INFINITE LENGTH MODULES.
SOME EXAMPLES AS INTRODUCTION.

CLAUS MICHAEL RINGEL

The aim of this introduction is to outline the general setting and to exhibit some
examples, in order to show interesting features of infinite length modules, but also
to point out the relevance of these features in representation theory. We try to
present examples as explicit as possible, in contrast to the quite common attitude
of being satisfied with the mere existence, an attitude which indicates the desire to
rate such features as unpleasant and to avoid them. In contrast, the phenomena
we deal with should be considered as typical and as exciting.

The main references to be quoted are the books by Jensen and Lenzing [JL)]
and Prest [P1], but also volume 2 of Faith [Fa2]. The reader will realize that we
follow closely the path of the Trondheim lectures of Crawley-Boevey [CB4] and
we have to admit that we are strongly indebted to his mathematical insight. The
text is written to be accessible even for a neophyte. We hope that some of the
considerations, in particular several examples, are of interest for a wider audience,
as we try to present as easy as possible some gems which seem to be hidden in the
literature. Part of the text may be rated as “descriptive mathematics”, definitely
not fitting into the usual pattern of “definition — theorem — proof”, but we hope
that the topics presented in this way will be illuminating and will provide a better
understanding of some problems in representation theory.

General conventions: Always, k& will be a field. We denote by C an inclusion
of sets, and we write C in case the inclusion is proper. Recall that a quiver
Q = (Qo, Q1,s,t) consists of a set Qy (its elements are called vertices) and a set
Q1 (of arrows); for every arrow a € @1, s(«a) is its starting point, t(a) its end
point.

If R is a ring, we consider mainly left modules and we denote by Mod R
the category of all (left) R-modules, by mod R the full subcategory of all finitely
presented ones. The module rR will be called the regular representation of R.

We denote by N the set of natural numbers {0,1,2,...}, by Z the integers,
and by Q the rational numbers. For any natural number n > 2, let Z,) be the
set of rational numbers 7 such that 1 is the only positive integer which divides
both b and n.

The author is indebted to P.N. Anh, P. Draxler, L. Hille, H. Krause and J.

Schroer for helpful comments concerning the presentation.
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Finite length modules

Composition series. Let R be a ring and M an R-module. A composition
series of M is a finite sequence of submodules

() 0=MyCM; C---CM, 1 CM,=M

which cannot be refined (this means that if N is a submodule of M with M;_; C
N C M;, then M;_1 = N or N = M;). Of course, a sequence (x) of submodules
is a composition series if and only of all the factors M;/M; 1, for 1 < i < n
are simple R-modules. Given a composition series (x) of M, then the modules
M;/M;_ are called the composition factors of M and n = |M| is said to be its
length. If M has a composition series, then M is said to be of finite length. The
Theorem of Jordan-Holder asserts that the length of a finite length module
15 uniquely determined, and that also the composition factors are unique in the
following sense: Given a second composition series

O0=M,cM, C---CM,_,CM, =M,

there is a permutation o of {1,2,...,n} such that Mj/M]_ | ~ M,y /My@y—1.
We can phrase this uniqueness assertion also as follows: Given a simple R-module
S and a composition series (x), then the number of indices i with M;/M;_1 ~ S
only depends on M and S and not on the chosen composition series (x); this
number is called the Jordan-Hélder multiplicity of S in M . For further reference,
we have given in detail the definition of a finite length module, even though the
book exhibited here — as the title makes clear — is devoted to modules which
are just not of finite length. But the aim of the book is, on the one hand, the
comparison of properties of finite length modules with those of general ones, and,
on the other hand, to stress the need for using infinite length modules in situations
which seem to be confined to finite length modules.

The term finite length module obviously refers to the existence of a com-
position series and to its length. But it is worthwhile to note that there exists
a characterization of these modules which does not refer to the actual length



SOME EXAMPLES AS INTRODUCTION 3

and which does not give any hint at all what the length of such a module M
could be: The module M has finite length if and only if M is both artinian
and noetherian. (Recall that M is said to be noetherian - or to satisfy the as-
cending chain condition for submodules - provided for every chain of submod-
ules My € My C --- C M; € M;4; € ---  there exists some number n
with M,, = M,11; similarly, M is said to be artinian - or to satisfy the de-
scending chain condition for submodules - provided for any chain of submod-
ules My O My O --- O M; O M;y1 O ---  there exists some number n with
M,, = M,+1. The properties of being artinian and noetherian are dual to each
other, but there is a characterization of the noetherian modules for which no neat
dual property can be named: a module M is noetherian if and only if all submod-
ules are finitely generated.)

Let us consider the interrelation between the various composition series of
a finite length module M . Starting with a composition series (x), one looks at
two consecutive composition factors M;/M; 1, M;,1/M; and the corresponding
length 2 module M;,1/M;_1. In case the exact sequence

0 — Mi/Mi—l — Mi—i—l/Mi—l — Mi+1/Mi — O

splits, we find some submodule M/ # M; with M;_y C M/ C M;;1, and we
obtain a different composition series

OZM()C"'CMi_lCM{CMi_HC"'CMn:M.

By a sequence of such changes, we obtain from the given composition series any
other composition series (Proof: Given two composition sequences (M;)o<i<p, and
(M/)o<i<n of a module M, we may assume that M, 1 # M) _,, otherwise use
induction. Take any composition series (M;)o<i<n—2 of M,_1 N M]_,. The
submodules M; and M/ provide two composition series for M,,_, and similarly,
the submodules M/" and M/ provide two composition series of M],_;. It remains
to use induction.)

Direct decompositions. Any finite length module can be written as the direct
sum of a finite number of indecomposable! modules. Now, it is of great importance
that such a decomposition is essentially unique, this follows from the following fact:
The endomorphism ring of an indecomposable module of finite length is a local ring
(recall that a ring R is local provided (it is non-zero and) the set of non-invertible
elements of R is an ideal). The only idempotents of a local ring are 0 and 1;
thus a module with a local endomorphism ring necessarily is indecomposable. The
uniqueness statement is known as the Theorem of Krull-Remak-Schmidt?:
Let M = @;~, M; = @j_, Nj, such that all the modules M; have local endo-
morphism rings, 1 < ¢ < m, and the modules N; are indecomposable, 1 < j <n.

1" A module M is said to be indecomposable provided M is non-zero and there
is no direct sum decomposition M = M; & M, with both My, M5 non-zero.
2 This theorem sometimes is referred just as the Krull-Schmidt Theorem, and
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Then n = m and there is a permutation o with N; ~ Mg(j) forall 1 < j<m.
Actually, the corresponding result for arbitrary (not necessarily finite) direct sums
is also true, this is the Theorem of Azumaya: Let M = P,c; M; = D, ; N;,
such that all the module M; have local endomorphism rings, © € I, and the mod-
ules N; are indecomposable, j € J. Then there is a bijection o: J — I such that
Nj >~ Mgy forall j€J.

The Krull-Remak-Schmidt theorem yields a reduction of the study of finite
length modules to the indecomposable ones, and one of the main tasks of present
representation theory is to describe the shape of indecomposable modules of finite
length, to look for invariants which allow to read off their properties. In addition
to the knowledge of the simple R-modules S5;, one needs to know the possible
extensions of these modules, thus the extension groups Ext}%(Si, S;), for all simple
R-modules S;, S;. This knowledge is collected in the quiver of R, its vertices are
the isomorphism classes [S;] of the simple R-modules, and one draws an arrow
[S;] — [S;] provided Extp(Si,S;) # 0. Actually, in case we deal with a k-algebra
and End(S;) = k = End(S;), one will draw not just one arrow, but d arrows
[Si] — [S;], where d is the k-dimension of Ext}(S;,S;); in general one may
endow the arrow [S;] — [S;] with the End(S;)-End(S;)-bimodule Extg(S;, S;).

Serial modules. Since ancient times, the modules whose submodule lattice is
a chain, the so called serial (or uniserial) modules, have attracted a lot of in-
terest, these are those modules M such that any pair Ni, N» of submodules is
comparable: we have N; C Ny or Ny C N;.

First of all, for some quite important rings, all the indecomposable finite
length modules are serial: this includes the two most prominent commutative
rings, the integers and the polynomial ring in one variable (and the necessity
to use their finite length modules should be out of doubt), more generally, all
Dedekind rings, but also, in the non-commutative realm, the full rings of upper
triangular matrices over some field. A second reason is a very trivial one: any
indecomposable module of length 2 is serial, and the R-modules of length 2 provide
the information exhibited in the quiver of R. However, a general ring, even a
general finite-dimensional k-algebra may have few serial modules: for example,
consider the exterior algebra A, (k) (with generators Xi,..., X, and relations
X:X;+X;X; =0 and X? = 0 for all 4,5). Then the only serial modules are
the indecomposable modules of length 1 and 2. In particular, if J is the radical
of A,(k), then J? annihilates all the serial modules. Thus, the structure of the
algebra is not determined by the serial modules.

Uniform and couniform modules. Recall that a module M is said to be
uniform provided M is non-zero, and the intersection of any two non-zero sub-

we also did so in earlier publications. But one should note that already in 1911
Remak was aware of this kind of results, whereas the relevant papers by Krull and
Schmidt are from 1925 and 1928, respectively. The Germans took his life (he died
in Auschwitz in 1942), we should not take also his mathematical insight.
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modules of M is non-zero again. Thus, M is uniform if and only if M is non-zero
and any non-zero submodule of M is indecomposable, again. An injective inde-
composable module always has to be uniform, but usually there will exist many
indecomposable modules which are not uniform. A module is uniform if and only
if its injective envelope is indecomposable. We obtain all uniform R-modules for
a ring R as follows: start with all cyclic uniform R-modules U;, and take all
non-zero submodules of their injective envelopes; in this way, we see that the iso-
morphism classes of uniform modules form a set. There is the dual notion of a
couniform module: M is said to be couniform provided the following condition
is satisfied: if M;, My are submodules with M = M; + Ms, then M = M; or
M = M,. Serial modules are both uniform and couniform. Recall that a sub-
module N of the module M is said to be essential provided the only submodule
U C M with NNU =0 is the zero module U = 0. Dually, N is said to be small
in M provided the only submodule V C M with N+V =M is V = M itself. A
non-zero module is uniform if and only if every non-zero submodule is essential;
it is couniform if any only if every proper submodule is small.

A module M with an essential simple submodule is uniform. In this case,
there is a non-zero submodule M; which is contained in any non-zero submodule.
More generally, one may be interested in modules which have a chain of non-zero
submodules M = My D M7 O M5 DO --- indexed by the natural numbers such that
any non-zero submodule U of M contains at least one of the modules M; (and
then almost all). We say that such a module is N-uniform. If R is a Dedekind ring
with only countably many prime ideals (for example R = Z, or R = k[T] where
k is a countable field), then the module gR is N-uniform. (Proof: Let Py, P, ...
be all the prime ideals and form M; = Pj"'Pi~?... P} | = [lic;<i P77 Then
these ideals form a chain, and any non-zero ideal contains one of them.)

