
Appendix

Some Remarks concerning Tilting Modules
and Tilted Algebras.

Origin. Relevance. Future.

Claus Michael Ringel

The project to produce a Handbook of Tilting Theory was discussed dur-

ing the Fraueninsel Conference 20 Years of Tilting Theory, in November

2002. A need was felt to make available surveys on the basic proper-

ties of tilting modules, tilting complexes and tilting functors, to collect

outlines of the relationship to similar constructions in algebra and ge-

ometry, as well as reports on the growing number of generalizations. At

the time the Handbook was conceived, there was a general consensus

about the overall frame of tilting theory, with the tilted algebra as the

core, surrounded by a lot of additional considerations and with many

applications in algebra and geometry. One was still looking forward to

further generalizations (say something like “pre-semi-tilting procedures

for near-rings”), but the core of tilting theory seemed to be in a final

shape. The Handbook was supposed to provide a full account of the

theory as it was known at that time. The editors of this Handbook have

to be highly praised for what they have achieved. But the omissions

which were necessary in order to bound the size of the volume clearly

indicate that there should be a second volume.

Part 1 will provide an outline of this core of tilting theory. Part 2 will

then be devoted to topics where tilting modules and tilted algebras have

shown to be relevant. I have to apologize that these parts will repeat

some of the considerations of various chapters of the Handbook, but such

a condensed version may be helpful as a sort of guideline. Both Parts 1

and 2 contain historical annodations and reminiscences. The final Part

3 will be a short report on some striking recent developments which are

motivated by the cluster theory of Fomin and Zelevinsky. In particular,

we will guide the reader to the basic properties of cluster tilted algebras,
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to the relationship between tilted algebras and cluster tilted algebras,

but also to the cluster categories which provide a universal setting for

all the related tilted and cluster tilted algebras. In addition, we will

focus the attention to the complex of cluster tilting objects and exhibit

a quite elementary description of this complex. In Part 1 some problems

concerning tilting modules and tilted algebras are raised and one may

jump directly to Part 3 in order to see in which way these questions have

been answered by the cluster tilting theory. We stress that it should be

possible to look at the Parts 2 and 3 independently.

1 Basic Setting

The setting to be exhibited is the following: We start with a hereditary

artin algebra A and a tilting A-module T . It is the endomorphism ring

B End T , called a tilted algebra, which attracts the attention. The

main interest lies in the comparison of the categories mod A and modB

(for any ring R, let us denote by modR the category of all R-modules

of finite length).

1.1 The representation types of the hereditary categories one

starts with

We may assume that A is connected (this means that 0 and 1 are

the only central idempotents), and we may distinguish whether A is

representation-finite, tame, or wild; for hereditary algebras, this distinc-

tion is well understood: the corresponding quiver (or better species) is a

Dynkin diagram, a Euclidean diagram, or a wild diagram, respectively.

There is a parallel class of algebras: if we start with a canonical algebra

A instead of a finite-dimensional hereditary algebra (or, equivalently,

with a weighted projective line, or a so called “exceptional curve” in

the species case), there is a corresponding tilting procedure. Again the

representation theory distinguishes three different cases: A may be do-

mestic, tubular, or wild. Now two of the six cases coincide: the algebras

obtained from the domestic canonical algebras via tilting are precisely

those which can be obtained from a Euclidean algebra via tilting. Thus,

there are 5 possibilities which are best displayed as the following “T”: the

upper horizontal line refers to the hereditary artin algebras, the middle

vertical line to the canonical algebras.
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There is a common frame for the five different classes: start with an

artin algebra A, such that the bounded derived category Db mod A

is equivalent to the bounded derived category Db H of a hereditary

abelian category H. Let T be a tilting object in Db mod A and B its

endomorphism ring. Then B has been called a quasi-tilted algebra by

Happel-Reiten-Smalø, and according to Happel and Happel-Reiten these

categories Db mod A are just the derived categories of artin algebras

which are hereditary or canonical. In the “T” displayed above, the upper

horizontal line concerns the derived categories with a slice, the middle

vertical line those with a separating tubular family. More information

can be found in Chapter 6 by Lenzing.

Most of the further considerations will be formulated for tilted algebras

only. However usually there do exist corresponding results for all the

quasi-tilted algebras. To restrict the attention to the tilted algebras has

to be seen as an expression just of laziness, and does not correspond to

the high esteem which I have for the remaining algebras (and the class

of quasi-tilted algebras in general).

1.2 The functors HomA T, and Ext1A T,

Thus, let us fix again a hereditary artin algebra A and let D be the stan-

dard duality of modA (if k is the center of A, then D Homk , k ;

note that k is semisimple). Thus DA is an injective cogenerator in

mod A. We consider a tilting A-module T , and let B End T . The

first feature which comes to mind and which was the observation by

Brenner and Butler which started the game1 , is the following: the func-

1 Of course, we are aware that examples of tilting modules and tilting functors had
been studied before. Examples to be mentioned are first the Coxeter functors in-
troduced by Gelfand and Ponomarev in their paper on the four-subspace-problem
(1970), then the BGP-reflection functors (Bernstein, Gelfand and Ponomarev,
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tor HomA T, yields an equivalence between the category2 T of all

A-modules generated by T and the category Y of all B-modules cogen-

erated by the B-module HomA T,DA . Now the dimension vectors of

the indecomposable A-modules in T generate the Grothendieck group

K0 A . If one tries to use HomA T, in order to identify the Grothen-

dieck groups K0 A and K0 B , one observes that the positivity cones

overlap, but differ: the new axes which define the positive cone for B are

“tilted” against those for A. This was the reason for Brenner and Butler

to call it a tilting procedure. But there is a second “tilting” phenomenon

which concerns the corresponding torsion pairs3 . In order to introduce

these torsion pairs, we have to look not only at the functor HomA T, ,

but also at Ext1A T, . The latter functor yields an equivalence between

the category F of all A-modules M with HomA T,M 0 and the cat-

egory X of all B-modules N with T B N 0. Now the pair F , T

is a torsion pair in the category of A-modules, and the pair Y,X is a

torsion pair in the category of B-modules:

1973), their generalisation by Auslander, Platzeck and Reiten (1979), now called
the APR-tilting functors, and also a lot of additional ad-hoc constructions used
around the globe, all of which turn out to be special tilting functors. But the
proper start of tilting theory is clearly the Brenner-Butler paper (1980). The
axiomatic approach of Brenner and Butler was considered at that time as quite
unusual and surprising in a theory which still was in an experimental stage. But
it soon turned out to be a milestone in the development of representation theory.

2 Subcategories like T and F will play a role everywhere in this appendix. In case
we want to stress that they are defined using the tilting module T , we will write
T T instead of T , and so on.

3 In contrast to the usual convention in dealing with a torsion pair or a “torsion
theory”, we name first the torsion-free class, then the torsion class: this fits to
the rule that in a rough thought, maps go from left to right, and a torsion pair
concerns regions with “no maps backwards”.
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and one encounters the amazing fact that under the pair of functors

HomA T, and Ext1A T, the torsion-free class of a torsion pair is

flipped over the torsion class in order to form a new torsion pair in

reversed order4 . The stars indicate a possible distribution of the

indecomposable direct summands Ti of T , and one should keep in mind

that for any i, the Auslander-Reiten translate τTi of Ti belongs to T

(though it may be zero). We have said that the modules in T are those

generated by T , but similarly the modules in F are those cogenerated

by τT .

According to Happel5 , the category mod B should be seen as being

embedded into the derived category Db mod A

Under this embedding, Y T is the intersection of mod B with modA,

whereas X F 1 is the intersection of mod B with modA 1 (the shift

functor in a triangulated category will always be denoted by 1 ). This

embedding functor modB Db mod A extends to an equivalence of

Db mod B and Db mod A , and this equivalence is one of the essential

features of tilting theory.

Looking at the torsion pair Y,X , there is a sort of asymmetry due to

the fact that Y is always sincere (this means that every simple module

4 The discovery of this phenomenon was based on a detailed examination of many
examples (and contributions by Dieter Vossieck, then a student at Bielefeld,
should be acknowledged). At that time only the equivalence of T T and Y T
was well understood. The obvious question was to relate the remaining indecom-
posable B-modules (those in X T ) to suitable A-modules. As Dieter Happel
recalls, the first examples leading to a full understanding of the whole tilting
process were tilting modules for the E6-quiver with subspace orientation.

5 When he propagated this in 1984, it was the first clue that the use of derived
categories may be of interest when dealing with questions in the representation
theory of finite dimensional algebras. The derived categories had been introduced
by Grothendieck in order to construct derived functors when dealing with abelian
categories which have neither sufficiently many projective nor sufficiently many
injective objects, and at that time they were considered as useless in case there
are enough projectives and enough injectives, as in the cases mod A and mod B.
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occurs as a composition factor of some module in Y), whereas X does

not have to be sincere (this happens if Y contains an indecomposable

injective module). As a remedy, one should divide Y further as follows:

Y contains the slice module S HomA T,DA , let S addS, and

denote by Y the class of all B-modules in Y without an indecomposable

direct summand in S. It is the triple Y ,S,X , which really should be

kept in mind:

with all the indecomposables lying in one of the classes Y ,S,X and with

no maps backwards (the only maps from S to Y , from X to S, as well

as from X to Y are the zero maps). Also note that any indecomposable

projective B-module belongs to Y or S, any indecomposable injective

module to S or X . The module class S is a slice (as explained in Chapter

3 by Brüstle) and any slice is obtained in this way. The modules in Y

are those cogenerated by τS, the modules in X are those generated by

τ 1S.

Here is an example. Start with the path algebra A of a quiver of Eu-

clidean type A22 having one sink and one source. Let B End T ,

where T is the direct sum of the simple projective, the simple injective

and the two indecomposable regular modules of length 3 (this is a tilting

module), then the quiver of B is the same as the quiver of A, but B is

an algebra with radical square zero. Thus B is given by a square with

two zero relations.

The category mod B looks as follows:
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The separation of modB into the three classes Y ,S,X can be phrased in

the language of cotorsion pairs. Cotorsion pairs are very well related

to tilting theory (see the Chapters 8 and 11 by Reiten and Trlifaj),

but still have to be rated more as a sort of insider tip. We recall the

definition: the pair V,W of full subcategories of modA is said to

be a cotorsion pair provided V is the class of all A-modules V with

Ext1A V,W 0 for all W in W, and W is the class of all A-modules

W such that Ext1A V,W 0 for all V in V. The cotorsion pair is

said to be split, provided every indecomposable A-module belongs to V

or W. Usually some indecomposables will belong to both classes, they

are said to form the heart. In our case the following holds: The pair

add Y ,S , add S,X forms a split cotorsion pair with heart S.

We also see that the modules in Y and in S have projective dimension

at most 1, those in S and in X have injective dimension at most 1. As a

consequence, if X,Y are indecomposable modules with Ext2B X,Y 0,

then X belongs to X and Y belongs to Y .

Let me add a remark even if it may be considered to be superfluous —

its relevance should become clear in the last part of this appendix. If we

feel that the subcategory Y has the same importance as X (thus that

it is of interest), then we should specify an equivalent subcategory, say

T of mod A and an equivalence T Y . Such an equivalence is given

by the functor

HomA τ 1T, : mod A mod B

or, equivalently, by HomA T, τ , since τ 1 is left adjoint to τ. This

functor vanishes on F as well as on T , and it yields an equivalence

between the subcategory T of all A-modules generated by τ 1T and

the subcategory Y of modB. Note that the functor can also be writ-

ten in the form D Ext1A , T , due to the Auslander-Reiten formula

D Ext1 M,T HomA T, τM . In this way, we see that we deal with

equivalences

D Ext1A , T : T Y and Ext1A T, : F X ,

which are sort of dual to each other.

It seems to be worthwhile to have a short look at the rather trivial case

when no modules are lost, so that the tilting procedure is a kind of re-

arrangement of module classes. The following assertions are equivalent:
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(i) The tilting module T is a slice module.

(ii) The endomorphism ring B is hereditary.

(iii) The torsion pair F , T splits.

(iv) Ext1A τT, T 0.

The equivalence of these assertions are well-known, but not too easy to

trace. Some implications are quite obvious, for example that (ii) and

(iii) are implied by (i). Let us show that (ii) implies (i): Since T is a

tilting module, the B-module T HomA T,DA Homk T, k is a

slice module in mod B. Since the B-module T is a tilting module and

A EndB T , we can use this tilting module in order to tilt from modB

to mod A. Since B is hereditary, we obtain in modA the slice module

HomB T ,DB Homk T , k T. This shows (i). The equivalences of

(ii) and (iv), as well as of (iii) and (iv), can be seen as consequences of

more general considerations which will be presented later.

