has no direct summand
isomorphic to Y , thus provided it is the image of a reduced kK(n)-module under η.

An indecomposable kQ-module U will be called an E-bristle provided there is an exact
sequence of the form 0 → X → U → Y → 0, thus provided U is the image of a bristle in
mod kK(n) under η. For any kK(n)-module N with M = ηN , the functor η identifies the
bristle variety β(N) of N with the set βE(M) of submodules of M which are E-bristles.
Since E-bristles have dimension vector x + y, we have βE(M) ⊆ Gx+y(M). It remains to
find conditions such that any submodule U of M with dimension vector x + y is indeed
an E-bristle.

To be precise, we are looking for kQ-modules X, Y so that the following closure
condition (C) is satisfied:

(C) If M is an E-reduced module in E(Y,X) and U is a submodule of M with dimU =
x+ y, then U is an E-bristle.

If the condition (C) is satisfied, then for any reduced representation N of K(n), there
is a canonical bijection between G(1,1)(N) and Gx+y(M), where M = ηN . Namely, if B is
a submodule of the kK(n)-module N with dimB = (1, 1), then ηB is a submodule of M
with dimension vector x+ y. Conversely, if U is a submodule of M with dimU = x+ y,
then, by condition (C), U belongs to E(Y,X), say U = ηB for some K(n)-submodule B

and the dimension vector of B is (1, 1).

The minimal wild acyclic quivers.

As we have mentioned, our aim is to exhibit for any wild acyclic quiver Q and any
natural number m an orthogonal pair X, Y of kQ-modules which are bricks such that
dimk Ext

1(Y,X) = n ≥ m and such that the condition (C) is satisfied. Of course, it is
sufficient to deal with minimal wild acyclic quivers. (We recall that a quiver Q is wild
provided it is not the disjoint union of Dynkin and Euclidean quivers, and Q is said to be
minimal wild provided it is wild, and no quiver obtained from Q by deleting a vertex or
an arrow is wild.)

The following well-known proposition suggests to deal with two different cases.

Proposition. A minimal wild acyclic quiver Q different from K(3) is obtained from
a Euclidean quiver Q′ by adding a vertex ω and a single arrow which connects ω with some
vertex of Q′ (in particular, ω is a sink or a source).

Sketch of proof. If Q has cycles, then there is a subquiver Q′ of type Ãn for some n

such that Q′ is obtained from Q by deleting one vertex and one arrow.
Now assume that Q is a tree. If there is a vertex with at least four neighbors, then

Q′ is obtained from a quiver of type D̃4 by deleting one vertex and one arrow. If Q has
two vertices which have three neighbors each, then Q′ is obtained from a quiver of type
D̃n with n ≥ 5 by deleting one vertex and one arrow. If Q has is a star with three arms,
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then Q′ is obtained from a quiver of type Ẽm with m = 6, 7, 8 by deleting one vertex and
one arrow. �

Case 1. One-point extensions of representation-infinite quivers.

We assume now that Q is a connected quiver with a vertex ω which is a sink or a
source such that the quiver Q′ obtained from Q by deleting ω and the arrows which start
or end in ω is connected and representation-infinite. Up to duality, we can assume that ω
is a source, thus there is an arrow ω → p with p ∈ Q′

0.
Let Y = S(ω), the simple kQ-module corresponding to the vertex ω. Since Q′ is con-

nected and representation-infinite, there is an exceptional kQ′-module X with dimk Xp ≥
m. The arrow ω → p shows that dimk Ext

1(Y,X) ≥ dimk Xp. This pair X, Y is the
orthogonal pair of bricks which we use in order to look at E(Y,X).

Lemma 1. Let a be a natural number. Any submodule W of Xa with dimW = x is
isomorphic to X.

Proof. We denote by 〈−,−〉 the bilinear form on the Grothendieck group K0(kQ)
with 〈dimM,dimM ′) = dimk Hom(M,M ′)− dimk Ext

1(M,M ′). Since X is exceptional,
we have 〈X,W 〉 = 〈X,X〉 > 0, Therefore, there is a non-zero homomorphism f : X → W .
Let ι : W → Xa be the inclusion map. The composition ιf : X → Xa is nonzero. Since X

is a brick, we see that f : X → W is a split monomorphism, in particular injective. Now
dimX = dimW implies that f is an isomorphism. �

Proof of condition (C). Let M be an E-reduced kQ-module in E(Y,X), say with an
exact sequence

0 −→ Xa µ
−→ M

π
−→ Y b −→ 0.

Let U be a submodule of M with dimension vector x + y and inclusion map ι : U → M .
The composition πι is non-zero, since otherwise U would be a submodule of Xa, but
dimk Uω = 1 whereas Xω = 0. If follows that the image of πι is isomorphic to Y . If we
denote the kernel of πι by W , we obtain the following commutative diagram with exact
rows and vertical monomorphisms:

0 −−−−→ W −−−−→ U −−−−→ Y −−−−→ 0
y ι

y
y

0 −−−−→ Xa µ
−−−−→ M

π
−−−−→ Y b −−−−→ 0.

Of course, dimW = x, thus Lemma 1 shows that W is isomorphic to X . In particular, U
belongs to E .

It remains to show that U is indecomposable. Otherwise, U would be isomorphic to
W⊕Y . ThusM would have a submodule isomorphic to Y . But Y is relative injective inside
E , thus M would have a direct summand isomorphic to Y , in contrast to our assumption
that M is E-reduced. This shows that U is indecomposable, thus an E-bristle. �
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Case 2. The Kronecker quiver K(3).