Diamonds. An important class of modules which are both uniform and couniform
should be mentioned: We call a module D a diamond provided it has a simple
essential submodule and also a small maximal submodule (such modules look
really quite like diamonds, and their value in ring and module theory is that
of diamonds). Let us show that for a semiperfect ring, the direct sum of all
diamonds, one from each isomorphism class, is a faithful module: For any ideal 1
of a semiperfect ring R, let D(I) be the set of diamonds annihilated by I. Then
the intersection of the annihilators of the diamonds in D(I) is I. (Proof: Let
I’ be the intersection of the annihilators of all the modules in D(I). Of course,
I CI'. Let a be an element of R\ I, we show that it does not belong to I'.
Choose a left ideal L with I C L C R such that a ¢ L, and maximal with this
property, here we use the axiom of choice. It is well-known and easy to see that
R/L has a unique minimal submodule, namely the left module generated by the
residue class of a, and this submodule is contained in any non-zero submodule.
Since R is semiperfect, any module is a sum of local modules, in particular this is
true for R/L. Let R/L = > M;, with local modules M;. All these modules M;
are diamonds. Since a-(1+ L) =a+ L # L, we see that R/L is not annihilated
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by a. It follows that there exists some ¢ such that M; is not annihilated by a.
On the other hand, R/L and therefore all modules M; are annihilated by I. This
shows that a does not belong to I’.)

Let us assume for a moment that R is a finite-dimensional algebra (or, more
generally, an artin algebra). Note that all indecomposable modules of length 2
are diamonds, thus it is quite usual to have infinitely many isomorphism classes of
diamonds. In case there are only finitely many isomorphism classes of indecompos-
able R-modules of finite length, the algebra R is said to be representation-finite.
For a representation-finite algebra the shape of the possible diamonds is very
restricted?: For example, any semisimple subfactor of a diamond is of length at
most 3. Also, for a representation-finite algebra R, diamonds D, D’ with the same
Loewy length, and with isomorphic top and isomorphic socle are isomorphic?.

1. Modules in general.

Let us consider now an arbitrary R-module M, also without any restriction on
the ring R.

Composition factors. Note that any module M has sufficiently many simple
subfactors, in the following sense: given a non-zero element m € M, there are
submodules M” C M’ C M with M'/M" simple, such that m € M’ \ M".

Generalizing the concept of a composition series, one may look for chains of
submodules M; of M indexed by ¢ € I, where [ is one of the sets N, —N, Z, with
M;_1 C M;, such that the factors M;/M;_, are simple, for all i, with ﬂz’eI M; =0
and | J;c; M; = M.

First, consider the case of an ascending chain, thus I = N: in this case,
the corresponding factors are again uniquely determined, as in the Jordan-Holder-
Theorem: Assume that there is given a second chain M/, ¢ € N, with the corre-

sponding properties. Consider the index j € N. The submodule M; is contained

2 Let us assume that R is a k-algebra, where k is an algebraically closed field.
Using covering theory [GR], we can assume that R is representation-directed. In
addition, we may assume that we deal with a faithful diamond D. But then D is
both projective and injective and R is the incidence algebra of a finite poset with
one minimal and one maximal element. The possible cases are well-known: For
example, if there are more than 13 simple R-modules, then there are just seven
possibilities labelled (Bol), (Bolb), (Bol6), (Bol7), (Bol9), (Bo20), (Bo21) in
[R4]. Note that all the Jordan-Holder multiplicities of such a module D are equal
to 1 and one obtains in this way a maximal positive root of the corresponding
quadratic form. Conversely, Dréaxler [DI] has observed that any representation-
directed k-algebra which has a maximal positive root with all coefficients equal to
1 is obtained from an algebra with a faithful indecomposable projective-injective
module by a change of orientation.

3 In case there do exist non-isomorphic diamonds D, D’ with the same Loewy
length, isomorphic top and isomorphic socle, then it is easy to show that R is even
of “strongly unbounded representation type”.
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in M=M J’., and since M; is finitely generated, it is contained already in some
M ]’-, ; but M J'-, is a finite length module, thus the composition factors of M; occur
as composition factors of M ]{,. It follows that for any simple module S, the num-
ber of indices i with M;/M; 1 ~ S is smaller or equal to the number of factors
M!/M/! | ~ S. By symmetry, these numbers actually are equal, and this is what
we wanted to show.

In contrast, for descending chains (I = —N) we cannot expect a correspond-
ing assertion, as already the case R = 7Z shows: It is easy to write down all
possible descending chains with simple factors: just pick any sequence pi,po, ...
of prime numbers and take M_; = py---p;Z. Then M_;/M_;, 1 ~ Z/Zp;11 .
For example, we can take the constant sequences 2,2,... or 3,3,...; they will
not have any common factor. We also should note another fact: both Z and its
p-adic completion Zp have descending chains M;, i € —N with all the factors
M;/M; 1 ~ 7Z/Zp; but the sets Z and its p-adic completion Zp have different
cardinalities. Of course, similar features occur for the case I = Z. Here another
example: again, take R = Z and consider the Z-module Q. Given a chain M;
i € Z of submodules with simple factors such that (), M; = 0 and |J, M; = Q,
we obtain via M;/M; 1 ~ 7Z/Zp; a family p; of prime numbers indexed by i € Z
such that for any prime number p and any natural number n, there is an index
1 > n with p; = p. And conversely, any such indexed family of prime numbers
occurs in this way.

Direct decompositions. Concerning direct decompositions of modules, quite
surprising phenomena are possible:

e Failure of cancelation. The existence of indecomposable modules M,
M17 M2 such that MO D M1 ~ MO @D MQ, but M1 ;ﬁ MQ.

e Failure of the Schréder-Bernstein property. The existence of non-
isomorphic modules M, N with monomorphisms M — N and N — M.

e Non-uniqueness of roots. The existence of non-isomorphic modules
M, N such that with M*® ~ N* for some s > 2.

e Isomorphism of specified powers. The existence of a module M such
that M® ~ M? for natural numbers s,t if and only if s = ¢ modulo some fixed
number n.

e Decompositions into an arbitrary finite number of indecompos-
ables. The existence of a module M which can be written as the direct sum of
t indecomposable modules for any ¢t > 2, but not as the direct sum of infinitely
many non-zero modules.

e Superdecomposability. The existence of a non-zero module M such
that no non-zero direct summand of M is indecomposable (thus M itself is not
indecomposable, and if we take any non-trivial direct decomposition M = M; @
My, then both direct summands M7, My can be further decomposed).

e Finiteness of direct decompositions, but any direct decomposition
involves decomposable modules. The existence of a module M with the
following property: If M = @, ; M; is a direct decomposition with non-zero
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modules M;, then the index set [ is finite, but at least one of the modules M; is
decomposable.

e Existence of large indecomposables. The existence of indecomposable
modules which have arbitrarily large cardinality.

The free algebra k(X,Y) in two variables has such modules, but many other
algebras also. Sometimes, such modules are called “pathological”, but this term
is misleading: what is called “pathological” seems to be the general behaviour of
modules, and why should we think of a general module to be pathological? Let
us exhibit some examples which are easy to comprehend and to remember. In
addition, we want to formulate some consequences.

Modules and their endomorphism rings. Properties concerning the possi-
ble direct decompositions of a module M are reflected in its endomorphism ring
End(M), more precisely in the set of idempotents in End(M ). Namely, the direct
sum decompositions M = M; & M, correspond bijectively to the idempotents
e € End(M) (given such an idempotent e, let M; = eM and My = (1 —e)M ).
Thus, the study of modules with prescribed behaviour with respect to direct de-
compositions is part of the question what kind of rings can be realized as endo-
morphism rings of modules. This topic will be discussed in detail by Eklof in his
contribution [E].

Indecomposable modules. Let us start with the indecomposable modules them-
selves. Of course, a non-zero module M is indecomposable if and only if the only
idempotents in End(M) are the elements 0 and 1.

One of the assumptions in the theorem of Krull-Remak-Schmidt is that one
deals with modules M; with local endomorphism rings. It should be kept in mind
that the conclusion of the theorem may hold also in case some of the endomorphism
rings are not local. For example, the finitely generated abelian groups are direct
sums of indecomposable torsion groups (they are of finite length, thus have local
endomorphism rings) and copies of Z (here the endomorphism ring is Z again,
thus a ring which is not local). Given a module M, the full force of End(M)
being local is expressed in the exchange property [CJ,Wa|: If there is a split
embedding M C N and N = @,.; N; with arbitrary modules N;, then there
exist submodules N/ C N; such that N = M & (,.; N/) (and these submodules
N/ are necessarily direct summands of N;).

There do exist indecomposable modules whose endomorphism rings are not
local, but still semilocal; such modules are discussed by Facchini [Fc3] and Pi-
menov and Yakovlev [PY]; they share some of the properties of modules with local
endomorphism rings. An artinian indecomposable module always has a semilocal
endomorphism ring [CD]. Let us quote from [PY] an example of an artinian mod-

ules which is cyclic, but not of finite length*: Take the ring R = {% %} and

4 Observe that for R being commutative, cyclic artinian modules always are
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consider the indecomposable projective module P and its submodules U and V',

where
_|Q 1o ~[o
=3 2 vele) 2 vl )

where p is a prime number. We are interested in the factor module P/U. First
of all, as a factor module of P, this is a cyclic module. Second, it is artinian and
of infinite length: consider the filtration 0 C V/U C P/U. Here, (P/U)/(V/U) =
P/V is a simple R-module, whereas V/U is annihilated by P (this is a twosided
ideal), thus an R/P-module and R/P = 7Z, and actually, V/U is just a Priifer
group. Also, it is easy to check that End(P/U) is equal to Z,). — We may do the
same construction, replacing p by a product pg of two different prime numbers,

( f/ O

Again, P/U’ is cyclic and artinian (V/U’ is the direct sum of two Priifer groups),
and this time End(P/U’) = Z(,q), thus we obtain a semilocal ring which is not
local®. Note that the semilocal ring End(P/U’) has precisely two maximal ideals
and is a domain; in particular, it is not semiperfect. In the same way, replacing
p by a product of n pairwise different prime numbers, we obtain a cyclic artinian
module whose endomorphism ring is a semilocal domain with precisely n maximal
ideals.

Large indecomposables. Using transfinite induction, Fuchs (1959) has con-
structed large indecomposable abelian groups, namely groups whose cardinality
is any cardinal number less than the first strongly inaccessible cardinal number
(a cardinal number A is said to be strongly inaccessible, provided first: A > g,
second: 2# < A for every cardinal number p < A, and third: »,.; p; < A, when-
ever I is an index set of cardinality smaller than A and also all p; < \). These
strongly inaccessible cardinal numbers are huge, and their existence is independent
of the usual axioms of set theory. On the other hand, in 1973, Shelah was able
to remove this cardinality restriction. Shelah’s methods will be presented in this
volume by Gébel [G6]. To quote from his introduction: these are “simple, but

of finite length. The reason is that in the commutative case, any cyclic module
is really a factor ring, and artinian rings always are noetherian. Let us stress
the importance of understanding cyclic artinian modules in case one is interested
in artinian modules in general: after all, every module is the sum of its cyclic
submodules, thus an artinian one is the sum of artinian cyclic modules. The usual
predominance of commutative ring theory is here a clear source for misdirection:
the possible existence of non-trivial artinian modules is one of the intrinsic features
of non-commutative algebra.