If T is not a slice module, so that B has global dimension equal to 2,

then the algebras A and B play quite a different role: the first difference

is of course the fact that A is hereditary, whereas B is not. Second, there

are the two torsion pairs F , T in modA and Y,X in modB - the

second one is a split torsion pair, the first one not. This means that we

loose modules going from mod A to mod B via tilting. Apparently, no

one cared about the missing modules, at least until quite recently. There

are two reasons: First of all, we know (see Chapter 3 by Brüstle), that

the study of indecomposable modules over a representation-finite algebra

is reduced via covering theory to the study of representation-finite tilted

algebras. Such an algebra B may be of the form B EndA T , where T

is a tilting A-module, with A representation-infinite. Here we describe

the B-modules in terms of A and we are only interested in the finitely

many indecomposable A-modules which belong to F or T , the remaining

A-modules seem to be of no interest, we do not miss them. But there

is a second reason: the fashionable reference to derived categories is

used to appease anyone, who still mourns about the missing modules.

They are lost indeed as modules, but they survive as complexes: since

the derived categories of A and B are equivalent, corresponding to any

indecomposable A-module, there is an object in the derived category

which is given by a complex of B-modules. However, I have to admit

that I prefer modules to complexes, whenever possible — thus I was
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delighted, when the lost modules were actually found, as described in

Part 3 of this appendix.

1.3 The simplicial complex ΣA

We will always denote by n n A the number of isomorphism classes

of simple A-modules. The interest in tilting A-modules directly leads

to a corresponding interest in their direct summands. These are the

modules without self-extensions and are called partial tilting modules.

In particular, one may consider the indecomposable ones: an indecom-

posable A-module without self-extensions is said to be exceptional (or

a “stone”, or a “brick without self-extensions”, or a “Schurian module

without self-extensions”). But there is also an interest in the partial tilt-

ing modules with precisely n 1 isomorphism classes of indecomposable

direct summands, the so-called almost complete partial tilting modules.

If T is an almost complete partial tilting module and X is indecompos-

able with T X a tilting module, then X (or its isomorphism class) is

called a complement for T . It is of interest that any almost complete

partial tilting module T has either 1 or 2 complements, and it has 2

if and only if T is sincere. Recall that a module is said to be basic,

provided it is a direct sum of pairwise non-isomorphic indecomposable

modules. The isomorphism classes of basic partial tilting modules form

a simplicial complex ΣA, with vertex set the set of isomorphism classes

of exceptional modules (the vertices of a simplex being its indecom-

posable direct summands), see Chapter 10 by Unger. Note that this

simplicial complex is of pure dimension n 1. The assertion concerning

the complements shows that it is a pseudomanifold with boundary. The

boundary consists of all the non-sincere almost complete partial tilting

modules.

As an example, consider the path algebra A of the quiver .

The simplicial complex ΣA has the following shape:

Some questions concerning the simplicial complex ΣA remained open:

What happens under a change of orientation? What happens under a

tilting functor? Is there a way to get rid of the boundary? Here we are
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again in a situation where a remedy is provided by the derived categories:

If we construct the analogous simplicial complex of tilting complexes in

Db mod A , then one obtains a pseudo manifold without boundary, but

this is quite a large simplicial complex!

If T is an almost complete partial tilting module, and X and Y are

non-isomorphic complements for T , then either Ext1A Y,X 0 or

Ext1A X,Y 0 (but not both). If Ext1A Y,X 0 (what we may

assume), then there exists an exact sequence 0 X T Y

0 with T addT , and one may write T X T Y . In this way, one

gets a partial ordering on the set of isomorphism classes of basic tilt-

ing modules. One may consider the switch between the tilting modules

T X and T Y as an exchange process which stops at the boundary.

We will see in Part 3 that it is possible to define an exchange procedure

across the boundary of ΣA, and that this can be arranged in such a way

that one obtains an interesting small extension of the simplicial complex

ΣA.

1.4 The BGP-reflection functors and the structure of tilted

algebras

Bernstein, Gelfand and Ponomarev have defined reflection functors in

order to be able to compare representations of quivers with different

orientation, but also in order to construct inductively indecomposable

representations. A BGP-reflection functor furnishes a quite small change

of the given module category. Let us consider this in more detail. Let Q

be a quiver and i a sink of Q. We denote by σiQ the quiver obtained from

Q by changing the orientation of all arrows ending in i, thus i becomes a

source in σiQ. Let S i be the simple kQ-module corresponding to the

vertex i, and S i the simple kσiQ-module corresponding to the vertex

i. The BGP-reflection functor σi : mod kQ mod kσiQ provides an

equivalence between the categories

mod kQ addS i mod kσiQ addS i .

In general, given rings R,R one may look for a simple R-module S and

a simple R -module S such that the categories

mod R addS mod R addS
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are equivalent. In this case, let us say that R,R are nearly Morita-

equivalent. As we have seen, for Q a quiver with a sink i, the path

algebras kQ and kσiQ are nearly Morita-equivalent. I am not aware

that other pairs of nearly Morita-equivalent rings have been considered

until very recently, but Part 3 will provide a wealth of examples.

Unfortunately, the BGP-reflection functors are defined only for sinks

and for sources of the given quiver. This has to be considered as a real

deficiency, since there is no similar restriction in Lie theory. Indeed,

in Lie theory the use of reflections for all the vertices is an important

tool. A lot of efforts have been made in representation theory in order

to overcome this deficiency, see for example the work of Kac on the

dimension vectors of the indecomposable representations of a quiver.

A final question should be raised here. There is a very nice homologi-

cal characterization of the quasi-tilted algebras by Happel-Reiten-Smalø

[28]: these are the artin algebras of global dimension at most 2, such

that any indecomposable module has projective dimension at most 1

or injective dimension at most 1. But it seems that a corresponding

characterization of the subclass of tilted algebras is still missing. Also,

in case we consider tilted k-algebras, where k is an algebraically closed

field, the possible quivers and their relations are not known.

2 Connections

The relevance of tilting theory relies on the many different connections it

has not only to other areas of representation theory, but also to algebra

and geometry in general. Let me give some indications. If nothing else

is said, A will denote a hereditary artin algebra, T a tilting A-module

and B its endomorphism ring.

2.1 Homology

Already the definition (the vanishing of Ext1) refers to homology. We

have formulated above that the first feature which comes to mind is

the functor HomA T, . But actually all the tilting theory concerns the

study of the corresponding derived functors Exti
A T, , or better, of

the right derived functor R HomA T, .
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The best setting to deal with these functors are the corresponding de-

rived categories Db mod A and Db mod B , they combine to the right

derived functor R HomA T, , and this functor is an equivalence, as

Happel has shown. Tilting modules T in general were defined in such

a way that R HomA T, is still an equivalence. The culmination of

this development was Rickard’s characterization of rings with equiva-

lent derived categories: such equivalences are always given by “tilting

complexes”. A detailed account can be found in Chapter 5 by Keller.

Tilting theory can be exhibited well by using spectral sequences. In Bon-

gartz’s presentation of tilting theory one finds the formulation: Well-

read mathematicians tend to understand tilting theory using spectral-

sequences (which is usually interpreted as a critical comment about the

earlier papers). But it seems that the first general account of this ap-

proach is only now available: the contribution of Brenner and Butler

(see Chapter 4) in this volume. A much earlier one by Vossieck should

have been his Bielefeld Ph.D. thesis in 1984, but he never handed it in.

2.2 Geometry and invariant theory.

The Bielefeld interest in tilting modules was first not motivated by homo-

logical, but by geometrical questions. Happel’s Ph.D. thesis had focused

the attention to quiver representations with an open orbit (thus to all

the partial tilting modules). In particular, he showed that the number

s V of isomorphism classes of indecomposable direct summands of a

representation V with open orbit is bounded by the number of simple

modules. In this way, the study of open orbits in quiver varieties was a

(later hidden) step in the development of tilting theory. When studying

open orbits, we are in the setting of what Sato and Kimura [45] call

prehomogeneous vector spaces. On the one hand, the geometry of

the complement of the open orbit is of interest, on the other hand one

is interested in the structure of the ring of semi-invariants.

Let k be an algebraically closed field and Q a finite quiver (with vertex

set Q0 and arrow set Q1), and we may assume that Q has no oriented

cyclic path, thus the path algebra kQ is just a basic hereditary finite-

dimensional k-algebra. For any arrow α in Q1, denote by tα its tail

and by hα its head, and fix some dimension vector d. Let us consider

representations V of Q with a fixed dimension vector d, we may assume
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V x kd x ; thus the set of these representations forms the affine space

R Q,d
α Q1

Homk kd tα , kd hα .

The group GL Q,d x Q0
GL d x operates on this space via a sort

of conjugation, and the orbits under this action are just the isomorphism

classes of representations. One of the results of Happel [26] asserts that

given a sincere representation V with open orbit, then Q0 s V is

the number of isomorphism classes of representations W with dimV

dimW and dim Ext1A W,W 1 (in particular, there are only finitely

many such isomorphism classes; we also see that Q0 s V ).

Consider now the ring SI Q,d of semi-invariants on R Q,d ; by defini-

tion these are the invariants of the subgroup SL Q,d x Q0
SL d x

of GL Q,d . Given two representations V,W of Q, one may look at the

map:

dV
W :

x Q0

Homk V x ,W x
α Q1

Homk V tα ,W hα ,

sending f x x to f hα V α W α f tα α. Its kernel is just

HomkQ V,W , its cokernel Ext1kQ V,W . In case dV
W is a square ma-

trix, one may consider its determinant. According to Schofield [46],

this is a way of producing semi-invariants. Namely, the Grothendieck

group K0 kQ carries a (usually non-symmetric) bilinear form ,

with dimV,dimW dim k HomkQ V,W dim k Ext1kQ V,W , thus

dV
W is a square matrix if and only if dimV,dimW 0. So, if d N

Q0

0

and if we select a representation W such that d,dimW 0, then

cW V det dV
W yields a semi-invariant cW in SI Q,α . Derksen and

Weyman (and also Schofield and Van den Bergh) have shown that these

semi-invariants form a generating set for SI Q,d . In fact, it is sufficient

to consider only indecomposable representations W , thus exceptional

kQ-modules.

2.3 Lie theory

It is a well-accepted fact that the representation theory of hereditary

artinian rings has a strong relation to Lie algebras and quantum groups

(actually one should say: a strong relation to Lie algebras via quan-

tum groups). Such a relationship was first observed by Gabriel when he

showed that the representation-finite connected quivers are just those
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with underlying graph being of the form An, Dn, E6, E7, E8 and that in

these cases the indecomposables correspond bijectively to the positive

roots. According to Kac, this extends to arbitrary finite quivers without

oriented cycles: the dimension vectors of the indecomposable represen-

tations are just the positive roots of the corresponding Kac-Moody Lie-

algebra. It is now known that it is even possible to reconstruct this Lie

algebra using the representation theory of hereditary artin algebras, via

Hall algebras. Here one encounters the problem of specifying the subring

of a Hall algebra, generated by the simple modules. Schofield induction

(to be discussed below) shows that all the exceptional modules belong

to this subring.

It seems to be appropriate to discuss the role of the necessary choices.

Let me start with a semisimple finite-dimensional complex Lie-algebra.

First, there is the choice of a Cartan subalgebra, it yields the root system

of the Lie-algebra. Second, the choice of a root basis yields a triangular

decomposition (and the set of positive roots), this is needed in order to

define a Borel subalgebra and the corresponding category O. Finally, the

choice of a total ordering of the root basis (or, better, of an orientation

of the edges of the Dynkin diagram) allows to work with a Coxeter ele-

ment in the Weyl group. Of course, one knows that all these choices are

inessential, when dealing with a finite dimensional Lie-algebra. The sit-

uation is more subtle if we deal with arbitrary Kac-Moody Lie-algebras:

different orderings of the root basis may yield Coxeter elements which

are not conjugate – the first case is A3, where one has to distinguish

between A3,1 and A2,2.

On the other hand, when we start with a representation-finite heredi-

tary artin algebra A, no choice at all is needed in order to write down its

Dynkin diagram: it is intrinsically given as the Ext-quiver of the simple

A-modules, and we obtain in this way a Dynkin diagram with orien-

tation. A change of orientation corresponds to module categories with

quite distinct properties (as already the algebras of type A3 show). This

difference is still preserved when one looks at the corresponding Hall

algebras, and it comes as a big surprise that only a small twist of its

multiplication is needed in order to get an algebra which is independent

of the orientation.
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2.4 The combinatorics of root systems

It is necessary to dig deeper into root systems since they play an impor-

tant role for dealing with A-modules. Of interest is the corresponding

quadratic form, and the reflections which preserve the root system (but

not necessarily the positivity of roots), and their compositions, in partic-

ular the Coxeter transformations and the BGP-reflection functors. We

will return to the reflection functors when we deal with generalizations

of Morita equivalences, but also in Part 3.

As we have mentioned the relationship between the representation the-

ory of a hereditary artin algebra A and root systems is furnished by the

dimension vectors: We consider the Grothendieck group K0 A (of all

finite length A-modules modulo exact sequences). Given an A-module

M , we denote by dimM the corresponding element in K0 A ; this is

what is called its dimension vector. The dimension vectors of the in-

decomposable A-modules are the positive roots of the root system in

question. A positive root d is said to be a Schur root provided there

exists an indecomposable A-module M with dimM d and EndA M

a division ring. The dimension vectors of the exceptional modules are

Schur roots, they are just the real (or Weyl) Schur roots. In case A is

representation-finite then all the positive roots are Schur roots, also for

n A 2 all the real roots are Schur roots. But in all other cases, the set

of real Schur roots depends on the choice of orientation. For example,

consider the following three orientations of D4:

The two dimension vectors on the left are Schur roots, whereas the right

one is not a Schur root.