Here we consider the Kronecker quiver Q = K(3), with the three arrows α, β, γ :
2 → 1. Let λ1, . . . , λn be pairwise different non-zero elements of k with n ≥ 2. Let
X = X(λ1, . . . , λn) = (kn, kn;α, β, γ) be defined by

α(e(i)) = e(i), β(e(i)) = λie(i), γ(e(i)) = e(i+ 1),

for 1 ≤ i ≤ n, where e(1), . . . , e(n) is the canonical basis of kn and e(n + 1) = e(1). Let
Y = (k, k; 1, 0, 0). We denote by Q′ the subquiver of Q with arrows α, β, this is the 2-
Kronecker quiver K(2). For the structure of the category modK(2), see for example [R1].
The restriction ofX, Y toQ′ shows that Hom(X, Y ) = Hom(Y,X) = 0. The endomorphism
ring of X |Q′ is k × · · · × k; and the only endomorphisms of X |Q′ which commute with γ

are the scalar multiplications. This shows that X is a brick. Also, it is easy to see that
dimk Ext

1(Y,X) = n.

Lemma 2. Let a be a natural number. Any submodule W of Xa with dimW of the
form (w,w) is isomorphic to Xs for some s.

Proof: Let M = Xa and decompose M |Q′ =
⊕n

i=1 M(i), where β(x) = λix for
x ∈ M(i)1. Here, we use α in order to identify M1 and M2. Now we consider the
submodule W of M . Note that W |Q′ has to be regular, since it cannot have any non-zero
preinjective direct summand. As a regular submodule of a semisimple regular Kronecker
module it has to be a direct summand ofM |Q′, thus we have a similar direct decomposition
W =

⊕
W (i), where W (i) = W ∩M(i).

The linear map γ restricted to W (i)1 is a monomorphism W (i)1 → W (i + 1)2 =
W (i+1)1 for 1 ≤ i ≤ n; we obtain in this way a monomorphism W (1)1 → W (1)2 = W (1)1.
This shows that all the monomorphisms W (i)1 → W (i + 1)2 = W (i + 1)1 are actually
bijections. Let dimk W (1)1 = s. It follows that W is isomorphic to Xs. �

Proof of condition (C). Let M be an E-reduced kQ-module in E and let U be a
submodule of M with dimension vector x + y = (n + 1, n + 1) and with inclusion map
ι : U → M .

Starting with the exact sequence 0 −→ Xa µ
−→ M

π
−→ Y b −→ 0 and the inclusion map

ι : U → M , let W be the kernel and U the image of πι : U → Y b. We obtain the following
commutative diagram with exact rows and injective vertical maps:

0 −−−−→ W −−−−→ U −−−−→ U −−−−→ 0
y ι

y
y

0 −−−−→ Xa µ
−−−−→ M

π
−−−−→ Y b −−−−→ 0;

Let us consider the restriction of these modules to Q′. Since M |Q′ is regular, it has
no non-zero preinjective direct summand. Thus any submodule of M |Q′ with dimension
vector (n + 1, n+ 1) has to be regular. This shows that U |Q′ is regular. Actually, M |Q′

is semisimple regular, thus also its regular submodule U |Q′ is semisimple regular (and a
direct summand of M |Q′). Next, πι is a map between regular kQ′-modules, it follows that
the kernel W |Q′ and the image U |Q′ are regular kQ′-modules. In particular, the dimension
vector of W is of the form dimW = (w,w) for some 0 ≤ w ≤ n+ 1.
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Now U |Q′ is a regular submodule of the semisimple regular kQ′-module Y b|Q′, thus
U |Q′ is a direct sum of copies of Y |Q′. By construction, Y is annihilated by γ. Since U is
a submodule of Y b, it follows that U is annihilated by γ. Altogether, we see that U is the
direct sum of copies of Y .

We claim that W 6= 0. Otherwise U = U = Y n+1, thus Y is a submodule of M .
But Y is relative injective in E , thus Y would be a direct summand of M . However, by
assumption, M is E-reduced. This contradiction shows that W 6= 0.

Now W is a submodule ofXa with dimension vector (w,w), thus, according to Lemma
2, W is a direct summand of say s copies of X and s ≥ 1. The equality (w,w) = (sn, sn)
implies that that s = 1, since w ≤ n + 1 and n ≥ 2. In this way, we see that W is
isomorphic to X . It follows that dimU = (1, 1) and therefore U = Y .

Finally, as in Case 1, we see that U is indecomposable, using again the assumption
that M is E-reduced. This shows that U is an E-bristle. �

Remark. We should stress that given orthogonal bricks X, Y in mod kQ, the condi-
tion (C) is usually not satisfied. Here is a typical example for Q = K(3). As above, let
Y = (k, k; 1, 0, 0), but for X we now take X = X ′(λ1, λ2) = (k2, k2;α, β, γ), defined by

α(e(i)) = e(i), β(e(i)) = λie(i), γ(e(1)) = e(2), γ(e(2)) = 0

for 1 ≤ i ≤ 2. Again, e(1), e(2) is the canonical basis of k2 and λ1 6= λ2 are as-
sumed to be non-zero elements of k. Since dimk Ext

1(Y,X) = 2, there is an equivalence
η : mod kK(2) → E(Y,X). Let N be an indecomposable kK(2)-module with dimension
vector (2, b) (note that b has to be equal to 1, 2 or 3) and M = ηN . Thus there is an exact
sequence

0 −→ X2 −→ M −→ Y b −→ 0.

Since we assume that N is indecomposable, it is reduced, thus M is E-reduced. Note that
X has a (unique) kQ-submodule V with dimension vector (1, 1): the vector spaces V1 and
V2 both are generated by e(2). The submodule U = X ⊕ V of X2 is a submodule of M
with dimension vector (3, 3) = x+y, and it is not an E-bristle. Thus, condition (C) is not
satisfied. Here, η defines a proper embedding of β(N) = G(1,1)(N) into Gx+y(M).
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