® In [Wi], 31.14, Wisbauer claims that the endomorphism ring of an indecom-
posable artinian module is local.
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clever counting arguments”; they are put together in “Shelah’s Black Box” and
designed for applications in different areas of mathematics.

Formatted modules. We suggest to call a module M formatted provided it
contains an essential submodule which is a direct sum of uniform modules. Note
that a module M is formatted if and only if every non-zero submodule of M
contains a uniform submodule (for the proof, use the lemma of Zorn). As a
consequence, the class of formatted modules is closed under submodules.

Let M be a formatted module, thus there is an essential submodule @ie 1 Ui
with uniform modules U;. Note that the cardinality of I is an invariant of M,
which may be called its uniform dimension (or Goldie dimension). (Proof: Con-
sider the set U of uniform submodules of an module. We call ) € U dependent
on P;(i € T) provided @ intersects Y P; non trivially. A family in U is said to be
independent, if no element is dependent on the rest. With these definitions, the set
U satisfies the axioms of an abstract dependence relation [Cnl: First, any element
of a set is dependent on the set. Second: If Z is dependent on the independent
set Y and each element of Y is dependent on X, then Z is dependent on X.
And finally, the exchange property: If Y is dependent on the set {Xi,...,X,},
but not on {Xo,..., X, }, then X; is dependent on {Y, X,,..., X,,}. For such a
dependence relation U, the maximal independent subsets of U are precisely the
minimal spanning sets [Cn, 1.4.1] (a spanning set is a subset of U such that every
element of U is dependent on it) — such a set is called a basis, and it is a general
assertion that the cardinality of a basis is an invariant.)

It is easy to construct indecomposable modules of infinite uniform dimension.

[I;] 2] of the ring of 2x2 matrices over k[T]. There

are up to isomorphism two indecomposable projective R-modules: one is simple,
the other one is a local module of infinite uniform dimension.

In noetherian ring theory, the modules of finite uniform dimension play a
decisive role, these are just those modules M which do not contain an infinite direct
sum of non-zero submodules, as one easily verifies. As a trivial consequence, one
sees that any noetherian module has finite uniform dimension, thus is an essential
extension of a finite direct sum of uniform modules. More generally, any module
M which is generated by noetherian modules is formatted®. (Proof: Assume that
M is generated by noetherian submodules M; with ¢ € I. Note that the sum
of two noetherian submodules is again noetherian, thus we may assume that the
submodules M; form a directed family. If U is any non-zero submodule of M,
then U =UNM=UnN> M; =>(UnNM,;) yields some i € I with U N M;
non-zero. Now, U N M; is noetherian, since it is a submodule of M;, thus U N M;
contains some uniform submodule. This shows that U has a uniform submodule.)

As a consequence, given a left noetherian ring R, then any R-module is
formatted. The same is true in case R is semi-artinian, since the semi-artinian

Consider the subring R = [ I

6 Warning: In general, the sum of two formatted submodules does not have to
be formatted, an example will be given below.
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rings are characterized by the property that every non-zero module has a simple
submodule.

Discrete modules. Next, we want to discuss the question of the existence of
indecomposable direct summands. A module M is said to be discrete provided
every non-zero direct summand of M has an indecomposable direct summand. As
we will see below, for injective modules the formatted ones are just the discrete
ones. For non-injective modules, being formatted and being discrete are completely
different properties: For an artinian ring 7', all the R-modules are formatted, but
any strictly wild finite-dimensional algebra has many superdecomposable modules.
This shows that a formatted module does not have to be discrete. Conversely,
it is easy to construct local modules which do not contain uniform submodules
(this provides an indecomposable, thus discrete module which is not formatted):
k()?, v) k;()(('), Y) , where k(X,Y) is the free
algebra in two generators. The indecomposable projective R-module given by
the first column is local and has no uniform submodule. Namely, observe that
for any element a € k(X,Y), the two elements Xa and Ya of k(X,Y) generate
submodules with zero intersection:

(X, Y)Xa N k(X,Y)Ya = 0.

consider the matrix algebra R =

Superdecomposable modules. A module M is said to be superdecomposable
provided no direct summand of M is indecomposable. Note that the class of
superdecomposable modules is closed under direct summands.

Superdecomposable modules may look surprising at the first sight, but there
are at least two natural examples to be mentioned. The first is the injective
envelope I of the regular representation j(x yyk(X,Y) of the free algebra k(X,Y)
in two variables. Given a non-zero direct summand N of I, the intersection
NNEk(X,Y) is non-zero. Take an element a in this intersection, then the injective
hull of £(X,Y)Xa is a proper non-zero direct summand of N. This shows that I
is superdecomposable.

Another example of a superdecomposable module is the regular representa-
tion of the ring C(X) of all continuous functions X — R, where X is the Cantor
discontinuum (or any totally disconnected topological space X without isolated
points). As for any ring R, the direct summands of the regular representation
rR are of the form Re, where e is an idempotent in R. The idempotents e of
R correspond bijectively to the subsets of X which are both open and closed.
Note that we assume that X is totally disconnected and that there are no isolated
points. Thus, if X’ is any non-empty subset of X which is open and closed, then
X' can be written (in many ways) as the disjoint union of subsets which again are
open and closed.

Finiteness of direct decompositions, but any direct decomposition in-
volves decomposable modules. Let us stress that there do exist superde-
composable modules which cannot be written as infinite direct sums of non-zero
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modules. Actually, both examples presented above can be quoted. First, con-
sider the injective envelope I of the regular representation pR of the free algebra
R = k(X,Y) in two variables, and assume I = P, ;I;. The unit element 1g
belongs to a finite direct sum jeJr I;, where J' is a finite subset of J, but
then also R = R - 1p is contained in € jeJr I, thus also I. Similarly, consider
R =C(X), where X is totally disconnected without isolated points. If we assume
in addition that X is compact, then again we see that rpR cannot be written as
the direct sum of infinitely many non-zero submodules.
But there are also discrete modules with only finite direct decompositions,
but such that any direct decomposition involves decomposable modules. Consider
k0
kET] k
P(1) be the indecomposable projective R-module which is not simple. We denote
by I the injective envelope of P(1). Since the socle U of P(1) is an essential
submodule, it follows that U is essential in I. Also, Hom(I/U,I) = 0, thus the
intersection with U yields a bijection between the direct decompositions I = I'@I"”
and the direct decompositions of U. In particular, we see that I is a discrete
module. On the other hand, assume there is given a countable direct decomposition
I = P, I; with non-zero submodules I;. Note that I;NU # 0, thus I;NU contains
a simple submodule 5;. Of course, all these submodules S; are isomorphic to the
simple projective module P(2), thus €, .S; is isomorphic to U. In this way, we
obtain an injective map U — @, S; C €, I; = I. Using the injectivity of I, we
obtain an extension of f to a homomorphism f’: P(1) — €D, ;. But P(1) is
cyclic, thus the image of f’ is contained in a finite direct sum, a contradiction.
This shows that any direct decomposition of I has to be finite.

again the subring R = l } of the ring of 2 x 2 matrices over k[T] and let

Comparison of different direct decompositions. Let us return to the the-
orem of Krull-Remak-Schmidt: If M is a module whose endomorphism ring is
local, one has the following nice situation: if M occurs as a direct summand of a
module M’ and M’ can be decomposed in the form M’ = M{ @© M}, then M is
isomorphic to a direct summand of M; or Ms. This means that such a module
M behaves like a prime element when we consider the relation of being a direct
summand in analogy to the relation that one element divides another element in
a commutative ring.

We are going to exhibit some typical ways for obtaining modules My, M5, Ny,
Ny with an isomorphism M; & My ~ N7y ® N5. The aim is to provide examples
of indecomposable modules My, N1, Ny such that M; is a direct summand of
N7 @ N3, but not isomorphic to any one of the modules Ny, Ns.

(1) Let M be a projective module with submodules Ny, Ny such that Ny +
Ny = M. Let M’ = N1 N Ny. Then the inclusion maps ¢ give rise to an exact

sequence
L
— [v ]

0—-M — N &Ny —= M — 0,
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and, since M is projective, the sequence splits. Thus
M D M/ ~ N1 D NQ.

We consider the special case where R is an integral domain and consider the
regular representation M = rR. Given non-zero ideals Ni, Ny, then also M’ =
NN N3 is non-zero (an integral domain is a uniform module), thus all the modules
M, M’, N1, Ny are indecomposable.

Here are some typical cases. We may take as Ny, Ny any pair of two different
maximal ideals of an integral domain R, then clearly N; + No = R. For example,
let R = k[X,Y] be the polynomial ring in two variables, Ny = RX + RY, and
Ny = RX + R(Y —1). The submodules Ny, Ny are not cyclic; in particular, they
are not isomorphic to gR. Thus we see that rR is an indecomposable direct
summand of N1 ® N5, and not isomorphic to N7 or Ns.

Second, an example suggested by Mazorchuk: Let R be the subring of the
polynomial ring k[X] generated by X? and X3. Let Ny = R(X?+1) and Ny =
RX?+ RX3. Again we see that N7 + No = R. Note that Ny NNy = R(X*+ X?),
in particular, both N; and N; N N, are principal ideals, thus isomorphic, as R-
modules, to gpR. The isomorphism M @& M’ ~ N; & Ny can be rewritten in the
form

RR@RRZRR@NQ,

and N is not cyclic. A typical instance where cancelation fails.
(2) Consider a module with submodules 0 C U € M’ C M. There is the
following exact sequence:

1=

again inclusion maps are denoted by ¢, projection maps by 7. Let us assume that
the module M’ is both uniform and couniform, and, in addition?”, that there is a
monomorphism f: M — M’ and an epimorphism g: M’/U — M’. Under these
assumptions, the sequence splits, thus

[ V]

0— M Mea MU M/U — 0,

MM U~M &MU.

(Proof: Consider the endomorphism h = for—gon’ of M’. First, let us show
that h is a monomorphism. Note that Ker(h) N Ker(g o n’) is contained in the

" These additional assumptions imply that the given module M is isomorphic
to a proper submodule as well as a proper factor module of itself (note that an
artinian module is never isomorphic to any of its proper submodules, a noetherian
module is never isomorphic to any of its proper factor modules; thus, the modules
we are dealing with are neither artinian nor noetherian).
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kernel Ker(f o:) and Ker(f ot) = 0. Since M’ is uniform, and Ker(g o 7’) is
non-zero, it follows that Ker(h) = 0. Second, Im(f o) is a proper submodule of
M’ since both f and ¢ are monomorphism and at least ¢ is a proper inclusion.
Now, Im(fo¢)+Im(h) D Im(gon’) = M’'. Since M’ is couniform, it follows that

Im(h) = M’. This shows that h =[f g]o {—[;r’] is an isomorphism, thus the

sequence splits.)