In order to present the dimension vectors of the indecomposable A-

modules, one may depict the Grothendieck group K0 A ; a very

convenient way seems to be to work with homogeneous coordinates,

say with the projective space of K0 A Z R. It is the merit of Derk-

sen and Weyman [22] of having popularized this presentation well: they

managed to get it to a cover of the Notices of the American Math-

ematical Society [21]. One such example has been shown in Part 1,

when we presented the simplicial complex ΣA, whith A the path al-

gebra of the linearly oriented quiver of type A3. In general, dealing
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with hereditary A, one is interested in the position of the Schur roots.

Our main concern are the real Schur roots as the dimension vectors

dimE of the exceptional modules E. They are best presented by

marking the corresponding exceptional lines: look for orthogonal ex-

ceptional pairs E1, E2 (this means: E1, E2 are exceptional modules with

HomA E1, E2 HomA E2, E1 Ext1A E2, E1 0) and draw the line

segment from dimE1 to dimE2. The discussion of Schofield induction

below will explain the importance of these exceptional lines.

As we know, a tilting A-module T has precisely n n A isomorphism

classes of indecomposable direct summands, say T1, . . . , Tn and the di-

mension vectors dimT1, . . . ,dimTn are linearly independent. We may

consider the cone C T in K0 A R generated by dimT1, . . . ,dimTn.

These cones are of special interest. Namely, if a dimension vector d be-

longs to C T , then there is a unique isomorphism class of modules M

with dimM d such that EndA M is of minimal dimension, and such

a module M has no self-extensions. On the other hand, the dimension

vector of any module M without self-extensions lies in such a cone (since

these modules, the partial tilting modules, are the direct summands of

tilting modules). The set of these cones forms a fan as they are consid-

ered in toric geometry (see for example the books of Fulton and Oda).

As Hille [29] has pointed out, one should use the geometry of these

cones in order to introduce the following notion: If T
n
i 1 Ti is a

basic tilting module with indecomposable modules Ti of length Ti , he

calls
n
i 1 Ti

1 the volume of T . It follows that

T
v T 1

(where the summation extends over all isomorphism classes of basic tilt-

ing A-modules), with equality if and only if A is representation-finite or

tame. This yields interesting equalities: For example, the preprojective

tilting modules of the Kronecker quiver yield

1

1

1

3

1

3

1

5

1

5

1

7

1

2
.

One may refine these considerations by replacing the length Ti by the

k-dimension of Ti, at the same time replacing A by all the Morita equiv-

alent algebras. In this way one produces power series identities in n A

variables which should be of general interest, for example

1

x

1

2x y

1

2x y

1

3x 2y

1

3x 2y

1

4x 3y

1

2xy
.
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Namely, let x and y denote the k-dimension of the simple projective, or

simple injective A-module, respectively. The indecomposable preprojec-

tive A-module Pt of length 2t 1 is of dimension tx t 1 y. This

means that the the tilting module Pt Pt 1 contributes the summand
1

tx t 1 y
1

t 1 x ty
. The sequence of tilting modules P1 P2, P2 P3, . . .

yields the various summands on the left side.

2.5 Combinatorial structure of modules

A lot of tilting theory is devoted to combinatorial considerations. The

combinatorial invariants just discussed concern the Grothendieck group.

But also the exceptional modules themselves have a combinatorial flavor:

they are “tree modules” [42]. As we have mentioned, the orbit of a

tilting module is open in the corresponding module variety, and this

holds true with respect to all the usual topologies, in particular, the

Zariski topology, but also the usual real topology in case the base field

is R or C. This means that a slight change of the coefficients in any

realization of T using matrices will not change the isomorphism class.

Now in general to be able to change the coefficients slightly, will not

allow to prescribe a finite set (for example 0, 1 ) of coefficients which

one may like to use: the corresponding matrices may just belong to

the complement of the orbit. However, in case we deal with the path

algebra of a quiver, the exceptional modules have this nice property:

there always exists a realization of E using matrices with coefficients

only 0 and 1. A stronger statement holds true: If E has dimension d,

then there is a matrix realization which uses precisely d 1 coefficients

equal to 1, and all the remaining ones are 0 (note that in order to be

indecomposable, we need at least d 1 non-zero coefficients; thus we

assert that really the minimal possible number of non-zero coefficients

can be achieved).

2.6 Numerical linear algebra

Here we refer to the previous consideration: The relevance of 0-1-

matrices in numerical linear algebra is well-known. Thus linear algebra

problems, which can be rewritten as dealing with partial tilting modules,

are very suitable for numerical algorithms, because of two reasons: one
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can restrict to 0-1-matrices and the matrices to be considered involve

only very few non-zero entries.

2.7 Module theory

Of course, tilting theory is part of module theory. It provides a very

useful collection of non-trivial examples for many central notions in ring

and module theory. The importance of modules without self-extensions

has been realized a long time ago, for example one may refer to the

lecture notes of Tachikawa from 1973. Different names are in use for

such modules such as “splitters”.

It seems that the tilting theory exhibited for the first time a wide range

of torsion pairs, with many different features: there are the splitting

torsion pairs, which one finds in the module category of any tilted alge-

bra, as well as the various non-split torsion pairs in the category modA

itself. As we have mentioned in Part 1, tilting theory also gives rise

to non-trivial examples of cotorsion pairs. And there are corresponding

approximations, but also filtrations with prescribed factors. Questions

concerning subcategories of module categories are considered in many

of the contributions in this Handbook, in particular in Chapter 8 by

Reiten, but also in the Chapters 9, 11 and 12 by Donkin, Trlifaj and

Solberg, respectively.

We also should mention the use of perpendicular categories. Start-

ing with an exceptional A-module E, the category E of all A-modules

M with HomA E,M 0 Ext1A E,M is again a module cate-

gory, say E mod A , where A is a hereditary artin algebra with

n A n A 1. These perpendicular categories are an important tool

for inductive arguments and they can be considered as a kind of locali-

sation.

Another notion should be illuminated here: recall that a left R-module

M is said to have the double centralizer property (or to be balanced),

provided the following holds: If we denote by S the endomorphism ring

of RM , say operating on the right on M , we obtain a right S-module MS ,

and we may now look at the endomorphism ring R of MS . Clearly, there

is a canonical ring homomorphism R R (sending r R to the left

multiplication by r on M), and now we require that this map is surjective

(in case M is a faithful R-module, so that the map R R is injective,
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this means that we can identify R and R : the ring R is determined by

the categorical properties of M , namely its endomorphism ring S, and

the operation of S on the underlying abelian group of M). Modules with

the double centralizer property are very important in ring and module

theory. Tilting modules satisfy the double centralizer property and this

is used in many different ways.

Of special interest is also the following subquotient realization of

mod A. All the modules in T are generated by T , all the modules

in F are cogenerated by τT . It follows that for any A-module M ,

there exists an A-module X with submodules X X X such that

X is a direct sum of copies of T , whereas X X is a direct sum of

copies of τT and such that M X X (it then follows that X X

is the torsion submodule of M and X X its torsion-free factor mod-

ule). In particular, we see that F , T is a split torsion pair if and

only if Ext1A τT, T 0 (the equivalence of conditions (iii) und (iv) in

Part 1). This is one of the results which stresses the importance of the

bimodule Ext1A τT, T . Note that the extensions considered when we

look at Ext1A τT, T are opposite to those the Auslander-Reiten trans-

lation τ is famous for (namely the Auslander-Reiten sequences, they

correspond to elements of Ext1A Ti, τTi , where Ti is a non-projective

indecomposable direct summand of T ). We will return to the bimodule

Ext1A τT, T in Part 3.

2.8 Morita equivalence

Tilting theory is a powerful generalization of Morita equivalence. This

can already be demonstrated very well by the reflection functors. When

Gabriel showed that the representations of a Dynkin quiver correspond

to the positive roots and thus only in an inessential way on the given

orientation, this was considered as a big surprise. The BGP-reflection

functors explain in which way the representation theory of a quiver is

independent of the orientation: one can change the orientation of all

the arrows in a sink or a source, and use reflection functors in order to

obtain a bijection between the indecomposables. Already for the quivers

of type An with n 3, we get interesting examples, relating say a serial

algebra (using one of the two orientations with just one sink and one

source) to a non-serial one.

The reflection functors are still near to classical Morita theory, since no
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modules are really lost: here, we only deal with a kind of rearrangement

of the categories in question. We deal with split torsion pairs F , T in

mod A and Y,X in modB, with F equivalent to X and T equivalent

to Y. Let us call two hereditary artin algebras similar provided they can

be obtained from each other by a sequence of reflection functors. In case

we consider the path algebra of a quiver which is a tree, then any change

of orientation leads to a similar algebra. But already for the cycle with 4

vertices and 4 arrows, there are two similarity classes, namely the quiver

A3,1 with a path of length 3, and the quivers of type A2,2.

One property of the reflection functors should be mentioned (since it

will be used in Part 3). Assume that i is a sink for A (this means

that the corresponding simple A-module S i is projective). Let S i

be the corresponding simple σiA-module (it is injective). If M is any

A-module, then S i is not a composition factor of M if and only if

Ext1σiA
S i , σiM 0. This is a situation, where the reflection functor

yields a universal extension; for similar situations, let me refer to [39].

The general tilting process is further away from classical Morita theory,

due to the fact that the torsion pair F , T in modA is no longer split.

2.9 Duality theory

Tilting theory is usually formulated as dealing with equivalences of sub-

categories (for example, that HomA T, : T Y is an equivalence).

However, one may also consider it as a duality theory, by composing

the equivalences obtained with the duality functor D, thus obtaining a

duality between subcategories of the category mod A and subcategories

of the category mod Bop. The new formulations obtained in this way

actually look more symmetrical, thus may be preferable. Of course, as

long as we deal with finitely generated modules, there is no mathemati-

cal difference. This changes, as soon as one takes into consideration also

modules which are not of finite length.

But the interpretation of tilting processes as dualities is always of inter-

est, also when dealing with modules of finite length: In [2], Auslander

considers (for R a left and right noetherian ring) the class W R of all

left R-modules of the form Ext1R NR, RR , where NR is a finitely gener-

ated right R-module, and he asserts that it would be of interest to know

whether this class is always closed under submodules. A first example
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of a ring R with W R not being closed under submodules has been

exhibited by Huang [30], namely the path algebra R kQ of the quiver

Q of type A3 with 2 sources. Let us consider the general case when

R A is a hereditary artin algebra. The canonical injective cogenerator

T DA is a tilting module, thus Ext1A T, is a full and dense functor

from mod A onto X T . The composition of functors

mod Aop D
mod A

Ext1 T,
mod A

is the functor Ext1A , AA , thus we see that W A X T . On the

other hand, T T are the injective A-modules, they are mapped under

HomA T, to the class Y T , and these are the projective A-modules.

It follows that X T is the class of all A-modules without an indecom-

posable projective direct summand. As a consequence, W A X T is

closed under submodules if and only if A is a Nakayama algebra. (It is an

easy exercise to show that X T is closed under submodules if and only

if the injective envelope of any simple projective module is projective,

thus if and only if A is a Nakayama algebra).

It should be stressed that Morita himself seemed to be more interested

in dualities than in equivalences. What is called Morita theory was

popularized by P.M.Cohn and H. Bass, but apparently was considered

by Morita as a minor addition to his duality theory. When Gabriel heard

about tilting theory, he immediately interpreted it as a non-commutative

analog of Roos duality.

The use of general tilting modules as a source for dualities has been

shown to be very fruitful in the representation theory of algebraic groups,

of Lie algebras and of quantum groups. This is explained in detail in

Chapter 9 by Donkin. As a typical special case one should have the

classical Schur-Weyl duality in mind, which relates the representation

theory of the general linear groups and that of the symmetric groups,

see Chapter 9 by Donkin, but also [36].

In the realm of commutative complete local noetherian rings, Auslan-

der and Reiten [4] considered Cohen-Macaulay rings with dualizing

module W . They showed that W is the only basic cotilting module. On

the basis of this result, they introduced the notion of a dualizing module

for arbitrary artin algebras.
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2.10 Schofield induction

This is an inductive procedure for constructing all exceptional modules

starting with the simple ones, by forming exact sequences of the fol-

lowing kind: Assume we deal with a hereditary k-algebra, where k is

algebraically closed, and let E1, E2 be orthogonal exceptional modules

with dim Ext1A E1, E2 t and Ext1A E2, E1 0. Then, for every pair

a1, a2 of positive natural numbers satisfying a2
1 a2

2 ta1a2 1, there

exists (up to equivalence) a unique non-split exact sequence of the form

0 Ea2

2 E Ea1

1 0

(call it a Schofield sequence). Note that the middle term of such a

Schofield sequence is exceptional again, and it is an amazing fact that

starting with the simple A-modules without self-extension, all the ex-

ceptional A-modules are obtained in this way. Even a stronger assertion

is true: If E is an exceptional module with support of cardinality s

(this means that E has precisely s isomorphism classes of composition

factors), then there are precisely s 1 Schofield sequences with E as

middle term. What is the relation to tilting theory? Starting with E

one obtains the Schofield sequences by using the various indecomposable

direct summands of its Bongartz complement as an A I-module, where

I is the annihilator of E: the s 1 summands yield the s 1 sequences

[41].

2.11 Exceptional sequences, mutations

Note that a tilted algebra is always directed: the indecomposable sum-

mands of a tilting module E1, . . . , Em can be ordered in such a way that

HomA Ei, Ej 0 for i j. We may call such a sequence E1, . . . , Em a

tilting sequence, and there is the following generalization which is of in-

terest in its own (and which was considered by the Rudakov school [44]):

Call E1, . . . , Em an exceptional sequence provided all the modules Ei

are exceptional A-modules and HomA Ei, Ej 0 and Ext1A Ei, Ej 0

for i j. There are many obvious examples of exceptional sequences

which are not tilting sequences, the most important one being sequences

of simple modules in case the Ext-quiver of the simple modules is di-

rected. Now one may be afraid that this generalization could yield too

many additional sequences, but this is not the case. In general most of

the exceptional sequences are tilting sequences! An exceptional sequence
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E1, . . . , Em is said to be complete provided m n A (the number of

simple A-modules). There is a braid group action on the set of complete

exceptional sequences, and this action is transitive [18, 40]. This means

that all the exceptional sequences can be obtained from each other by

what one calls “mutations”. As a consequence, one obtains the follow-

ing: If E1, . . . , En is a complete exceptional sequence, then there is a

permutation π such that EndA Ei EndA Sπ i , where S1, . . . , Sn are

the simple A-modules. In particular, this means that for any tilted alge-

bra B, the radical factor algebras of A and of B are Morita equivalent.

An exceptional module E defines also partial reflection functors [39]

as follows: consider the following full subcategories of modA. Let ME

be given by all modules M with Ext1A E,M 0 such that no non-zero

direct summand of M is cogenerated by E; dually, let ME be given

by all modules M with Ext1A M,E 0 such that no non-zero direct

summand of M is generated by E; also, let M E be given by all M

with HomA M,E 0 and M E by all M with HomA E,M 0. For

any module M , let σ E M be the intersection of the kernels of maps

M E and σ E M M tEM , where tEM is the sum of the images

of maps M E. In this way, we obtain equivalences

σ E : ME E M E , and σ E : ME E M E .

Here E is the ideal of all maps which factor through addE. The

reverse functors σE and σE are provided by forming universal extensions

by copies of E (from above or below, respectively). Note that on the

level of dimension vectors these partial functors σ σE , σ E , σE , σ E

yield the usual reflection formula:

dimσ M dimM
2 dimM,dimE

dimE,dimE
dimE.

2.12 Slices

An artin algebra B is a tilted algebra if and only if modB has a slice.

Thus the existence of slices characterizes the tilted algebras. The neces-

sity to explain the importance of slices has to be mentioned as a (further)

impetus for the development of tilting theory. In my 1979 Ottawa lec-

tures, I tried to describe several module categories explicitly. At that

time, the knitting of preprojective components was one of the main tools,

and I used slices in such components in order to guess what later turned
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out to be tilting functors, namely functorial constructions using pushouts

and pullbacks. The obvious question about a possible theoretical foun-

dation was raised by several participants, but it could be answered only

a year later at the Puebla conference. Under minor restrictions (for

example, the existence of a sincere indecomposable module) preprojec-

tive components will contain slice modules and these are tilting modules

with a hereditary endomorphism ring! This concerns the concealed al-

gebras to be mentioned below, but also all the representation-directed

algebras. Namely, using covering theory, the problem of describing the

structure of the indecomposable modules over a representation-finite al-

gebra is reduced to the representation-directed algebras with a sincere

indecomposable module, and such an algebra is a tilted algebra, since it

obviously has a slice module.

In dealing with an artin algebra of finite representation type, and looking

at its Auslander-Reiten quiver, one may ask for sectional subquivers

say of Euclidean types. Given such a subquiver Γ, applying several

times τ or τ 1 (and obtaining in this way “parallel” subquivers), one

has to reach a projective, or an injective vertex, respectively. Actually,

Bautista and Brenner have shown that the number of parallel subquivers

is bounded, the bound is called the replication number. If one is

interested in algebras with optimal replication numbers, one only has to

look at representation-finite tilted algebras of Euclidean type. Note that

given a hereditary algebra A of Euclidean type and a tilting A-module

T , then B EndA T is representation-finite if and only if T has both

preprojective and preinjective indecomposable direct summands.

It is natural to look inside preprojective and preinjective components for

slices. In 1979 one did not envision that there could exist even regular

components with a slice module. But any connected wild hereditary

algebra with at least three simple modules has a regular tilting module

T , and then the connecting component of B EndA T is regular.

One should be aware that the category modB looks quite amazing:

the connecting component (which is a regular component in this case)

connects two wild subcategories, like a tunnel between two busy regions.

Inside the tunnel, there are well-defined paths for the traffic, and the

traffic goes in just one direction.

Tilting modules can be used to study specific classes of artin alge-

bras. Some examples have been mentioned already. We have noted that
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all the representation finite k-algebras, with k algebraically closed, can

be described using tilted algebras (the condition on k is needed in order

to be able to use covering theory). We obtain in this way very detailed

information on the structure of the indecomposables. One of the first

uses of tilting theory concerned the representation-finite tree algebras,

see Chapter 3 by Brüstle.

2.13 Concealed algebras

By definition, B is a concealed algebra, provided B EndA T , where T

is a preprojective A-module with A hereditary. The tame concealed k-

algebras B where k is algebraically closed, have been classified by Happel

and Vossieck, and Bongartz has shown in which way they can be used

in order to determine whether a k-algebra is representation-finite.

2.14 Representations of posets

The representation theory of posets always has been considered as an

important tool when studying questions in representation theory in gen-

eral: there are quite a lot of reduction techniques which lead to a vector

space with a bunch of subspaces, but the study of a vector space with a

bunch of subspaces with some inclusions prescribed, really concerns the

representation theory of the corresponding poset. On the other hand,

the representation theory of finite posets is very similar to the represen-

tation theory of some quite well-behaved algebras, and the relationship

is often given by tilting modules. For example, when dealing with a

disjoint union of chains, then we deal with the subspace representations

of a star quiver Q (the quiver Q is obtained from a finite set of linearly

oriented quivers of type A, with all the sinks identified to one vertex,

the center of the star). If c is the center of the star quiver Q, then

the subspace representations are the torsion-free modules of the (split)

torsion pair Y,X , with X being the representations V of Q such that

Vc 0. We also may consider the opposite quiver Qop and the (again

split) torsion pair F , T , where now F are the representations V of Qop

with Vc 0. The two orientations used here are obtained by a sequence

of reflections, and the two split torsion pairs F ,G , Y,X are given by

a tilting module which is a slice module:
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2.15 The Crawley-Boevey-Kerner functors

If R is an artin algebra and W an R-module, let us write τ W for

the ideal of mod R of all maps which factor through a direct sum of

modules of the form τzW with z Z. We say that the module categories

mod R and modR are almost equivalent provided there is an R-module

W and an R -module W such that the categories mod R τ W and

mod R τ W are equivalent. The Crawley-Boevey-Kerner functors

were introduced in order to show the following: If k is a field and Q and

Q are connected wild quivers, then the categories mod kQ and mod kQ

are almost equivalent. The proof uses tilting modules, and the result may

be rated as one of the most spectacular applications of tilting theory.

Thus it is worthwhile to outline the essential ingredients. This will be

done below.

Here are some remarks concerning almost equivalent categories. It is

trivial that the module categories of all representation-finite artin alge-

bras are almost equivalent. If k is a field, and Q,Q are tame connected

quivers, then mod kQ and mod kQ are almost equivalent only if Q and

Q have the same type (Apq, Dn, E6, E7, E8). Let us return to wild quiv-

ers Q,Q and a Crawley-Boevey-Kerner equivalence

η : mod kQ τ W mod kQ τ W ,

with finite length modules W,W . Consider the case of an uncountable

base field k, so that there are uncountably many isomorphism classes

of indecomposable modules for R kQ as well as for R kQ . The

ideals τ W and τ W are given by the maps which factor through

a countable set of objects, thus nearly all the indecomposable modules

remain indecomposable in mod kQ τ W and mod kQ τ W , and

non-isomorphic ones (which are not sent to zero) remain non-isomorphic.

In addition, one should note that the equivalence η is really constructive

(not set-theoretical rubbish), with no unfair choices whatsoever. This

will be clear from the further discussion.
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Nearly all quivers are wild. For example, if we consider the m-subspace

quivers Q m , then one knows that Q m is wild provided m 5. Let

us concentrate on a comparison of the wild quivers Q 6 and Q 5 .

To assert that Q,Q are wild quivers means that there are full em-

beddings mod kQ mod kQ and mod kQ mod kQ. But the

Crawley-Boevey-Kerner theorem provides a completely new interpreta-

tion of what “wildness” is about. The definition of “wildness” itself

is considered as quite odd, since it means in particular that there is

a full embedding of mod kQ 6 into mod kQ 5 . One may reformulate

the wildness assertion as follows: any complication which occurs for 6

subspaces can be achieved (in some sense) already for 5 subspaces. But

similar results are known in mathematics, since one is aware of other

categories which allow to realize all kinds of categories as a subcategory.

Also, “wildness” may be interpreted as a kind of fractal behaviour: in-

side the category mod kQ 5 we find proper full subcategories which are

equivalent to mod kQ 5 , again a quite frequent behaviour. These re-

alization results are concerned with small parts of say mod kQ 5 ; one

looks at full subcategories of the category mod kQ which have desired

properties, but one does not try to control the complement. This is in

sharp contrast to the Crawley-Boevey-Kerner property which provides

a global relation between mod kQ 5 and mod kQ 6 , actually, between

the module categories of any two wild connected quivers. In this way we

see that there is a kind of homogeneity property of wild abelian length

categories which had not been anticipated before.

The Crawley-Boevey-Kerner result may be considered as a sort of Schrö-

der-Bernstein property for abelian length categories. Recall that the

Schröder-Bernstein theorem asserts that if two sets S, S can be embed-

ded into each other, then there is a bijection S S . For any kind

of mathematical structure with a notion of embedding, one may ask

whether two objects are isomorphic in case they can be embedded into

each other. Such a property is very rare, even if we replace the iso-

morphism requirement by some weaker requirement. But this is what is

asserted by the Crawley-Boevey-Kerner property.

Let us outline the construction of η. We start with a connected wild

hereditary artin algebra A, and a regular exceptional module E which is

quasi-simple (this means that the Auslander-Reiten sequence ending in

E has indecomposable middle term, call it μ E ), such a module exists

provided n A 3. Denote by E the category of all A-modules M

such that HomA E,M 0 Ext1A E,M . One knows (Geigle-Lenzing,
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Strausemi simple ) that E is equivalent to the category modC, where

C is a connected wild hereditary algebra C and n C n A 1. The

aim is to compare the categories mod C and modA, they are shown to

be almost equivalent.

It is easy to see that the module μ E belongs to E , thus it can be

regarded as a C-module. Since E mod C, there is a projective

generator T in E with EndA T C. Claim: T E is a tilting

module. For the proof we only have to check that Ext1A T ,E 0.

Since T is projective in E , it follows that Ext1 T , μ E 0. However,

there is a surjective map μ E E and this induces a surjective map

Ext1 T , μ E Ext1 T ,E .

As we know, the tilting module T T E defines a torsion pair F , T ,

with T the A-modules generated by T . Let us denote by τT M tτAM

the torsion submodule6 of τAM . The functor η is now defined as follows:

η M lim
t

τ t
Aτ 2t

T τ t
C M .

One has to observe that the limit actually stabilizes: for large t, there

is no difference whether we consider t or t 1. The functor η is full,

the image is just the full subcategory of all regular A-modules. There

is a non-trivial kernel: a map is sent to zero if and only if it belongs to

τ W , where W C μ E DC. Also, let W A DA. Then η

is an equivalence

η : mod C τ W mod A τ W .

One may wonder how special the assumptions on A and C are. Let us say

that A dominates C provided there exists a regular exceptional module E

which is quasi-simple with mod C equivalent to E . Given any two wild

connected quivers Q,Q , there is a sequence of wild connected quivers

Q Q0, . . . , Qt Q such that kQi either dominates or is dominated

by kQi 1, for 1 i t. This implies that the module categories of all

wild path algebras are almost equivalent.

The equivalence η can be constructed also in a different way [35], using

6 The notation shall indicate that this functor τT has to be considered as an
Auslander-Reiten translation: it is the relative Auslander-Reiten translation in
the subcategory T . And there is the equivalence T Y, where Y is a full
subcategory of mod B, with B EndA T . Since Y is closed under τ in mod B,
the functor τT corresponds to the Auslander-Reiten translation τB in mod B.
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partial reflection functors. Let E i τ iE, for all i Z. Note that for

any regular A-module M , one knows that

HomA M,E t 0 HomA E t ,M for t 0,

according to Baer and Kerner. Thus, if we choose t sufficiently large,

we can apply the partial reflection functors σE t and σE t to M . The

module obtained from M has the form

and belongs to

ME t ME t M E t 1 M E t 1 .