The latter construction is the one used by Facchini in order to show that
the Krull-Remak-Schmidt property does not hold for finitely presented modules
over serial rings [Fcl,Fc2,Fe3], in this way solving a problem raised by Warfield.
Consider the ring

L)y Plp) O 0
r=|%» Zwy O 0
Q  Q  Zy gLy
Q Q Zy Zy

where p, ¢ are different primes. Denote by P(i), for 1 < ¢ < 4, the indecomposable
0

projective R-module given by the ¢th column, let V = (& and note the various
Q

inclusions of these modules: all are submodules of P(1). Here, on the left, is the
complete submodule lattice of P(1), this module P(1) is a serial module. On the
right, the module M = P(1)/P(4) is depicted and we have marked its submodules
U=P(3)/P(4) and M' = P(2)/P(4):

P e M = P(1)/P(4)
P(2 12Q M'= P(2)/P(4)
E(2)
pp(l)"E(l) AAAAAAAAA
V _ ......... .
P LT R
P(4)+ O 0= P(4)/P(4)
E(4)
qP(3)"E(3>
0 =

The following observation is of importance: The scalar multiplication by p maps
P(1) onto the submodule pP(1), with pP(1) C P(2) C P(1), and the factors
E(1) = P(1)/P(2) and E(2) = P(2)/pP(1) are simple. However pP(3) = P(3)
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and pP(4) = P(4), since p is invertible in Z4). Similarly, ¢P(1) = P(1), ¢P(2) =
P(2) and ¢P(3) C P(4) C P(3) with simple factors E(3) = P(3)/P(4) and
E(4) = P(4)/qP(3). As monomorphism f: M — M’ we take the multiplication
by p. As epimorphism g: M'/U — M’ we compose the isomorphism M'/U =
P(2)/P(3) — P(2)/qP(3) given by the multiplication with ¢ and the canonical
projection P(2)/qP(3) — P(2)/P(4). In this way, we see that all the requirements
needed are fulfilled and M @& M’ /U ~ M'@® M /U . The modules occurring in these
two direct decompositions have the following form:

M1pa) M/IUTR@) MTpe) M/UTe)
E(2) E(1) E(1) E(2)
1E(1) 1E(2) 1E(2) 1E(1)
1E(3) 1E(4) 1E(3) 1E(4)
1E@4) 1E(3) 1E@4) 1E(3)
1E() 1E() 1E() 1E()

What we see is a sort of partial exchange, we may describe it as follows: if we keep
the upper (noetherian) parts of the modules, then the lower (artinian) parts are
exchanged. Remember that for all these considerations, the essential ingredient
is the existence of a proper monomorphism M — M and a proper epimorphism
M — M ; here the scalar multiplications by p and by ¢ serve this purpose®. It
should also be remarked that the endomorphism ring of our module M is just
Z(pq)- In general [Fc3], the endomorphism ring of a serial module is semilocal
with at most two maximal ideals, one consists of all endomorphisms which are
not injective, the other of all endomorphisms which are not surjective, and any
proper one-sided ideal is contained in at least one of these ideals (these ideals may
coincide, as one knows from the indecomposable modules of finite length, but in
general they will not, a typical example is the module M considered above).

The isomorphism property for specified powers. Consider a module with
the isomorphism property for specified powers, say for n = 2. In particular, this
means that M 2 M & M, but M ~ M & M & M. Two consequences should be
mentioned: Consider the modules M and N = M @& M. The modules M , N are
non-isomorphic and have the following properties: First, M 1is a direct summand
of N and N is a direct summand of M (failure of the Schréoder-Bernstein prop-
erty). Second, the modules M & M and N @& N are isomorphic (non-uniqueness

8 Note that the existence of the scalar multiplications by p and by ¢ has the
consequence that all serial modules with top E(1) and socle E(3) are isomorphic.
It follows that the ring R has only finitely many isomorphism classes of serial
modules of infinite length. In contrast, if we deal with the similarly defined 4 x 4
matrix ring using only one prime number p = ¢, then there are infinitely many
isomorphism classes of serial modules of infinite length.
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of roots). In case we deal with abelian groups, thus with Z-modules, the ques-
tion whether non-isomorphic modules with one of these properties do exist, was
raised by Kaplansky [Ka] in 1954 as his two famous Test Problems; the existence
of non-isomorphic abelian groups M and N such that M & M and N & N are
isomorphic was shown by Jénsson in 1957, that of non-isomorphic abelian groups
M and N such that M is a direct summand of N and N is a direct summand
of M was shown by Sasiada in 1961. In 1964, Corner exhibited an abelian group
M which is not isomorphic to M @ M, but isomorphic to M & M & M. We refer
to Eklof’s contribution [E] in this volume which focuses the attention precisely to
this problem.

The non-uniqueness of roots is discussed in detail in the very nice booklet by
Lam [La] which just has appeared. He starts with a detailed discussion of the
isomorphism P @& P ~ R® R, where R = Z[\/-5] and P is the ideal of R
generated by 2 and 1 + +/—5. Lam presents several additional examples, but
also many affirmative results valid under suitable conditions on the ring or the
modules and he outlines the relationship to problems in number theory, K-theory
and the theory of operator algebras. He also includes related results concerning
the cancelation problem.

2. The categorical setting

For the problems to be discussed here, it seems to be appropriate to consider not
only modules over a ring with 1, but more generally over a ring R which has
sufficiently many idempotents: this means that R = @i’ jer €ilte; for some set of
idempotents e;, i € I (and here we should not be too fuzzy about the word “set”).
Of course, this means that R is really just an additive category (preferably with a
set of objects), and the category of R-modules is the category of all contravariant
functors to abelian groups (this point of view is often expressed by Mitchell’s
formulation that we deal with a “ring with several objects”). The advantage of
this slight generalization is the following: starting with such a ring with several
objects, thus with an additive category A, the functor category Mod. A of all
controvariant functors from A4 to ModZ again is an additive category, and we
may repeat this process. For set theoretical reasons, it will be necessary to restrict
the size of the modules which we consider, or to work with increasing universes,
but this should not lead to confusion.

Additive categories arise very frequently in mathematics and all the questions
which usually are asked when dealing with a ring (a commutative one as it is
considered in number theory or in algebraic geometry, or the non-commutative
versions which are now very popular under the name of quantizations) can and
have to be asked in this more general setting. One of the main questions concerns
the description of such a ring or such a category, by generators and relations.
If we consider a representation-finite k-algebra R, where k is an algebraically
closed field of characteristic different from 2, it is the Auslander-Reiten quiver
I'r which produces such a presentation: the generators are given by the vertices
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and the arrows of I'g, thus by the indecomposable R-modules and the irreducible
maps between them, the relations are just the mesh relations. Also for a general,
not necessarily representation-finite k-algebra R, the Auslander-Reiten quiver
I'r describes at least part of the category of R-modules, the next section will be
devoted to discuss some examples.

When dealing in this way with a module category as a sort of ring, the
individual modules are just mere elements of this ring (note that a category is
just a set or class of “maps”, these are the elements of the category; in this
interpretation, the objects of the category are the identity maps, thus special
idempotents.) On the other hand, many of the properties of a module which are
of interest are really categorical properties, they can be recovered from the module
category. In particular, this holds true for the property of having finite or infinite
length, at least as long as we work with the full module category.

Ideals. When dealing with a ring, one of the basic concepts is that of an ideal
and the corresponding factor ring. Clearly, dealing with an additive category
A, there also is the notion of an ideal Z in A and of the corresponding factor
category? A/Z. In particular, given a class U of objects in A (or, equivalently,
a full subcategory), we may consider the ideal (U) given by all maps which factor
through a finite direct sum of objects in /. Such an ideal is idempotent since it
is generated by idempotent elements (the identity maps 1y, where U is a finite
direct sum of objects in U). But note that not all idempotent ideals have to be
of this form, as we will see below.

As for a ring, we may speak of the Jacobson radical rad(A) of an additive
category A: it consists of all homomorphisms f: A — A’ such that for any
homomorphism ¢g: A" — A, the endomorphism 1+ g o f is invertible (this just
means that Hom(A’, A) o f is contained in the Jacobson radical of End(A)).

If we consider idempotent ideals in an additive category A, two different
kinds can be distinguished. First of all, the ideal Z may be generated by idempo-
tent elements, thus “by objects”, as mentioned above. But second, it is also easy
to construct idempotent ideals which contain only nilpotent elements. We stress
that the only idempotents contained in the Jacobson radical of A4 are the zero
endomorphisms. In case every object of A is a finite direct sum of objects with
local endomorphism rings, then any ideal of A which properly contains rad(.A)
will also contain non-trivial idempotents; thus, in his case rad(.A) is the largest

9 When starting with an abelian category A, the symbol / sometimes also is
used in order to denote quotient categories with respect to a Serre subcategory;
this is a completely different construction and should not be confused. Well-
known situations of forming the factor categories A/J are the categories modR =
mod R/(P) and modR = mod R/(Z) where (P) is the ideal of all homomorphisms
which factor through a projective module, and (Z) is that of all homomorphisms
which factor through an injective module. For R selfinjective, these categories
coincide and are of special importance.
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ideal without non-trivial idempotents. The Jacobson radical rad(A) never con-
tains non-trivial idempotents, but it may contain non-trivial idempotent ideals.
Actually, we may define by transfinite induction the power rad®(A) for any ordi-
nal number «, and then the transfinite radical'® rad®(A) = (N, rad®(A), where
a runs through all ordinal numbers, see [P1,Sc1,Sc3]. This transfinite radical
rad®(A) is an idempotent ideal and it contains all the idempotent ideals of A4
which are contained in rad(.A). An easy way for obtaining an idempotent ideal is
the following: select a class H of homomorphisms such that any h € H can be
written in the form h = goh’ og’ o h’ o ¢” with h',h” € H and arbitrary maps
9,9, 9", then ‘H generates an idempotent ideal.

Let us mention two typical situations where it is easy to specify such classes
H inside rad(A). First of all, consider a tubular algebra [R6]. Recall that there are
a preprojective component and a preinjective component, and that the remaining
components form tubular families 7, with v a non-negative rational number or
the symbol co. Let H be the set of all homomorphisms h: A — A’, where A
belongs to a family 7, A’ to 7,» and v <’. Choose 7" with v <" <+’ and
note that 7.~ is a separating tubular family: this shows that h can be factored
through a module in 7.,». Note that the idempotent ideal generated by H has
the following property: any element of this ideal is the sum of elements f with
square zero.