Thus we can proceed, applying now σE t 1 and σE t 1 . We use in-

duction, the last partial reflection functors to be applied are the functors

σE 1 , σE 1 , and then finally σE . In this way we obtain a module in

ME 1 ME E

as required. It has the following structure:

2.16 The shrinking functors for the tubular algebras

Again these are tilting functors (here, A no longer is a hereditary artin

algebra, but say a canonical algebra - we are still in the realm of the “T”

displayed in Part 1, now even in its center), and such functors belong to

the origin of the development. If one looks at the Brenner-Butler tilting

paper, the main examples considered there were of this kind. So one

of the first applications of tilting theory was to show the similarity of
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the module categories of various tubular algebras. And this is also the

setting which later helped to describe in detail the module category of

a tubular algebra: one uses the shrinking functors in order to construct

all the regular tubular families, as soon as one is known to exist.

2.17 Self-injective algebras

Up to coverings and (in characteristic 2) deformations, the trivial ex-

tensions of the tilted algebras of Dynkin type (those related to the left

arm of the “T” displayed in Part 1) yield all the representation-finite

self-injective algebras (recall that the trivial extension of an algebra R is

the semi-direct product R ���
�

DR of R with the dual module DR). In pri-

vate conversation, such a result was conjectured by Tachikawa already in

1978, and it was the main force for the investigations of him and Waka-

matsu, which he presented at the Ottawa conference in 1979. There he

also dealt with the trivial extension of a tilted algebra of Euclidean type

(the module category has two tubular families). This motivated Hughes-

Waschbüsch to introduce the concept of a repetitive algebra. But it is

also part of one of the typical quarrels between Zürich and the rest of

the world: with Gabriel hiding the Hughes-Waschbüsch manuscript from

Bretscher-Läser-Riedtmann (asking a secretary to seal the envelope with

the manuscript and to open it only several months later...), so that they

could proceed “independently”.

The representation theory of artin algebras came into limelight when

Dynkin diagrams popped up for representation-finite algebras. And this

occurred twice, first for hereditary artin algebras in the work of Gabriel

(as the Ext-quiver), but then also for self-injective algebras in the work of

Riedtmann (as the tree class of the stable Auslander-Reiten quiver). The

link between these two classes of rings is furnished by tilted algebras and

their trivial extensions. As far as I know, it is Tachikawa who deserves

the credit for this important insight.

The reference to trivial extensions of tilted algebras actually closes a cir-

cle in our considerations, due to another famous theorem of Happel. We

have started with the fact that tilting functors provide derived equiva-

lences. Thus the derived category of a tilted algebra can be identified

with the derived category of a hereditary artin algebra. For all artin

algebras R of finite global dimension (in particular our algebras A and

B), there is a an equivalence between Db mod R and the stable module
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category of the repetitive algebra R. But R is just a Z-covering of the

trivial extension of R.

2.18 Artin algebras with Gorenstein dimension at most 1

We have mentioned that the two classes of algebras: the selfinjec-

tive ones and the hereditary ones, look very different, but neverthe-

less they have some common behaviour. Auslander and Reiten [4] have

singled out an important property which they share, they are Goren-

stein algebras of Gorenstein dimension at most 1. An artin algebra

A is called Gorenstein7 provided ADA has finite projective dimen-

sion and AA has finite injective dimension. For Gorenstein algebras,

proj-dim ADA inj-dim AA, and this number is called the Gorenstein

dimension of A. It is not known whether the finiteness of the projec-

tive dimension of ADA implies the finiteness of the injective dimension

of AA. It is conjectured that this is the case: this is the Gorenstein

symmetry conjecture, and this conjecture is equivalent to the conjecture

that the small finitistic dimension of A is finite. The artin algebras of

Gorenstein dimension 0 are the selfinjective algebras. An artin algebra

has Gorenstein dimension at most 1 if and only if DA is a tilting module

(of projective dimension at most 1).

If A is a Gorenstein algebra of Gorenstein dimension at most 1, then

there is a strict separation of the indecomposable modules: an A-module

M of finite projective dimension or finite injective dimension satisfies

both proj-dimM 1, inj-dimM 1. (The proof is easy: Assume

proj-dimM m, thus the m-th syzygy module Ωm M is projective.

Now for any short exact sequence 0 X Y Z 0, it is clear

that inj-dimX 1, inj-dimY 1 imply inj-dimZ 1. One applies

this inductively to the exact sequences Ωi M Pi Ωi 1 M ,

where Pi is projective, starting with i m and ending with i 0. This

shows that inj-dim M 1. The dual argument shows that a module

of finite injective dimension has projective dimension at most 1.) As

a consequence, if A is not hereditary, then the global dimension of A

7 This definition is one of the many possibilities to generalize the notion of a
commutative Gorenstein ring to a non-commutative setting. Note that a com-
mutative artin algebra R is a Gorenstein ring if and only if R is selfinjective.
Of course, a commutative connected artin algebra R is a local ring, and a lo-
cal ring has a non-zero module of finite projective dimension only in case R is
selfinjective.
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is infinite. Also, if P is an indecomposable projective A-module, then

either its radical is projective or else the top of P is a simple module

which has infinite projective and infinite injective dimension.

Until very recently, the interest in artin algebras of Gorenstein dimension

at most 1 has been quite moderate, the main reason being a lack of

tempting examples: of algebras which are neither selfinjective nor hered-

itary. But now there is a wealth of such examples, as we will see in Part

3.

We hope that we have convinced the reader that the use of tilting mod-

ules and tilted algebras lies at the heart of nearly all the major develop-

ments in the representation theory of artin algebras in the last 25 years.

In this report we usually restrict to tilting modules in the narrow sense

(as being finite length modules of projective dimension at most 1). In

fact, most of the topics mentioned are related to tilting A-modules T ,

where A is a hereditary artin algebra (so that there is no need to stress

the condition proj-dimT 1 . However, the following two sections will

widen the viewpoint, taking into account also various generalizations.

2.19 Representations of semisimple complex Lie algebras and

algebraic groups

The highest weight categories which arise in the representation theory of

semisimple complex Lie algebras and algebraic groups can be analyzed

very well using quasi-hereditary artin algebras as introduced by Cline-

Parshal-Scott. One of the main features of such a quasi-hereditary artin

algebra is its characteristic module, this is a tilting module (of finite

projective dimension). Actually, the experts use a different convention,

calling its indecomposable direct summands “tilting modules”, see Chap-

ter 9 by Donkin. If T is the characteristic module, then addT consists of

the A-modules which have both a standard filtration and a costandard

filtration, and it leads to a duality theory which seems to be of great

interest.
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2.20 The homological conjectures

The homological conjectures are one of the central themes of module

theory, so clearly they deserve special interest. They go back to math-

ematicians like Nakayama, Eilenberg, Auslander, Bass, but also Rosen-

berg, Zelinsky, Buchsbaum and Nunke should be mentioned, and were

formulated between 1940 and 1960. Unfortunately, there are no writ-

ten accounts about the origin, but we may refer to surveys by Happel,

Smalø and Zimmermann-Huisgen. The modern development in repre-

sentation theory of artin algebras was directed towards a solution of the

Brauer-Thrall conjectures, and there was for a long time a reluctance

to work on the homological conjectures. The investigations concerning

the various representation types have produced a lot of information on

special classes of algebras, but for these algebras the homological con-

jectures are usually true for trivial reasons. As Happel has pointed out,

the lack of knowledge of non-trivial examples may very well mean that

counter-examples could exist. Here is a short discussion of this topic, in

as far as modules without self-extensions are concerned.

Let me start with the Nakayama conjecture which according to B. Müller

can be phrased as follows: If R is an artin algebra and M is a generator

and cogenerator for modR with Exti
R M,M 0 for all i 1, then M

has to be projective. Auslander and Reiten [3] proposed in 1975 that the

same conclusion should hold even if M is not necessarily a cogenerator

(this is called the “generalized Nakayama conjecture”). This incorpo-

rates a conjecture due to Tachikawa (1973): If R is self-injective and M is

an R-module with Exti
R M,M 0 for all i 0, then M is projective.

The relationship of the generalized Nakayama conjecture with tilting

theory was noted by Auslander and Reiten [3, 4]. Then there is the

conjecture on the finiteness of the number of complements of an almost

complete partial tilting module, due to Happel and Unger. And there is

a conjecture made by Beligiannis and Reiten [5], called the Wakamatsu

tilting conjecture (because it deals with Wakamatsu tilting modules, see

Chapter 8 by Reiten): If T is a Wakamatsu tilting module of finite

projective dimension, then T is a tilting module. The Wakamatsu tilt-

ing conjecture implies the generalized Nakayama conjecture (apparently,

this was first observed by Buan) and also the Gorenstein symmetry con-

jecture, see [5]. In a joint paper, Mantese and Reiten [37] showed that it

is implied by the finitistic dimension conjecture, and that it implies the

conjecture on a finite number of complements, which according to Buan
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and Solberg is known to imply the generalized Nakayama conjecture.

There is also the equivalence of the generalized Nakayama conjecture

with projective almost complete partial tilting modules having only a fi-

nite number of complements (Happel-Unger, Buan-Solberg, both papers

are in the Geiranger proceedings). Coelho, Happel and Unger proved

that the finitistic dimension conjecture implies the conjecture on a finite

number of complements.

Further relationship of tilting theory with the finitistic dimension con-

jectures is discussed in detail in Chapter 11 by Trlifaj and in Chapter

12 by Solberg. But also other results presented in the Handbook have

to be seen in this light. We know from Auslander and Reiten, that the

finitistic dimension of an artin algebra R is finite, in case the subcate-

gory of all modules of finite projective dimension is contravariantly finite

in modR. This has been the motivation to look at the latter condition

carefully (see for example Chapter 10 by Unger).

With respect to applications outside of ring and module theory, many

more topics could be mentioned. We have tried to stay on a basic level,

whereas there are a lot of mathematical objects which are derived from

representation theoretical data and this leads to a fruitful interplay (deal-

ing with questions on quantum groups, with the shellability of simpli-

cial complexes, or with continued fraction expansions of real numbers):

There are many unexpected connections to analysis, to number theory,

to combinatorics — and again, it is usually the tilting theory which plays

an important role.

3 The new cluster tilting approach

Let me repeat: at the time the Handbook was conceived, there was a

common feeling that the tilted algebras (as the core of tilting theory)

were understood well and that this part of the theory had reached a sort

of final shape. But in the meantime this has turned out to be wrong: the

tilted algebras have to be seen as factor algebras of the so called cluster

tilted algebras, and it may very well be, that in future the cluster tilted

algebras and the cluster categories will topple the tilted algebras. The

impetus for introducing and studying cluster tilted algebras came from

outside, in a completely unexpected way. We will mention below some
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of the main steps of this development. But first let me jump directly to

the relevant construction.

3.1 The cluster tilted algebras

We return to the basic setting, the hereditary artin algebra A, the tilting

A-module T and its endomorphism ring B. Consider the semi-direct ring

extension

B B ���
�

Ext2B DB,B .

This is called the cluster tilted algebra corresponding to B. Since this is

the relevant definition, let me say a little more about this construction8 :

B has B as a subring, and there is an ideal J of B with J2 0, such that

B B J as additive groups and J is as a B-B-bimodule isomorphic to

Ext2B DB,B ; in order to construct B one may take B Ext2B DB,B ,

with componentwise addition, and one uses b, x b , x bb , bx xb ,

for b, b B and x, x Ext2B DB,B as multiplication. The definition

shows that B can be considered as a Z-graded (or also Z 2-graded)

algebra, with B 0 B and B 1 J.

We consider again the example of B given by a square with two zero

relations. Here Ext2B DB,B is 8-dimensional and B is a 16-dimensional

algebra:

Non-isomorphic tilted algebras B may yield isomorphic cluster tilted

algebras B. Here are all the tilted algebras which lead to the cluster

tilted algebra just considered:

It is quite easy to write down the quiver of a cluster-tilted algebra.

Here, we assume that we deal with k-algebras, where k is an algebraically

8 One may wonder what properties the semi-direct product R ���
�

Ext2R DR, R for
any artin algebra R has in general (at least in case R has global dimension at
most 2); it seems that this question has not yet been studied.
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closed field. We get the quiver of B from the quiver with relations of B

by just replacing the dotted arrows9 by solid arrows in opposite direction

[1]. The reason is the following: Let us denote by N the radical of B.

Then N J is the radical of B B ���
�

J , and N2 NJ JN is equal

to the square of the radical of B. This shows that the additional arrows

for B correspond to J NJ JN . Note that J NJ JN is the top

of the B-B-bimodule J . Now the top of the bimodule Ext2B DB,B is

Ext2B soc BDB, top BB , since B has global dimension at most 2. It is

well-known that Ext2B soc BDB, top BB describes the relations of the

algebra B, and we see in this way that relations for B correspond to the

additional arrows for B. Since radB radB J and J is an ideal of

B with J2 0, we also see: If rad B t 0, then rad B 2t 0. The

quiver of any tilted algebra is directed, thus rad B n B 0, therefore

rad B 2n B 0.

The recipe for obtaining the quiver of B shows that there are always

oriented cyclic paths (unless B is hereditary). However, such a path

is always of length at least 3. Namely, since the quiver of B has no

loops, there cannot be any relation for B starting and ending at the

same vertex. Thus, the quiver of B cannot have a loop [8]. Also, Happel

([27], Lemma IV.1.11) has shown that for simple B-modules S, S with

Ext1B S, S 0 one has Ext2B S, S 0. This means that the quiver of

B cannot have a pair of arrows in opposite direction [11].

It should be of interest whether knowledge about the quiver with rela-

tions of a cluster tilted algebra B can provide new insight into the struc-

ture of the tilted algebras themselves. There is a lot of ongoing research

on cluster tilted algebras, let us single out just one result. Assume that

we deal with k-algebras, where k is algebraically closed. Then: Any clus-

ter tilted k-algebra of finite representation type is uniquely determined

by its quiver [12]. This means: in the case of finite representation type,

the quiver determines the relations! What happens in general is still

under investigation.

If A is a hereditary artin algebra and T a tilting A-module with endomor-

phism ring B, we have introduced the corresponding cluster tilted alge-

bras as the algebra B B ���
�

J , with B-B-bimodule J Ext2B DB,B .

9 Actually, the usual convention for indicating relations is to draw dotted lines, not
dotted arrows. However, these dotted lines are to be seen as being directed, since
the corresponding relations are linear combinations of paths with fixed starting
point and fixed end point.
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The original definition of B by Buan, Marsh and Reiten [10] used an-

other description of J , namely J Ext1A T, τ 1T , and it was observed

by Assem, Brüstle and Schiffler [1] that the bimodules Ext1A T, τ 1T

and Ext2B DB,B are isomorphic10 (using this Ext2-bimodule has the

advantage that it refers only to the algebra B itself, and not to T ). It

was Zhu Bin [51] who stressed that cluster tilted algebras should be

explored as semi-direct ring extensions.

Since this isomorphism is quite essential, let me sketch an elementary

proof, without reference to derived categories. Let V be the univer-

sal extension of τT by copies of T from above, thus there is an exact

sequence

0 τT V Tm 0

for some m, and Ext1A T, V 0. Applying HomA , T to shows

that Ext1A V, T Ext1A τT, T . Applying HomA T, to yields the

exact sequence

0 HomA T, V HomA T, Tm Ext1A T, τT 0.

This is an exact sequence of B-modules and HomA T, Tm is a free

B-module, thus we see that HomA T, V is a syzygy module for the

B-module Ext1A T, τT . But the latter means that

Ext2B Ext1A T, τT , BB Ext1B HomA T, V , BB .

The left hand side is nothing else than Ext2B DB,B , since the B-module

DB and Ext1A T, τT differ only by projective-injective direct sum-

mands. The right hand side Ext1B HomA T, V ,HomA T, T is the im-

age of Ext1A V, T under the (exact) equivalence HomA T, : T Y

(here we use that V belongs to T ). This completes the proof11 .

Now let us deal with the representations of B. The B-modules can

10 In addition, we should remark that Ext1A T, τ 1T can be identified with

Ext1A τT, T (as B-B-bimodules). The reason is the fact that the functor τ 1 is

left adjoint to τ , for A hereditary, thus Ext1A T, τ 1T D HomA τ 1T, τT

D HomA T, τ2T Ext1A τT, T . The importance of the bimodule Ext1A τT, T
has been stressed already in section 2.7; I like to call it the “magic” bimod-
ule for such a tilting process. All the bimodule isomorphisms mentioned here
should be of interest when dealing with the magic bimodule J . In particular,

when working with injective B-modules, it seems to be convenient to know that
DJ HomA T, τ2T .

11 Note that the isomorphy of Ext2B DB, B and Ext1A τT, T yields a proof for the
implication (ii) (iv) mentioned in Part 1. Since we know that B has global
dimension at most 2, the vanishing of Ext2B DB, B implies that Ext2B X, Y 0
for all B-modules X, Y , thus we also see that (iv) (ii).
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be described as follows: they are pairs of the form M,γ , where M is

a B-module, and γ : J B M M is a B-linear map. As we know,

in mod B there is the splitting torsion pair Y,X and it turns out that

J B X 0 for X X , and that J B Y belongs to X for all Y Y

(for the definition of the module classes X ,Y, but also for Y and S we

refer to section 1.2). Let us consider a pair M,γ in mod B and write

M Y S X, with Y Y , S S, and X X . Then the image of γ is

contained in Y and Y S is contained in the kernel of γ (in particular,

S, 0 is a direct summand of M,γ ).

Note that Y,X still is a torsion pair in modB (a module X Y, γ

with X X and Y Y has X, 0 as torsion submodule, has Y, 0

as its torsion-free factor module, and the map γ is the obstruction for

the torsion submodule to split off). Let us draw the attention to a

special feature of this torsion pair Y,X in modB: there exists an

ideal, namely J , such that the modules annihilated by J are just the

modules in add X ,Y .

Buan, Marsh and Reiten [10] have shown that the category modB can

be described in terms of mod A (via the corresponding cluster cate-

gory). Let us present such a description in detail. We will use that

J Ext1A T, τ 1T (as explained above). The algebra B has as Z-

covering the following (infinite dimensional) matrix algebra:

with B on the main diagonal, J directly above the main diagonal, and

zeros elsewhere (note that this algebra has no unit element in case B

0). It turns out that it is sufficient to determine the representations of

the convex subalgebras of the form B2
B J

0 B
. We can write B2-

modules as columns N
N

and use matrix multiplication, provided we

have specified a map γ : J N N . In the example considered (B a

square, with two zero relations), the algebras B and B2 are as follows:
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In order to exhibit all the B2-modules, we use the functor Φ: mod A

mod B2 given by

Φ M
Ext1A T,M

HomA τ 1T,M
,

with γ : Ext1A T, τ 1T HomA τ 1T,M Ext1A T,M being the

canonical map of forming induced exact sequences (this is just the

Yoneda multiplication)12 . Now Φ itself is not faithful, since obviously

T is sent to zero13 . However, it induces a fully faithful functor (which

again will be denoted by Φ):

Φ: mod A T mod B2,

where mod A T denotes the factor category of mod A modulo the ideal

of all maps which factor through addT . The image of the functor Φ is

given by

X
0

0
Y

.

In general, given module classes K,L in modR, we write K L for

the class of all R-modules M with a submodule K in K such that

12 The reader should recall that the functors Ext1A T, and HomA τ 1T, have
been mentioned already in Part 1. These are the functors which provide the
equivalences F X and T Y , respectively.

13 The comparison with the Buan-Marsh-Reiten paper [10] shows a slight deviation:
The functor they use vanishes on the modules τT and not on T (and if we
denote by Ti an indecomposable direct summand of T , then the image of Ti

becomes an indecomposable projective B-module). Instead of looking at the

functor Φ, we could have worked with Φ M
Ext1A τT, M
HomA T, M

, again taking

for γ the canonical map. This functor Φ vanishes on τT . On the level of
cluster categories, the constructions corresponding to Φ and Φ differ only by
the Auslander-Reiten translation in the cluster category, and this is an auto-
equivalence of the cluster category. But as functors mod A mod B2, the
two functors Φ, Φ are quite different. Our preference for the functor Φ has
the following reason: the functor Φ kills precisely n n A indecomposable A-

modules, thus the number of indecomposable B-modules which are not contained
in the image of Φ is also n, and these modules form a slice. This looks quite

pretty: the category mod B is divided into the image of the functor Φ and one
additional slice.
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M K belongs to L. Thus, we assert that the image of Φ is the

class of the B-modules N
N

with N X and N Y . (In order

to see that HomA τ 1T,M Y , first note that HomA τ 1T,M

HomA T, τM , thus this is a B-module in Y. We further have

HomA T, τM HomA T, tτM , where tτM is the torsion submod-

ule of τM . If we assume that HomA T, tτM has an indecomposable

submodule in S, say HomA T,Q , where Q is an indecomposable injec-

tive A-module, then we obtain a non-zero map Q tτM τM , since

HomA T, is fully faithful on T . However, the image of this map is

injective (since A is hereditary) and τM is indecomposable, thus τM is

injective, which is impossible).

We want to draw a rough sketch of the shape of modB2, in the same

spirit as we have drawn a picture of modB in Part 1:

As we have mentioned, the middle part X
0

0
Y

(starting with X
0

and ending with 0
Y

) is the image of the functor Φ, thus this part of the

category mod B2 is equivalent to modA T . Note that this means that

there are some small “holes” in this part, they are indicated by black

lozenges; these holes correspond to the position in the Auslander-Reiten

quiver of A which are given by the indecomposable direct summands Ti

of T (and are directly to the left of the small stars).

It follows that modB has the form:
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Here, we have used the covering functor Π: modB mod B (or

better its restriction to mod B2): under this functor the subcategories
mod B

0 and 0
mod B are canonically identified. In particular, a funda-

mental domain for the covering functor is given by the module classes

X
0

0
Y

and 0
S .

This shows that mod B decomposes into the modules in X Y (these

are the B-modules N with a submodule X N in X , such that N X

belongs to Y ) on the one hand, and the modules in S on the other hand.

Under the functor Φ, modA T is embedded into mod B with image

the module class X Y . This is a controlled embedding (as defined in

[43]), with control class S.

The functor

mod A
Φ

mod B2
Π

mod B

has the following interesting property: only finitely many indecompos-

ables are killed by the functor (the indecomposable direct summands of

T ) and there are only finitely many indecomposables (actually, the same

number) which are not in the image of the functor (the indecomposable

modules in S). Otherwise, it yields a bijection between indecomposables.

It should be noted that some of the strange phenomena of tilted algebras

disappear when passing to cluster tilted algebras. For example, the

tunnel effect mentioned above changes as follows: there still is the tunnel,

but no longer does it connect two separate regions; it now is a sort of

by-pass for a single region. On the other hand, we should stress that

the pictures which we have presented and which emphasise the existence

of cyclic paths in modB are misleading in the special case when T is a

slice module: in this case, J Ext2B DB,B 0, thus B B is again

hereditary.

The cluster tilting theory has produced a lot of surprising results —
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it even answered some question which one did not dare to ask. For

example, dealing with certain classes of algebras such as special biserial

ones, one observes that sometimes there do exist indecomposable direct

summands X of the radical of an indecomposable projective module P ,

such that the Auslander-Reiten translate τX is a direct summand of

the socle factor module of an indecomposable injective module I. Thus,

in the Auslander-Reiten quiver of B, there are non-sectional paths of

length 4 from I to P

I τX X X P.

Is this configuration of interest? I did not think so before I was intro-

duced to cluster tilting theory, but according to [10], this configuration

is a very typical one when dealing with cluster tilted algebras.

As an illustration, we show what happens in the non-regular components

of our example B (where B is the square with two zero relations). The

upper line exhibits the part of the quiver of B which is needed as

support for the modules shown below:

For both components, the dashed boundary lines have to be identified.

In this way, the right picture with the vertical identification yields what

is called a tube, the left picture gives a kind of horizontal hose. In

contrast to the tube with its mouth, the hose extends in both directions

indefinitely. The big circles indicate the position of the modules Ti in

the corresponding components of modA, these are the modules which

are killed by the functor Φ. In both components we find non-sectional

paths of length 4 from an indecomposable injective B -module I to an

indecomposable projective B -module P such that the simple modules

soc I and topP are identified under the covering functor Π.
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We also want to use this example in order to illustrate the fact that the

image of Φ in modB is complemented by a slice S:

When looking at the non-sectional paths from I to P of length 4, where

I is an indecomposable injective B-module, P an indecomposable pro-

jective B-module such that S soc I topP , one should be aware that

the usual interest lies in paths from P to I. Namely, there is the so

called “hammock” for the simple module S, dealing with pairs of maps

of the form P M I with composition having image S (and M

indecomposable).

Taking into account not only the hammock, but also the non-sectional

paths of length 4 from I to P leads to a kind of organized round trip.

Since the simple module S has no self-extension, it is the only indecom-

posable module M such that Hom
B

P ,M 0, for any indecomposable

projective B-module P P. We will return to this hammock configu-

ration P, S, I later.

Readers familiar with the literature will agree that despite of the large

number of papers devoted to questions in the representation theory of

artin algebras, only few classes of artin algebras are known where there

is a clear description of the module categories14 . The new developments

14 Say in the same way as the module categories of hereditary artin algebras are
described. We consider here algebras which may be wild, thus we have to be
cautious of what to expect from a “clear description”.
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outlined here show that the cluster tilted algebras are such a class: As

for the hereditary artin algebras, the description of the module category

is again given by the root system of a Kac-Moody Lie algebra.