Second, consider a non-domestic string algebra, see [Sc3]. There are arrows
a, 3,7v,6 and words of the form uy~'v,udw which both start with the letter «
and end in the letter ~'. We fix a, 3,7,9 and v, w, and consider the set I/ of all
words which start with o and such that both words v’ = uy~!v and u” = udw
exist. Note that with u also v/'u and v'u”u belong to U. Let H be the set of
canonical maps h,: M(u') — M(u”) with image M (u), where u € U. Given
u € U, we can factorize h, as follows:

M(ul> Q_)M(u/u/) hoyrey M(u'u”) 9_>M(u/u//u/> Rty M(u/u//u//) iM(u”),

here ¢g”,¢’ are the canonical inclusions, and ¢ is the canonical map with image

On the other hand, it has been conjectured (by Prest and others) that for a
domestic algebra R, the transfinite radical rad(mod R) is zero, thus that the only
idempotent ideal inside rad(mod R) is the zero ideal. This conjecture has been
verified by Skowronski for strongly simply connected algebras [Sk| and by Schréer
for string algebras.

Ideals and “ideal objects”. Recall that the concept of an ideal in a ring
R goes back to Kummer. Consider the ring of algebraic integers in a num-
ber field, it is what now is called a Dedekind ring, but in contrast to say the

10 One should be careful to distinguish the transfinite radical rad® and the
“infinite” radical rad* = (), cyrad™; often the latter also is denoted by rad™ .
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integers Z, it need not be a principal ideal domain. In a principal ideal do-
main, every non-zero element can be written as a product of prime elements and
such a factorization is essentially unique. Such a result is not valid for arbitrary
Dedekind rings, already in Z[v/—5] we have two completely different factorizations
6=2-3=(14++=5)(1—+/=5). To overcome this difficulty, Kummer introduced
his “ideal numbers” and he obtained an essentially unique factorization of non-zero
elements (even of arbitrary “ideal numbers”) as products of “ideal numbers”. In
the terminology of Dedekind which is used today, instead of considering an ele-
ment, we look at the corresponding principal ideal generated by the element, but
we also take into account ideals which are not principal ideals. As it turns out, in
a Dedekind ring, the set of non-zero ideals is a free commutative semigroup, the
free generators are the non-zero prime ideals. As we have mentioned, ideals serve
as a generalization of the principal ideals. One may try to associate to an ideal I
of a ring R an “ideal element” s which generates I; of course, in case I is not a
principal ideal of R, then s cannot be an element of R, but it may be an element
of some overring R’ of R. We may reverse these considerations: let R C R’ be
commutative rings, and let s € R’ be a non-zero element. The intersection of the
principal ideal of R’ generated by s with R yields an ideal of R which usually
will not be principal.

In the context of categories, Krause has followed these ideas: starting with a
category C' and a subcategory C, we may intersect any ideal of C’ with C and we
will obtain an ideal of C. In particular, we may start with an object S in C' and
take the ideal of C’ generated by 1g, this is just the class of all homomorphisms
which factor through a direct sum of copies of §; this is an idempotent ideal of
C’, however the intersection of this ideal with C does not have to be idempotent
again: Actually, it may be nilpotent: take C = mod R, ¢’ = Mod R, where R is
a tame hereditary finite-dimensional algebra and let S be the generic module of
infinite length. Of course, the ideal of Mod R generated by 1g is idempotent, but
its intersection Z with mod R satisfies (Z)? = 0. Krause [K6,K7] has introduced
the concept of fp-idempotence for ideals, and it turns out that such ideals as 7
are fp-idempotent. We may say that Z is a sort of shadow of the generic module
S inside the category mod R; the object S itself is not visible in mod R, but its
shadow is. Conversely, starting from the category C, there may exist ideals Z in
C which can be considered as shadows of objects outside of the category, of “ideal
objects”: ideals which can be obtained as the intersection (S)c: NC where S is
an object of some category C' D C.

Categorical equivalences. Concerning the categorical approach, a further view
point should be stressed: categorical equivalences show that a given category
may be realized in different ways. The paper [PY] by Pimenov and Yakovlev
provides a particularly nice example of two different realizations of a category.
They consider abelian groups and maps between them. Let 7 be the category of
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all torsionfree groups and as second category take the category!! R of surjective
group homomorphisms f: M — N, where M is torsionfree divisible and N is
torsion (and also divisible, since N is a factor group of the divisible group M).
It is easy to see that the categories 7 and R equivalent: given a torsionfree
group F', let I(F') be its injective hull, then the canonical projection I(F) —
I(F)/F belongs to R; conversely, given an object (f) in R, then Ker(f) is a
torsionfree group. In this way we obtain mutually inverse equivalences. Note that
the functor R — 7 which attaches to (f) its kernel Ker(f) is faithful, since any
homomorphism between torsionfree abelian groups has a unique extension to their
injective envelopes.

The category R can be identified with the the category of those represen-
tations'? (f) = (M, N, f) of the bimodule 7Qgq, for which f is surjective. Note
that a general representation (M, N, f) of zQq is the direct sum of (M, f(M), f)
(which belongs to R) and of (0, N/f(M),0); here we use that with M also f(M)
is divisible, thus f(M) is a direct summand of N. As we know, representations

of the bimodule 7Qgq are just R-modules, where R = l% %} . In Mod R, the

full subcategory R is the class of all torsion modules for a split torsion pair, the
torsionfree modules being those of the form (0,G,0), where G is an arbitrary
abelian group.

Let 7’ be the full subcategory of all torsionfree groups F of finite rank
such that pF = F for almost all primes p. Let R’ be the full subcategory of
R consisting of all artinian R-modules. Observe that an R-module (M, N, f)
is artinian if and only if both M and N are artinian abelian groups, thus if we
assume that f is surjective, (M, N, f) is artinian in Mod R if and only if M is
of finite rank and N is the direct sum of finitely many Priifer groups. Under
the equivalences described above, these subcategories 7' and R’ correspond to
each other. There is nothing strange about the equivalence of the subcategory
T of ModZ and the subcategory R of Mod R, or also about the equivalence of
the categories 7' and R’, but nevertheless it is worthwhile to contemplate. By
definition, all the R-modules in 7’ are artinian, whereas the only artinian Z-
module in R’ is the zero module. Also, the artinian property of the modules in
7’ does not seem to be related to a dual property for the modules in R’ such as
being noetherian: some of the Z-modules in R’ are noetherian, most of them not.

Recall that the category 7' of all torsionfree abelian groups of finite rank was

11 We write the objects in R in the form (f), where f is a homomorphism as
indicated; given two homomorphisms f: M — N and f': M’ — N’, the maps
(o, B): (f) — (f’) in R are as usual pairs, with o : M — M’ and 3: N — N’
such that Bo f = f'oa.

12 If R, S are rings and gXp is a bimodule, a representation of ¢Xpg is by
definition of the form (f) = (gM,sN, f: sX ®g M — gN), with f being S-
R 0]

linear, but this is nothing else than a C'-module, where C' = [ X g
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the main playing ground for considering the failure of the Krull-Remak-Schmidt
property, since papers by Jénsson (1945, 1957) and Corner (1961). Many different
constructions are known, and via the stated equivalence they carry over to the
category R', thus one obtains in this way many examples of artinian modules
which do not satisfy the Krull-Remak-Schmidt property. Note that Krull raised
the question whether this property holds for artinian modules in 1932, and the
first answer to this question is only from 1995, see the paper [FHLV| by Facchini,
Herbera, Levy and Vamos. Let us repeat: If we assume the knowledge on 7’
established a long time ago, we obtain the corresponding assertions for R’ using
the equivalence of the categories. However, it may be reasonable to revert these
considerations. If one analyzes the usual constructions made in 7’ for obtaining a
torsionfree group F' of finite rank, one observes that these are really constructions
starting with a finite direct sum of copies of Q, thus with I(F"), and prescribing a
direct sum of Priifer modules as factor module: the group F' is given by a minimal
injective resolution, thus by an object in R’.

It may be sufficient to discuss just one example, the construction of a tor-
sionfree group Fy ® Fy ~ F3 @ F, @ F5, with indecomposable direct summands Fj
such that Fy, F5, F3 have rank 2 (and Fjy, F5 rank 1), see Fuchs [Fu2] Theorem
90.1. We use the following notation: The factor group Q/Z is the direct sum of all
Priifer groups P,, p a prime number, each occurring with multiplicity one. De-
note by m, the composition of the canonical projections Q — Q/Z — P,. We also
will need the map pm,: Q — P,; note that its kernel Ker(pm,) contains Ker(m,)
with index p. For 1 <i < 3, let F; be the kernel of a map

fi:Q®* =P, ®Ps®Ps®Ps® P; @ P,

namely of
[ 7o 07 [ o 07 [ 7o 0 7
0 m3 0 3 0 3
o 5 5 o 5 0 o 5 5
i 0 7 7 7 7
L 0 7 _77T7 0 J _777'7 0 _

The additional groups Fj and F5 are the kernels of the maps

2 3
fa=|m| Q= PO ®P, and fs=|7m5|:Q— P3® P Py,
7 7

respectively. Of course, the map f; is the minimal injective resolution of F; and
belongs to R’. Thus, we really deal with indecomposable artinian R-modules

(f1),-..,(fs) and with an isomorphism13 (f1) @ (f2) =~ (f3) ® (f1) ® (f5).

13 Matrices which yield an isomorphism can be calculated easily; or see [R13].
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The example presented here uses four prime numbers, but actually it is suf-
ficient to work with a single prime. Namely, as Butler has pointed out, for any
prime p > 5, there do exist torsionfree abelian groups F' of finite rank which do
not satisfy the Krull-Remak-Schmidt property, such that ¢qF = F for all primes
q # p, see [Ar] 2.15. Of course, such examples give rise to corresponding artinian
Q 0
Q Zy)
all its indecomposable projective (left or right) modules are serial.

A slight modification of the Pimenov-Yakovlev construction allows to replace
the rings considered by local rings [R13], and we obtain in this way examples of
artinian modules even over a local ring which do not satisfy the Krull-Remak-
Schmidt property.

modules over the ring [ ] . Note that this ring is a very well-behaved ring:

Categorical equivalences, again. We have seen above an interesting example of
realizing a category in two different ways, once as a full subcategory of the category
of abelian groups, once as modules over some non-commutative ring. But the most
important setting for using a categorical equivalence concerns a process which
may be called projectification. It is the following quite trivial, but very effective
procedure: Given any module M, its endomorphism ring End(M) is also the
endomorphism ring of a projective module, just take the regular representation of
E°?P where E = End(M); the categorical version of this statement is: Given an
R-module M with endomorphism ring £ = End(M), let add M be the additive
closure, this is the full subcategory of Mod R consisting of all direct summands of
finite direct sums of copies of M . Then this category is equivalent to the category
pro E°P of all finitely generated projective E°P-modules, an equivalence is given
by the functor Hompg (M, —).