Keller and Reiten [34] have shown, that cluster tilted algebras are Goren-

stein algebras of Gorenstein dimension at most 1. This is a very remark-

able assertion! The proof uses in an essential way cluster categories, and

provides further classes of Gorenstein algebras of Gorenstein dimension

at most 1. Note that the cluster tilted algebra B is hereditary only in

case B B, thus only for T a slice module. There are examples where

B is self-injective (for example for B kQ ρ with Q the linearly di-

rected A3-quiver and ρ the path of length 2). In general, B will be

neither hereditary nor self-injective.

3.2 The complex ΣA

We have mentioned in Part 1 that the simplicial complex ΣA of tilting

modules always has a non-empty boundary (for n A 2). Now the

cluster theory provides a recipe for embedding this simplicial complex

in a slightly larger one without boundary. Let me introduce here this

complex ΣA directly in terms of modA, using a variation of the work of

Marsh, Reineke und Zelevinsky [38]15 . It is obtained from ΣA by just

adding n n A vertices, and of course further simplices. Recall that

a Serre subcategory16 U of an abelian category is a subcategory which

is closed under submodules, factor modules and extensions; thus in case

we deal with a length category such as mod A, then U is specified by the

simple modules contained in U (an object belongs to U if and only if its

composition factors lie in U). In particular, for a simple A-module S, let

us denote by S the subcategory of all A-modules which do not have

S as a composition factor. Any Serre subcategory is the intersection of

such subcategories.

Here is the definition of ΣA: As simplices take the pairs M,U where

U is a Serre subcategory of modA and M is (the isomorphism class of)

a basic module in U without self-extensions; write M ,U M,U

15 The title of the paper refers to “associahedra”: in the case of the path algebra of
a quiver of type An, the dual of the simplicial complex ΣA is an associahedron
(or Stasheff polytope). For quivers of type Bn and Cn one obtains a Bott-Taubes
cyclohedron.

16 The Serre subcategories are nothing else then the subcategories of the form
mod A AeA, where e in an idempotent of A.
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provided M is a direct summand of M and U U (note the reversed

order!). Clearly17 , ΣA can be considered as a subcomplex of ΣA, namely

as the set of all pairs M,mod A .

There are two kinds of vertices of ΣA, namely those of the form

E,mod A with E an exceptional A-module (these are the vertices be-

longing to ΣA , and those of the form 0, S with S simple. It is fair

to say that the latter ones are indexed by the “negative simple roots”;

of course these are the vertices which do not belong to ΣA. Given a

simplex M,U , its vertices are the elements E,mod A , where E is

an indecomposable direct summand of M , and the elements 0, S ,

where U S . The n 1 -simplices are those of the form M,U ,

where M is a basic tilting module in U . The vertices outside ΣA belong

to one n 1 -simplex, namely to 0, 0 . The n 2 -simplices are of

the form M,U , where M is an almost complete partial tilting module

for U . If it is sincere in U , there are precisely two complements in U .

If it is not sincere in U , then there is only one complement in U , but

there also is a simple module S such that X belongs to S , thus X

is a tilting module for U S . This shows that any n 2 -simplex

belongs to precisely two n 1 -simplices.

As an example, we consider again the path algebra A of the quiver

. The simplicial complex ΣA is a 2-sphere and looks as

follows (considering the 2-sphere as the 1-point compactification of the

real plane):

Here, the vertex 0, S is labeled as dimS. We have shaded the

17 In the same way, we may identify the set of simplicies of the form M,U with
U fixed, as ΣA AeA, where U mod A AeA. In this way, we see that ΣA can be
considered as a union of all the simplicial complexes ΣA AeA.
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subcomplex ΣA (the triangle in the middle) as well as the n 1 -simplex

0, 0 (the outside).

Consider now a reflection functor σi, where i is a sink, say. We obtain

an embedding of ΣσiA into ΣA as follows: There are the exceptional

σiA-modules of the form σiE with E an exceptional A-module, differ-

ent from the simple A-module S i concentrated at the vertex i, and

in between these modules σiE the simplex structure is the same as in

between the modules E. In addition, there is the simple σiA-module

S i again concentrated at i. Now we know that E has no composition

factor S i if and only if Ext1σiA
S i , σiM 0. This shows that the

simplex structure of ΣA involving 0, S i and vertices of the form

E,mod A is the same as the simplex structure of ΣσiA in the vicinity

of S i ,mod σiA .

We may consider the simplicial complex ΣA as a subset of the real n-

dimensional space K0 A R, where n n A , namely as a part of the

corresponding unit n 1 -sphere, with all the n 1 -simplices defined

by n linear inequalities. In case A is representation-finite, we deal with

the n 1 -sphere itself, otherwise with a proper subset. For example, in

the case of the path algebra A of the quiver , the inequalities

are ϕ1 0, ϕ2 0, ϕ3 0, where ϕ1, ϕ2, ϕ3 are the linear forms

inserted in the corresponding triangle:

In general, any n 1 -simplex M,U is equipped with n linear forms

ϕ1, . . . , ϕn on K0 A such that the following holds: an A-module N

without self-extensions belongs to addM if and only if ϕi dimN 0.

In the same way as ΣA, also ΣA can be identified with a fan in K0 A R.

For any simplex M,U with vertices E,mod A and 0, S , where



Some Remarks concerning Tilting Modules and Tilted Algebras 451

E are indecomposable direct summands of M , and S simple modules

which do not belong to U , take the cone C M,U generated by the

vectors dimE and dimS.

3.3 The cluster categories

We have exhibited the cluster tilted algebras without reference to cluster

categories, in order to show the elementary nature of these concepts. But

a genuine understanding of cluster tilted algebras as well as of ΣA is not

possible in this way. Starting with a hereditary artin algebra A, let us

introduce now the corresponding cluster category CA. We have to stress

that this procedure reverses the historical development18 : the cluster

categories were introduced first, and the cluster tilted algebras only later.

The aim of the definition of cluster categories was to illuminate the

combinatorics behind the so called cluster algebras, in particular the

combinatorics of the cluster complex.

Let me say a little how cluster tilted algebras were found. Every-

thing started with the introduction of “cluster algebras” by Fomin and

Zelevinksy [23]: these are certain subrings of rational function fields,

thus commutative integral domains. At first sight, one would not guess

any substantial relationship to non-commutative artin algebras. But it

turned out that the Dynkin diagrams, as well as the general Cartan data,

play an important role for cluster algebras too. As it holds true for the

hereditary artin algebras, it is the corresponding root system, which is

of interest. This is a parallel situation, although not completely. For the

cluster algebras one needs to understand not only the positive roots, but

the almost positive roots: this set includes besides the positive roots also

the negative simple roots. As far as we know, the set of almost positive

roots had not been considered before19 . The first link between cluster

18 In the words of Fomin and Zelevinsky [25], this Part 3 altogether is completely
revisionistic.

19 Lie theory is based on the existence of perfect symmetries — partial structures
(such as the set of positive roots) which allow only broken symmetries tend to be
accepted just as necessary working tools. The set of almost positive roots seems
to be as odd as that of the positive ones: it depends on the same choices, but
does not even enjoy the plus-minus merit of being half of a neat entity. This must
have been the mental reasons that the intrinsic beauty of the cluster complex
was realized only very recently. But let me stress here that the cluster complex
seems to depend not only on the choice of a root basis, but on the ordering of the
basis (or better, on the similarity class): with a difference already for the types

A2,2 and A3,1.
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theory and tilting theory was given by Marsh, Reineke, Zelevinksy in

[38] when they constructed the complex ΣA. Buan, Marsh, Reineke,

Reiten, Todorov [8] have shown in which way the representation theory

of hereditary artin algebras can be used in order to construct a category

CA (the cluster category) which is related to the set of almost positive

roots20 in the same way as the module category of a hereditary artin

algebra is related to the corresponding set of positive roots.

As we have seen, a tilted algebra B should be regarded as the factor

algebra of its cluster tilted algebra B, if we want to take into account

also the missing modules. But mod B has to be considered as the factor

category of some triangulated category CA, the corresponding cluster

category. Looking at CA, we obtain a common ancestor of all the algebras

tilted from algebras in the similarity class of A. In the setting of the

pictures shown, the corresponding cluster category has the form

The cluster category CA should be considered as a universal kind of

category belonging to the similarity class of the hereditary artin algebra

A in order to obtain all the module categories modB, where B is a

cluster tilted algebra of type similar to A.

What one does is the following: start with the derived category

Db mod A of the hereditary artin algebra A, with shift functor 1 ,

20 A slight unease should be mentioned: as we will see, there is an embedding of
mod A into the cluster category which preserves indecomposability and reflects
isomorphy (but it is not a full embedding), thus this part of the cluster category
corresponds to the positive roots. There are precisely n n A additional in-
decomposable objects: they should correspond to the negative simple roots, but
actually the construction relates them to the negative of the dimension vectors of
the indecomposable projectives. Thus, the number of additional objects is cor-
rect, and there is even a natural bijection between the additional indecomposable
objects and the simple modules, thus the simple roots. But in this interpretation
one may hesitate to say that “one has added the negative simple roots” (except
in case any vertex is a sink or a source). On the other hand, in our presen-
tation of the cluster complex we have used as additional vertices the elements
0, S , and they really look like “negative simple roots”. Thus, we hope that

this provides a better feeling.
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and take as CA the orbit category with respect to the functor τ 1
D 1 (we

write τD for the Auslander-Reiten translation in the derived category,

and τC for the Auslander-Reiten translation in CA). As a fundamental

domain for the action of this functor one can take the disjoint union of

mod A (this yields all the positive roots) and the shifts of the projective

A-modules by [1] (this yields n n A additional indecomposable ob-

jects). It should be mentioned that Keller [33] has shown that CA is a tri-

angulated category; this is now the basis of many considerations dealing

with cluster categories and cluster tilted algebras. Now if we take a tilt-

ing module T in modA, we may look at the endomorphism ring B of T in

CA (or better: the endomorphism ring of the image of T under the canon-

ical functors modA Db mod A CA), and obtain a cluster tilted

algebra21 as considered above. The definition immediately yields that

B B ���
�

J , where J HomDb mod A T, τ 1
D T 1 Ext1A T, τ 1T .

The decisive property is that there is a canonical equivalence of cate-

gories22

CA T mod B.

In particular, we see that the triangulated category CA has many factor

categories which are abelian23 .

What happens when we form the factor category CA T ? Consider

an indecomposable direct summand E of the tilting A-module T as an

object in the cluster category CA and the meshes starting and ending in

E:

21 This is the way, the cluster tilted algebras were introduced and studied by Buan,
Marsh and Reiten [10].

22 Instead of CA T , one may also take the equivalent category CA τCT . The
latter is of interest if one wants the indecomposable summands of T in CA to
become indecomposable projective objects.

23 We have mentioned that the cluster theory brought many surprises. Here is
another one: One knows for a long time many examples of abelian categories A

with an object M such that the category A M (obtained by setting zero all
maps which factor through add M) becomes a triangulated category: just take
A mod R, where R is a self-injective artin algebra R and M RR. The
category mod R RR modR is the stable module category of R. But we are
not aware that non-trivial examples were known of a triangulated category D

with an object N such that D N becomes abelian. Cluster tilting theory is
just about this!
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In the category CA T , the object E becomes zero, whereas both τCE

and τ 1
C E remain non-zero. In fact, τ 1

C E becomes a projective ob-

ject and τCE becomes an injective object: We obtain in this way in

mod B CA T an indecomposable projective module P τ 1
C E and

an indecomposable injective module I τCE, such that topP soc I.

This explains the round trip phenomenon for B mentioned above: there

is the hammock corresponding to the simple B-module top P soc I,

starting from I τCE, and ending in P τ 1
C E. And either radP is

projective (and I soc I injective) or else there are non-sectional paths

of length 4 from I to P .

There is a decisive symmetry condition24 in the cluster category C CA:

HomC X,Y 1 D HomC Y,X 1 .

This is easy to see: since we form the orbit category with respect to

τ 1
D 1 , this functor becomes the identity functor in C, and therefore the

Auslander-Reiten functor τC and the shift functor 1 in C coincide. On

the other hand, the Auslander-Reiten (or Serre duality) formula for C

asserts that HomC X,Y 1 D HomC Y, τCX . A triangulated cate-

gory is said to be d-Calabi-Yau provided the shift functor d is a Serre

(or Nakayama) functor, thus provided there is a functorial isomorphism

Hom X, D Hom , X d

(for a discussion of this property, see for example [33]). As we see, the

cluster category is 2-Calabi-Yau.

The cluster category has Auslander-Reiten sequences. One component

Γ0 of the Auslander-Reiten quiver of CA has only finitely many τC-orbits,

namely the component containing the indecomposable projective (as well

as the indecomposable injective) A-modules. The remaining components

of the Auslander-Reiten quiver of CA have tree class A .

In a cluster category C CA, an object is said to be a cluster-tilting ob-

ject25 provided first HomC T, T 1 0, and second, that T is maximal

24 If we write Ext1 X, Y HomC X, Y 1 , then this symmetry condition reads
that Ext1 X, Y and Ext1 Y, X are dual to each other, in particular they have
the same dimension.

25 It has to be stressed that the notion of a “cluster-tilting object” in a cluster
category does not conform to the tilting notions used otherwise in this Handbook!
If T is such a cluster-tilting object, then it may be that HomC T, T i 0 in
C CA for some i 2. Observe that in a 2-Calabi-Yau category such as CA, we
have HomC X, X 2 0, for any non-zero object X.
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with this property in the following sense: if HomC T X, T X 1 0,

then X is in addT . If T is a tilting A-module, then one can show quite

easily that T , considered as an object of CA is a cluster-tilting object.

Let us consider the hereditary artin algebras in one similarity class and

the reflection functors between them. One may identify the correspond-

ing cluster categories using the reflection functors, as was pointed out

by Bin Zhu [52]. In this way, one can compare the tilting modules of

all the hereditary artin algebras in one similarity class. It turns out

that the cluster-tilting objects in CA are just the tilting modules for the

various artin algebras obtained from A by using reflection functors [8].

In order to see this, let T be a cluster-tilting object in CA. Let Γ0

be the component of the Auslander-Reiten quiver of CA which contains

the indecomposable projective A-modules. If no indecomposable direct

summand of T belongs to Γ0, then T can be considered as an A-module,

and it is a regular tilting A-module. On the other hand, if there is an

indecomposable direct summand of T , say T1, which belongs to Γ0, then

let S be the class of all indecomposable objects X in Γ0 with a path from

X to T1 in Γ0, and such that any path from X to T1 in Γ0 is sectional.

Then no indecomposable direct summand of T belongs to τCS. We may

identify the factor category CA τCS with modA for some hereditary

artin algebra A , and consider T as an A -module (the object T1, consid-

ered as an A -module, is projective and faithful). Clearly, A is obtained

from A by a sequence of BGP-reflection functors.

Also, the usual procedure of going from a tilting module to another

one by exchanging just one indecomposable direct summand gets more

regular. Of course, there is the notion of an almost complete partial

cluster-tilting object and of a complement, parallel to the corresponding

notions of an almost complete partial tilting module and its comple-

ments. Here we get: Any almost complete partial cluster-tilting object T

has precisely two complements [8]. We indicate the proof: We can as-

sume that T is an A-module. If T is sincere, then we know that there are

two complements for T considered as an almost complete partial tilting

A-module. If T is not sincere, then there is only one complement for T

considered as an almost complete partial tilting A-module. But there is

also one (and obviously only one) indecomposable projective module P

with HomA P, T 0, and the τC-shift of P in the cluster category is

the second complement we are looking for!

An important point seems to be the following: The simplicial complex
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of partial cluster-tilting objects in the cluster category CA is nothing else

than ΣA, with the following identification: If T is a basic partial cluster-

tilting object in CA, we can write T as the direct sum of a module M in

mod A and objects of the form τCP i , with P i indecomposable pro-

jective in mod A, and i in some index set Θ. Then M corresponds in

ΣA to the pair M,U , where U i Θ S i . The reason is very sim-

ple: HomC τCP i ,M 1 HomC P i ,M HomA P i ,M , with

C CA.

The complex ΣA should be viewed as a convenient index scheme26 for

the set of cluster tilted algebras obtained from the hereditary artin al-

gebras in the similarity class of A. Any maximal simplex of σA is a

cluster-tilting object in CA, and thus we can attach to it its endomor-

phism ring. Let us redraw the complex ΣA for the path algebra A of the

quiver , so that the different vertices and triangles are better

seen:

There are two kinds of vertices, having either 4 or 5 neighbours. The

vertices with 5 neighbours form two triangles (the bottom and the top

triangle), and these are the cluster-tilting objects with endomorphism

ring of infinite global dimension. The remaining triangles yield heredi-

tary endomorphism rings and again, there are two kinds: The quiver of

the endomorphism ring may have one sink and one source, these rings

are given by the six triangles which have an edge in common with the

bottom or the top triangle. Else, the endomorphism ring is hereditary

and the radical square is zero: these rings correspond to the remaining

six triangles:

26 But we should also mention the following: The set of isomorphism classes of
basic cluster-tilting objects in CA is no longer partially ordered. In fact, given
an almost complete partial cluster-tilting object T and its two complements X
and Y , there are triangles X T Y and Y T X with
T , T add T .
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Consider an almost complete partial cluster-tilting object T in C CA.

As we have mentioned, there are precisely two complements for T , say

E and E . Let T T E, and T T E . Thus, there are given two

cluster-tilted algebras B EndC T , and B EndC T , we may call

them adjacent, this corresponds to the position of T and T in the com-

plex ΣA. We can identify CA T with modB, and CA T with mod B

We saw that E as an indecomposable direct summand of T yields an

indecomposable projective B-module P τ 1
C E and an indecomposable

injective B-module I τCE, such that soc I topP. Since T E is a

cluster-tilting object, it is not difficult to show that Hom
B

P ,E 0

for any indecomposable projective B-module P P . But this implies

that E is identified under the equivalence of CA T and modB with

the simple B-module which is the socle of I and the top of P . In the

same way, we see that E is a simple B -module, namely the top of the

B -module P τ 1
C E and the socle of the indecomposable injective

B -module I τCE . Thus, there is the following sequence of identifica-

tions:

mod B addE CA add T E

CA add T E mod B addE .

Altogether this means that artin algebras B and B which are adjacent,

are nearly Morita equivalent [10]. We had promised to the reader, that

we will return to the hammock configuration P, S, I , where S is a

simple B-module, P P S its projective cover, and I I S its

injective envelope: but this is the present setting. Using the cluster

category notation, we can write P τ 1
C E, I τCE, and then S E ,

where E,E are complements to an almost complete partial cluster-

tilting object T . When we form the category modB addS , the killing

of the simple B-module S creates a hole in mod B. From the hammock

Hom P, in modB the following parts survive:
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Note that the new hole is of the same nature as the hole between I and P

(which was created when we started from the cluster category C, killing

the object E). Indeed, one may fill alternatively one of the two holes

and obtains modB, or modB , respectively.

Altogether, we see: A cluster category C CA has a lot of nice factor

categories which are abelian (the module categories mod B), and one

should regard C as being obtained from patching together the various

factor categories in the same way as manifolds are built up from open

subsets by specifying the identification maps of two such subsets along

what will become their intersection. The patching process for the cat-

egories mod B is done via the nearly Morita equivalences for adjacent

tilting objects27 .

The reader will have noticed that this exchange process for adja-

cent algebras generalizes the BGP-reflection functors (and the APR-

tilting functors) to vertices which are not sinks or sources. Indeed, for

B EndC T E , and B EndC T E , the indecomposable direct

summand E of T E corresponds to a vertex of the quiver of B, and

similarly, E corresponds to a vertex of the quiver of B . In the BGP and

the APR setting, one of the modules E,E is simple projective, the other

one is simple injective — here now E and E are arbitrary exceptional

modules28 .

This concludes our attempt to report about some of the new results in

tilting theory which are based on cluster categories. Let us summerize

the importance of this development. First of all, the cluster tilted al-

gebras provide a nice depository for storing the modules which are lost

when we pass from hereditary artin algebras to tilted algebras; there is

27 It seems that there is not yet any kind of axiomatic approach to this new patching
process.

28 A direct description of this reflection process seems to be still missing. It will

require a proper understanding of all the cluster tilted algebras B with n B 3.
A lot is already known about such algebras, see [11].
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a magic bimodule which controls the situation. We obtain in this way

a wealth of algebras whose module categories are described by the root

system of a Kac-Moody Lie-algebra. These new algebras are no longer

hereditary, but are still of Gorenstein dimension at most 1. For the class

of cluster tilted algebras, there is a reflection process at any vertex of the

quiver, not only at sinks and sources. This is a powerful generalization

of the APR-tilting functors (thus also of the BGP-reflection functors),

and adjacent cluster tilted algebras are nearly Morita equivalent. The

index set for this reflection process is the simplicial complex ΣA and

the introduction of this simplicial complex solved also another riddle of

tilting theory: it provides a neat way of enlarging the simplicial com-

plex of tilting A-modules in order to get rid of its boundary. We have

mentioned in Part 1 that both the missing modules problem as well as

the boundary problem concern the module category, but disappear on

the level of derived categories. Thus it is not too surprising that derived

categories play a role: as it has turned out, the cluster categories, as

suitable orbit categories of the corresponding derived categories, are the

decisive new objects. These are again triangulated categories, and are to

be considered as the universal structure behind all the tilted and cluster

tilted algebras obtained from a single hereditary artin algebra A (and

the hereditary artin algebras similar to A).

3.4 Appendix: Cluster algebras

Finally we should speak about the source of all these developments, the

introduction of cluster algebras by Fomin and Zelevinsky. But we are

hesitant, for two reasons: first, there is our complete lack of proper ex-

pertise, but also it means that we leave the playground of tilting theory.

Thus this will be just an appendix to the appendix. The relationship be-

tween cluster algebras on the one hand, and the representation theory of

hereditary artin algebras and cluster tilted algebras on the other hand is

fascinating, but also very subtle29 . At first, one observed certain analo-

gies and coincidences. Then there was an experimental period, with

29 Since this report is written for the Handbook of Tilting Theory, we are only
concerned with the relationship of the cluster algebras to tilting theory. There
is a second relationship to the representation theory of artin algebras, namely
to Hall algebras, as found by Caldero and Chapoton [15], and Caldero-Keller
[16, 17] , see also Hubery [31]. And there are numerous interactions between
cluster theory and many different parts of mathematics. But all this lies beyond
the scope of this volume.
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many surprising findings (for example, that the Happel-Vossieck list of

tame concealed algebras corresponds perfectly to the Seven list of mini-

mal infinite cluster algebras [47], as explained in [14]). In the meantime,

many applications of cluster-tilted algebras to cluster algebras have been

found [13, 9], and the use of Hall algebra methods provides a conceptual

understanding of this relationship [15, 16, 17, 31].

Here is at least a short indication what cluster algebras are. As we

said already, the cluster algebras are (commutative) integral domains.

The cluster algebras we are interested in (those related to hereditary

artin algebras)30 are finitely generated (this means finitely generated

“over nothing”, say over Z), thus they can be considered as subrings of a

finitely generated function field Q x1, . . . , xn over the rational numbers

Q. This is the way they usually are presented in the literature (but

the finite generation is often not stressed). In fact, one of the main

theorems of cluster theory asserts that we deal with subrings of the

ring of Laurent polynomials Z x 1
1 , . . . , x 1

n (this is the subring of all

elements of the form p
q

where p is in the polynomial ring Z x1, . . . , xn

and q is a monomial in the variables x1, . . . , xn).

Since we deal with a noetherian integral domain, the reader may expect

to be confronted with problems in algebraic geometry, or, since we work

over Z with those of arithmetical geometry. But this was not the primary

interest. Instead, the cluster theory belongs in some sense to algebraic

combinatorics, and the starting question concerns the existence of a nice

Z-basis of such a cluster algebra, say similar to all the assertions about

canonical bases in Lie theory.

What are clusters? Recall that a cluster algebra is a subring of

Z x 1
1 , . . . , x 1

n . What one is looking for is a convenient Z-basis of

the cluster algebra. One may assume that the elements of the basis are

written in the form p
q
, where p Z x1, . . . , xn is not divisible by the

variables x1, . . . , xn and q xd1

1 xdn
n with exponents di Z; the Lau-

rent monomial q is said to be the denominator31 of p
q

and one may call

dim q d1, . . . , dn its dimension vector. There seems to be an induc-

tive procedure to produce at least a part of a Z-basis by first obtaining

the “cluster variables”, and then forming monomials of the cluster vari-

ables belonging to a fixed cluster. At least, this works for the cluster

30 these are the so-called acylic cluster algebras [6].
31 Note that this means that the variable xi itself will be rewritten in the form

1 x 1

i ; its denominator is q x 1

i .
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algebras of finite type and in this case one actually obtains a complete

Z-basis. One of the main topics discussed in cluster theory concerns the

shape of the cluster variables in general.

Consider the case of the path algebra of a finite quiver Q without ori-

ented cycles. According to Caldero-Keller [17], the simplicial complex

ΣA with A kQ can be identified with the cluster complex correspond-

ing to Q. Under this correspondence, the cluster variables correspond to

the exceptional A-modules and the elements of the form 0, S . When

we introduced the simplicial complex ΣA, the maximal simplices were

labeled M,U with M a basic tilting module in a Serre subcategory U

of mod A. Recall that such an n 1 -simplex M,U in ΣA is equipped

with n linear forms p1, . . . , pn on K0 A such that an A-module N with-

out self-extensions belongs to addM if and only if ϕi dimN 0, for

1 i n. And there is the parallel assertion: A cluster monomial with

denominator q belongs to the cluster corresponding to M,U if and only

if ϕi dim q 0, for 1 i n.

Here are the cluster variables for the cluster algebra of type A3, inserted

as the vertices of the cluster complex ΣA:
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References. In order to avoid a too long list of references, we tried to re-

strict to the new developments. We hope that further papers mentioned

throughout our presentation can be identified well using the appropriate

chapters of this Handbook as well as standard lists of references. But

also concerning the cluster approach, there are many more papers of

interest and most are still preprints (see the arXiv). Of special interest

should be the survey by Buan and Marsh [7].
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