A related result has to be mentioned here, a theorem due to Swan [Sw,Bal:
Let X be a compact Hausdorff space and denote by Co(X) the ring of continuous
functions X — R. Then the category of R-vector bundles on X is equivalent to
the category of finitely generated projective Cy(X ) -modules, an equivalence is given
by sending the R-vector bundle E to the Cy(X)-module I'(E) of all continuous
sections of E'. Note that this result provides a bridge to topology and differential
geometry. Note that the most prominent vector bundles are the tangent bundles
of differential manifolds, thus questions concerning vector fields (these are the
sections of the tangent bundle) can be reformulated in terms of projective modules.
The analogy between finitely generated projective modules and vector bundles can
be an important source for inspiration, it provides a nice geometrical model for
questions concerning projective modules.

There is a similar bridge to number theory: many problems about rings of
integers in number fields concern the structure of their finitely generated projective
modules. In particular, the ideal class group of a Dedekind ring can be interpreted
as the set of isomorphism classes of projective modules of rank 1 with respect to
the tensor product (for a general commutative ring, the latter group is called its
Picard group).
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We end this section with some general considerations concerning the role of simple
objects and of finite length objects in abelian categories.

Abelian categories with no finite length modules. First of all, we have
to stress that an abelian category may not have simple objects at all, a typical
example A can be constructed as follows: As set of indecomposable objects take
the set of open (non-empty) intervals (a,b) = {¢ € Q | a < ¢ < b} in Q, let
Hom4((a,b), (¢,d)) = k if a < ¢ < b <d and 0 otherwise; as composition take
the multiplication in k. By adding formal (finite) direct sums (see for example
[GR], p.18), we obtain an additive category @ .4 which easily can be shown to be
abelian: just observe that it is sufficient to consider a finite sequence cy < ¢; <
-+ < ¢y, of rational numbers and the full subcategory of direct sums of objects of
the form (c;, c;) with ¢ < j. This subcategory is equivalent to the module category
of the ring of upper triangular matrices over k.

Of course, a Grothendieck category !4, in particular the module category
Mod R over a ring R, always has sufficiently many simple objects. There do
exist non-trivial examples of rings R where all simple modules are injective. A
ring R with all simple modules injective is called a V-ring. Cozzens [Cz,Fa2]
has constructed rings of differential polynomials and also twisted polynomial rings
which are V-rings, but have zero socle.

Objects of finite Loewy length. Let A be an abelian category, let Si,...,S,
be pairwise non-isomorphic simple objects in A. Let S(Si,...,S,) be the class
of semisimple objects in A which are (finite or infinite) direct sums of copies of
Si,...,Sn. If t is a natural number, let A(S1,...,Sn;t) be the set of objects
in A which have a filtration of length t with factors in S(Si,...,Sn). Then
A(S1,...,Sn;t) is equivalent to the module category of a semiprimary ring R. If
J is the radical of R, then J* =0 and R/J is isomorphic to the endomorphism
ring of @, S;. Proof: For every object S; we can construct its relative projective
cover P, in A" = A(S1,...,S,;t). In this way, we clearly obtain a progenerator
P=@; | P, for A'. Let R be the endomorphism ring of P.

Note that all the finite length objects are recovered in this way: If M
has length at most ¢ and if all the composition factors of M belong to the set
{S1,...,Sn}, then M belongs to A(S1,...,Sn;t).

Decomposing projective objects in an abelian category. Let us stress that
for general abelian categories we cannot expect any structure theory. In case we
consider a Grothendieck category, the assertions concerning projective objects and
those concerning injective objects are very different. Of course, dealing with the
dual of a Grothendieck category, we obtain examples with the opposite features.
Let C be a Grothendieck category. Note that C may not have enough pro-
jective modules (example: the category of all abelian p-groups); there may be

14 For the definition, see for example [Fal].
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enough projectives, but not enough projective covers (example: ModZ); an inde-
composable projective object P does not have to be couniform (example again:
rR for R = 7Z), and this may happen even if the radical of P is superfluous in
P (example: take pR, where R = Z,,) is obtained from Z by localizing at the
product of two different primes p,q). If C = Mod R for some ring R, then there
are enough projectives, but all the other anomalies mentioned occur already in
module categories. On the other hand there is Kaplansky’s Theorem: FEwvery
projective module is a direct sum of countably generated projective modules. Thus,
we obtain a strong bound on the size of indecomposable projective modules.

For an integral domain R, the projective modules of rank 1 play an important
role; as we have mentioned, the set of isomorphism classes with respect to the ten-
sor product is called the Picard group Pic R of R. Of course, all these projective
rank 1 modules are indecomposable. There do exist also indecomposable projec-
tive modules of rank greater than 1. The typical example of an integral domain R
which has such a module is the coordinate algebra R[z1, e, x3]/(x? + 23 + 23 — 1)
of the sphere S?, see [Sw]: Let P be the kernel of the homomorphism ¢: R3 — R
defined by ¢(ry,re,r3) = > r;x;. Note that ¢ is surjective, thus it splits and
therefore B3 ~ P @ R. This shows that P is projective and has rank 2. In case
P would be decomposable, one would have P ~ R?, since the ring R is known
to be a principal ideal domain. But an isomorphism P ~ R? would provide a
continuous vector field on S? which nowhere vanishes, impossible.

Decomposing injective objects in an abelian category. Consider now the
injectives in a Grothendieck category C. There are always sufficiently many injec-
tive objects, even sufficiently many injective envelopes. Indecomposable injective
objects are always uniform. In case C = Mod R for some ring R, we obtain all
indecomposable injective modules as injective envelopes of uniform cyclic modules.
In contrast to the case of projective modules, we cannot expect to be able to write
all the injective modules as direct sums of countably generated modules (example:
the injective envelope of rR, where R is the polynomial ring k[T in one variable
is given by the field k(T") of rational functions, and if k£ is an uncountable field,
then jk(T) is not countably generated), and not even of modules which are
generated by A elements, where X is a fixed cardinal number (this is only possible
for left noetherian rings, by the Faith-Walker theorem mentioned already). Any
non-zero ring has indecomposable injective modules (since it has uniform modules,
namely at least the simple modules), but, as we have noted already, there are rings
R which also have non-zero superdecomposable injective modules, for example the
free algebra k(X,Y) in two variables.
Let I be an injective module. Then
(i) I is indecomposable if and only if I is uniform.

(ii) I is discrete if and only if I is formatted.

(iii) I is superdecomposable if and only if I has no uniform submodule.

Here, the conditions mentioned left deal with the behaviour with respect to direct
decompositions, the right ones with the submodule structure, namely the uniform
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submodules of the module. The direct sum conditions are properties which concern
the endomorphism rings, thus they remain valid when we apply a functor which
preserves endomorphism rings. On the other hand, the submodule conditions are
preserved under submodules as follows: a non-zero submodule of a uniform module
is uniform; any submodule of a formatted module is formatted; and finally, if a
module has no uniform submodule, then the same is true for any of its submodules.
(Let us sketch the proof of (ii). First, assume that the injective module I is
formatted and consider a direct decomposition I = I' & I"” with I’ # 0. Since [
is formatted, I’ contains a uniform submodule, say U. But the injective envelope
of U is a direct summand of I. This shows that I is discrete. Assume conversely
that I is discrete and let N be a non-zero submodule. Then the injective envelope
I’ of N is a direct summand of I and by assumption, I’ has an indecomposable
direct summand, say J. Now JN N # 0, since J is a non-zero submodule of
I’ and N is essential in I’. Since J is indecomposable injective, its submodule
J N N is uniform. This shows that I is formatted.)

Theorem of Gabriel and Oberst. Any injective module I is the direct
sum of a discrete module Iy and a superdecomposable module Iy. If I = I{® I} is a
second decomposition with I discrete and I, superdecomposable, then I = I; DI} .
(In particular, the modules I; and I; are isomorphic, and similarly, the modules
I, and I} are isomorphic.) The usual discussions of the Gabriel-Oberst-Theorem
invoke so called spectral categories [GO] (they are obtained by factoring out from
the category of all injective R-modules the ideal of all maps f: I — I’ which
vanish on an essential submodule). The use of spectral categories is illuminating,
but it seems also misleading!®. Let us sketch a direct and elementary proof. Let
I be an injective module. Using the lemma of Zorn, choose a submodule I’ of
I which is a direct sum of uniform modules and such that there does not exist a
uniform submodule U of I with I’'NU = 0. Let I; be an injective envelope of I’
thus I; is discrete. Since I is injective, we may assume that [; is a submodule
of I, thus there is a direct decomposition I = Iy ® I. Since I has no uniform
submodule, it is superdecomposable. Now assume that there is given a second
decomposition I = I} @ I} with I{ discrete and I} superdecomposable. The
intersection I; NI} is a submodule of I;, thus formatted, and a submodule of I,
thus also superdecomposable, and therefore zero. It follows that I + I} is a direct
sum; it is an injective module, thus there is a submodule C' with I = I, @ I5® C'.
Both I and I}, @ C are direct complements for I7, thus they are isomorphic and
C' is isomorphic to a submodule of I5. This implies that C' is superdecomposable.
On the other hand, both I and I; @ C are direct complements for I, thus
isomorphic and therefore C' is isomorphic to a submodule of I, thus formatted.
Since C' is both formatted and superdecomposable, we see that C' = 0. This

15 For example, based on the use of spectral categories, the book by Jensen-
Lenzing [JL,8.24] asserts that the maximal discrete direct summand I of I is
uniquely determined, Prest [P1, Corollary 4.A14] even claims that both summands
I, I, are unique, in contrast to examples which we are going to present.
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completes the proof.

In the decomposition I = I; @ I> of an injective module I, with I; discrete
and I» superdecomposable, none of the direct summands I; and I has to be
unique, as the following examples show. It is sufficient to find a ring R, a discrete
injective R-module I; and a superdecomposable injective R-module I such that
Hom(/,I2) # 0 or Hom(I2,I;) # 0 (since the graph G(f) of an R-linear map
f: M — M’ is an R-submodule of M @M’ which satisfies MM’ = G(f)oM").
For an example with Hom(I1, I3) # 0, consider the quiver with two vertices, say
labeled 1 and 2, with two loops x,y at the vertex 1 and one arrow 1 — 2.

Consider the indecomposable projective representation P(1) corresponding to the
vertex 1, it has a k-basis given by the set of paths starting in 1. The socle N of
P(1) is an infinite direct sum of copies of the simple module S(2) corresponding to
the vertex 2. Since N is essential in P(1), we see that P(1) is formatted, whereas
P(1)/N is superdecomposable. Take for I; the injective envelope of P(1) and for
I5 the injective envelope of P(1)/N. The canonical map P(1) — P(1)/N induces
a non-zero map I; — I. Thus we see'6 that in I; @ I, there are other maximal
discrete submodules than I .
As an example with Hom(I3, I1) # 0, we take the opposite quiver:

Q@

Also here, the injective envelope I of P(1) is superdecomposable, and now it
maps onto the injective module I; = S(0 ) This shows that in I; & Iy, there
are other maximal superdecomposable submodules than I5. Actually, given an
arbitrary ring R and I a non-zero superdecomposable R-module, we obtain a
corresponding example: consider a simple subfactor S of I, and its injective
envelope [;. Clearly, I; is discrete and Hom(I,I;) # 0. This shows that in
I, & I, there are several different maximal superdecomposable submodules.

16 This ring R provides also an example of a sum of two formatted modules
which is not formatted: Consider M = P(1) ® P(1)/N. Note that both modules
P(1) and P(1)/N are cyclic, say generated by elements a and b = a+ N, respec-
tively. Then M is generated by the elements (a,0) and (a,b). The submodules
generated by (a,0) and by (a,b) both are isomorphic to P(1), thus formatted,
but M is not formatted, since its submodule P(1)/N has no uniform submodules.
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One may ask under what conditions on a ring R every discrete injective R-module
actually is a direct sum of uniform modules. In case all the injective modules are
discrete, this has been answered by the Matlis—Papp theorem: A ring R is
left noetherian if and only if every left module is a direct sum of uniform modules.
We should mention also the following characterization of left noetherian rings.
Faith-Walker theorem. A ring R is left noetherian if and only if each injective
module is a direct sum of modules, each being generated by A\ elements, where A
is some fized cardinal number. For both results we may refer to [Fa2].

Diamond categories. Let us assume that C is an abelian category. We say that
C is a diamond category provided first, every simple object has a projective cover
and an injective envelope, and second every object C' has an essential subobject
C’ which is semisimple and of finite length, and dually, a superfluous subobject
C" such that C/C" is semisimple and of finite length. Of course, the subobject
C’" will be called the socle of C and denoted by socC, the subobject C” is
called the radical of C' and denoted by rad C. Let us state some properties of a
diamond category C. First of all, it follows easily that every object has a projective
cover and an injective envelope. Next, any object in C 1is a finite direct sum
of indecomposable objects, and indecomposable objects have local endomorphism
rings. In particular, the Krull-Remak-Schmidt Theorem holds in C. Also, a
projective object is indecomposable if and only if its radical is a maximal subobject;
an injective object is indecomposable if and only if its socle is simple.

A set of subfactors C, C C; of an object C' is said to cover C provided for any
subfactor U’ C U, there exists an index i such that UNC; € U'+C!. Any object C
in a diamond category has finitely many subfactors C] C C; C C' which cover C,
such that any object C;/C! is a diamond (this explains the name). (For the proof,
take a projective cover (pg)q: @._, P, — C with indecomposable projective
objects P,, and an injective envelope (up)p: C — @, I, with indecomposable
injective objects I,. Consider a pair i = (a,b) such that the composition wu o p,
is non-zero. Let C; be the image of p, in C', let C] be the intersection of C; with
the kernel of u,. Then C! C C; and C;/C! is a diamond, since it is isomorphic to a
factor object of P, and to a subobject of Ij,. In order to see that these subfactors
cover C', take a subfactor U’ C U in C.)

Given an object C' in a diamond category C, we may define its socle sequence
soc; C' by socg C =0 and soc;41 C/ soc; C' = soc(C/ soc; C'), for all natural num-
bers i. Similarly, let rad®C = C and rad"t' C' = rad(rad’ C), for all i. Note
that all the objects soc; C' and C/ rad’ C' are of finite length. As a consequence,
all objects in a diamond category which are of finite Loewy length are of finite
length.

Starting with a diamond category C, we may add formal direct limits in order
to obtain a Grothendieck category li_r)nC . Note that an object of C may have in

lim C subfactors C” C ¢’ C C such that C’/C” is an infinite direct sum of simple

objects.
If C' is an object of C which is not of finite length, then all the inclusions
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occurring in the socle sequence and in the radical sequence of C'
0 C socC C soceC C --- and .. C rad’C C radC C C

are proper. If we take the union (J,; soc; C' in limC, we obtain an artinian object.

Similarly, we may consider the intersection C' = [, rad’C' in limC, the corre-

sponding factor object C'/C” will be a noetherian object. Note that for C' not of
finite length, C/C’ as well as |, soc; C' never will belong to C itself.

Functor categories. If C is an additive category, recall that Mod C denotes the
category of all additive contravariant functors from the category C into the cate-
gory of all abelian groups, and modC the full subcategory of all finitely presented
functors (a functor F' is said to be finitely presented provided there is an exact se-
quence of the form Home(—,C) — Home(—,C’) — F — 0, with objects C,C’ in
C). Of course, in case R is a ring and pro R is the category of all finitely generated
projective R-modules, then Mod R = Mod pro R and mod R = mod pro R.

Consider now the case of C being a dualizing k-variety, where k is a com-
mutative artinian ring (for example a field), as studied by Auslander and Reiten
[AR1]. This means that first of all C is a k-category with all Hom-sets being
finitely generated k-modules, and second, that for every contravariant functor
F in modC, also the covariant functor D(F') is finitely presented, and dually,
that for every finitely presented covariant functor G on C, also the contravari-
ant functor D(G) is finitely presented; here D is the duality with respect to
the minimal injective cogenerator I for k, thus D(F)(C) = Hom(F(C),I) and
D(G)(C) = Homy(G(C),I). For example, for any artin algebra R, the cate-
gory pro R is such a dualizing k-variety. The first result to remember is: The-
orem (Auslander-Reiten). If C is a dualizing k-variety, then so is modC.
([AR1],2.6). As a consequence, we may iterate the construction, and consider
the sequence C,modC,modmodC,... and so on. We obtain a sequence of cate-
gories which are getting larger and larger, but in some sense more and more well
behaved. Note the following: if we start with a representation-finite algebra R,
then mod R = pro A(R), where A(R) is the Auslander algebra of R, and, A(R)
is well-behaved both with respect to global dimension and dominant dimension
(it has global dimension at most 2 and dominant dimension at least 2). Also,
the category C does not have to be abelian, however modC always will be. The
second result to remember: Theorem (Auslander-Reiten). If C is a dualizing
k -variety, then modC is a diamond category. ([AR1],3.7).

An additive category which is equivalent to a category of the form modC’
will be said to have Auslander dimension at least 1. Inductively, we may say that
C has Auslander dimension at least n+1 provided C is equivalent to a category
of the form modC’ where C’ has Auslander dimension at least n. Note that for
any additive category C’, the category promodC’ is just the closure of C’ under
finite direct sums and direct summands. Thus, if C is equivalent to mod C’, and if
C’ has finite direct sums and split idempotents, then we can recover C’ as the full
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subcategory proC’ of all projective objects in C. If the Auslander dimension of C
is at least m, we can apply n times pro to C. In particular, if C = mod mod B,
and B has finite sums and split idempotents, then we get B = proproC.

Let us assume that B is a dualizing k-variety with finite direct sums and
split idempotents, and let C = modmod B. Then we can recover B from C also
in a different way, namely as the full subcategory of C of all objects which are
both projective and injective. The indecomposable objects in mod mod C which
are both projective and injective may be compared with the “hammocks” as con-
sidered by S. Brenner: The name “hammock” was introduced by her when she
considered C = mod mod R for a representation-finite algebra R aiming at a com-
binatorial characterization of these hammock functors H(S) = Hom(—, I(S5)) =
D Hom(P(S),—), here I(S) is the injective envelope of a simple module S and
P(S) its projective cover. It seems to be of great importance to study these func-
tors Hom(—, I(S)) = D Hom(P(S),—) not only in the case of a representation-
finite algebra, but in general. We also have to refer to Tachikawa [T] who empha-
sized the importance of the objects in mod mod R which are projective as well as
injective.

The dualizing k-varieties are the proper setting for the Auslander-Reiten
theory. If C is a dualizing k-variety, then the category modC has Auslander-
Reiten sequences'”, and if 0 — X — Y — Z — 0 is such a sequence, then
X =17 is calculated as usual as the “dual of the transpose”.

The categories to be considered later are of the form mod R or mod mod R,
where R is a finite-dimensional k-algebra with k a field, thus they are dualizing
k-varieties and therefore diamond categories. The combinatorial flavour of the
representation theory of such algebras R is due to this fact. In case R is not
representation-finite, the assertion that modmod R is a diamond category has
not yet found the appreciation which it deserves, even though many classical facts
from Auslander-Reiten theory find a natural interpretation in this setting. Only
in very special cases, the structure of finitely presented functors on mod R, thus of
objects in the category mod mod R, has been analyzed in detail. The first question
to be raised concerns the possible serial objects. Finitely presented functors which
are serial have been studied by Auslander and Reiten in [AR2]. Some typical
examples of such functors will be seen below.

17" A general diamond category C may not have sufficiently many Auslander-
Reiten sequences, even if every object in C has finite length. A typical example
has been exhibited in [R2]: Let F be a field with a derivation 6 and consider
the F-F-bimodule pMp where pM = pF @ pF and such that the action by
F on the right is given by (a,b)c = (ac + bd(c),bc) for all a,b,c € F. The
category of representations of pMp of finite length is a diamond category. The
finite direct sums of indecomposable representations of Mg of even length form
an abelian subcategory Rg. If (F,d) is differentially closed, there are just two
indecomposable representations of length two. Omne of them is projective and
injective in Ry and does not occur in any Auslander-Reiten sequence.
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3. Well-behaved modules

We have seen that for most of the rings there is an abundance of different types
of modules so that it will be a waste of time to try to deal with all of them. Even
if we restrict to finite length modules, Maurice Auslander strongly argued against
the usual classification procedures many mathematicians are fond of: he stressed
that it should be of greater interest to deal with some classes of modules with
specific and important properties, than to publish large lists of normal forms no-
one is going to use. Of course, up to now such lists have been put forward only
in tame cases (and some people believe that the notion of wildness just excludes
the possibility of producing complete lists) and there it seems that really all the
indecomposable modules have specific and presumably also important properties.
Thus Auslander’s argument could be rephrased in these cases better as follows:
it may be of little interest to exhibit lists of modules unless one cannot figure
out their properties. But the by now usual procedure of determining complete
Auslander-Reiten components or even families of such components as well as their
global behaviour aims at a reasonable description of such module categories and
this seems to be an endeavor which has to be appreciated. Too little is known
at the moment about any wild module category for arguing in real favour for
a classification program, but there do exist dreams about a “very well-behaved
wild world”: the Kac conjecture [Kc] that the module varieties of wild hereditary
algebras have a cellular decomposition with affine strata is part of it. What one
may hope for are, on the one hand, discrete invariants which fit into some concise
combinatorial picture, and, on the other hand, for any given set of such invariants,
a nice, hopefully even rational variety which describes the modules with these
data. In this way, it may turn out that all the finite length modules are considered
to be of interest and of importance, at least when considered in the natural setting
of their relatives, as part of such a family with a fixed set of combinatorial data.
It is one of the main reason for the present book to stress that a description of the
category of all finite length modules quite naturally has to rely on incorporating
infinite length modules, but clearly only some of them. It should be out of question
that we have to be very restrictive about the infinite length modules which we are
going to involve.

The algebraically compact modules. There is a natural choice of the class of
modules to be considered, a choice which can be justified both by usual algebraic
arguments, but also by mathematical logic. Recall that there is an overlap between
the interests of algebraist and logicians. There are many important questions
handled in a different, but quite parallel way by algebraists and logicians. Many
notions and constructions both in algebra and in logic stem from difficulties which
have been encountered in the 19th century before the set theoretical foundation
of modern mathematics was laid. To overcome such difficulties, different, and
sometimes incompatible remedies have been found. For example, in first order
logic, the notion of a logic “with equality” just tries to formalize a specific way
of dealing with factor objects. The whole model theory should be considered as
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part of algebra, but the conflicting terminologies make it difficult for algebraists
and logicians to communicate. Some attempts have been made by Ziegler, and
especially by Prest and Herzog in order to overcome these difficulties and to provide
some reasonable dictionary in order to translate questions and results from one
language to the other. Unfortunately, as it is usual with dictionaries, the scope of
notions in the languages to be compared often are not really compatible, so that
convenient groupings in one language may look slightly artificial in the other, at
least on the first sight.

One of the basic notions presented in this book is a concept which can easily
be described in both languages, on the first sight in completely different ways (but
a deeper understanding relates the two definitions quite clearly), namely that of
a module which is algebraically compact or, what is the same, pure injective. The
two denominations already point out the two different roles these modules play.

Algebraic compactness refers to solving systems of linear equations. Such a
system consists of equations indexed by the elements ¢ of a set I, the equations
are of the form

(%) ZjeJHﬂj = Qj,

where a; are elements of a given R-module M, the elements r;; belong to the
ring R, for i € I,j € I, and one assumes that for given ¢ € I, almost all r;;
are supposed to be zero (so that forming the sum ) jeg TijT; makes sense in this
algebraic context). In principle, the z;, j € J are variables; a solution of this
system of equations consists of elements z; € M such that all the equations (x)
are satisfied. Such a system of equations is said to be finitely solvable provided
for any finite subset I’ C I, there exists a solution for the equations (%) with
i € I'. The R-module M is said to be algebraically compact provided any system
of linear equations which is finitely solvable has a solution.

On the other hand, pure injectivity means “relative injectivity with respect to
pure embeddings”. Recall that forming tensor products does not respect monomor-
phisms: a typical example is the map f: Z — Z given by the multiplication with
2, this is a monomorphism, but if we tensor f with Z/2, we obtain the zero map
(of course, the tensor product of Z with Z/2 is just Z/2 and 1z,,®f: Z/2 — 7/2
is still the multiplication by 2, but this is now the zero map). For any ring R, a
homomorphism f: M — N of R-modules (as usual, this means left R-modules)
is said to be a pure monomorphism provided 1x ®pr f: X g M — X ®r N is
a monomorphism, for any right R-module Xpx. This concept of purity will be
discussed in detail by Huisgen-Zimmermann in [H|. The R-module M is said to
be pure injective provided the only pure monomorphisms M — N (with arbitrary
N') are the split monomorphisms.

The two names of “algebraic compactness” and “pure injectivity” show the
main directions of interest, but actually, these modules can be characterized in
many additional ways (and some of these could equally well serve as the source of
naming these modules). For a very elegant and concise treatment of these modules
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including seven characterizations we refer to the book of Jensen and Lenzing [JL],
Chapter 7. Chapter 8 of the same book provides a corresponding account dealing
with the Y -algebraically compact modules: these are those modules M, for which
any direct sum of copies of M is again algebraically compact.

It seems to be of interest to quote at least the following characterization: A
module M s algebraically compact if and only if for any index set I the summation
map @, M — M can be extended to a map [[; M — M. The importance
of this characterization is due to the fact that it has the following consequence:
Corollary. Let F' be an additive functor which commutes with direct sums and
direct products. If M 1is algebraically compact, then also F(M) is algebraically
compact. This is a convenient tool for showing that modules are algebraically
compact. For example, given a ring homomorphism ¢: R — S, any S-module
M may be considered as an R-module via r-m = @(r)m for m € M, r € R,
this yields a functor F': Mod S — Mod R which does not change the underlying
sets, thus it commutes with direct sums and direct products. As a consequence,
we see that any algebraically compact S-module is also algebraically compact
when considered as R-module. In particular, if [ is an ideal of R, and M is
an R-module which is annihilated by I, then M is algebraically compact as an
R-module if and only if it is algebraically compact when considered as an R/I-
module. This shows that all injective R/I-modules are algebraically compact
R-modules.

Algebraically compact modules as injective objects in a Grothendieck
category. According to Gruson and Jensen [GJ], the category of algebraically
compact modules is equivalent to the category of injective objects in some Grothen-
dieck category — a Grothendieck category which is usually far away from module
categories of rings with finiteness conditions. The equivalence is given as follows:
Let R be aring and mod(R°P) the category of finitely presented right R-modules.
Any (left) R-module M gives rise to a functor (— ®g M): mod(R°P?) — ModZ,
and we obtain in this way a functor

®: Mod R — Mod mod(R°P), O(M)=(—xr M).

It is easy to see that this functor @ is a full embedding!'”. The R-module M is
algebraically compact if and only if ®(M) is an injective object in Mod mod(R°P).
As a consequence, the restriction of ® to the subcategory of all algebraically
compact R-modules yields an equivalence with the category of injective objects

in Mod mod(R°P).

I7 In addition, it also commutes with direct sums, direct products and direct
limits; the image consists of those additive functors which are right exact, and
these are just the objects @ in Mod mod(R°P) with Ext'(F,Q) = 0 for all finitely
presented functor F', see for example [JL, Theorems B15 and B.16]. A sequence
0—- M — M — M"— 0 in Mod R is pure exact if and only if its image under
® is exact.
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For any ring R, the R-modules which are indecomposable and algebraically
compact are those we are interested in, thus we have to deal with the indecom-
posable injective objects in Mod mod(R°P). The first observation to be stressed is
the fact that such an object always has a local endomorphism ring, thus the en-
domorphism ring of an indecomposable algebraically compact R-module is local.
Next, let us note that indecomposable injective objects in a Grothendieck category
always are uniform; they are the injective envelopes of uniform objects. Thus, in
order to get hold of some indecomposable algebraically compact R-module, it is
sufficient to find an R-module M such that the functor ®(M) = (—® M) is uni-
form: an injective envelope of ®(M) will be of the form ®(u): ®(M) — ®(M),
and p: M — M is the so called pure-injective envelope!'®. Let us reformulate
what it means that the functor ®(M) is N-uniform: we need modules N; and
maps g;: M — N;, h;: N;y1 — N;, for all ¢ € N, with the following properties:
first, g; = h; o g;+1; second, no g; is a pure monomorphism; and third, given any
map f: M — N which is not a pure monomorphism, then there exists an index 1
and f': N; — N such that f = f’ o g;. (Let us show that these conditions imply
that ®(M) is N-uniform; the converse can be shown in the same way. Let U;
be the kernel of the transformation ®(g;) = (— ® g;). This U; is a subobject of
(M) =(—®M). Also, since g; is not a pure monomorphism, we see that ®(g;)
is not a monomorphism, thus U; # 0. It follows from ¢g; = h;0g;.1 that U; 11 C U;.
Now assume there is given any subobject U of ®(M). The injective envelope of
®(M)/U is of the form ®(N) for some module N, thus U is the kernel of some
map ®(M) — ®(N). But since @ is full, such a map is of the form P(f) for
some f: M — N. As we require, there exists some map f;: N; — N such that
f = f' o g;. But this means that U; C U.) Actually, the third condition has to
be checked only in very special cases, namely in case f: M — N is a monomor-
phism whose cokernel is indecomposable and of finite length, as well as in case f
is an epimorphism with simple kernel. (Namely, assume the third condition holds
true in these special cases, and let f: M — N be any map which is not a pure
monomorphism. If f is not a monomorphism, then there is a simple submodule S
of M which is contained in the kernel of f and f factors via the projection map
p: M — M/S,say f = f'op. By assumption, p = p’og; for some i, and therefore
f=fop=f'op og;. On the other hand, if f is a monomorphism, then there is
some finite length submodule N’ of N such that the map f: M — N’ does not
split, since f is not a pure monomorphism. By assumption, we know that this
f: M — N’ factors via some g;.)

The Ziegler spectrum. Denote by Z(R) the set of isomorphism classes of R-
modules which are indecomposable and algebraically compact!®. As Ziegler [Z]

18 This means that 4 is a pure monomorphism, M is algebraically compact, and
p is left minimal (any endomorphism ¢ of M with ¢u = p is an automorphism).

19 The number of isomorphism classes of indecomposable algebraically compact
R-module is bounded by 2*, where A = max(|R|,Ro), see [JL],7.57.
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has pointed out, the set Z(R) carries a natural topology which is useful for many
considerations. There are several ways to define the Ziegler topology. Here we use
the following approach: Given a class X of maps f: X — X’ between finitely
presented modules X, X’ let A(X) be the indecomposable algebraically compact
modules M such that Hom(f, M) is surjective for all f € X'. As closed sets in
Z(R), one takes the subsets of the form A(X). As one can show the closed sets
are just the sets of isomorphism classes in Z(R) which belong to some definable
subcategory; here, a subcategory U of Mod R is said to be definable provided it
is closed under direct limits, products and pure submodules, or equivalently, if U
is defined by the vanishing of a collection of functors F': Mod R — ModZ which
commute with direct limits and products [CB4]. Given an indecomposable alge-
braically compact module M , we denote by cl(M) = cl({M}) the Ziegler closure
of the one-element set {M }. In general there do exist non-isomorphic indecompos-
able algebraically compact modules M, M’ such that cl(M) and cl(M’) coincide
(thus the Ziegler spectrum is not necessarily a Tj-space). For example, if R is a
simple von Neumann regular ring, then the only Ziegler closed sets are the empty
set and Z(R) itself. We say that the modules M, M’ are topologically equivalent
provided cl(M) = cl(M’).

Elementary duality. The category Mod R of all R-modules where R is a ring
is a Grothendieck category, the dual of this category is not. The dual of a full
subcategory U of a module category is equivalent to a full subcategory of some
other module category only in case there are severe restrictions on the size of the
modules in Y. If we consider, as we do, full subcategories of module categories,
the existence of a contravariant equivalence is very rare. The so called elementary
duality which we are going to discuss does not concern maps, but only collections
of objects in the Ziegler spectrum. It has been observed by Herzog [He] that there
is a bijection D between the collection of closed sets of Z(R) and the collection
of closed sets of Z(R°P) which respects finite unions and arbitrary intersections,
in particular, it preserves and reflects inclusions, see also [P2,P6]. This duality
is based on the duality between the categories of finitely presented functors on
mod R and on mod(R°P) and it can be interpreted as well in terms of the so
called positive primitive formulae in model theory. As Krause [K6] has pointed
out, if R is a k-algebra, the elementary dual DA of any closed set A in Z(R) is
obtained as the set of indecomposable direct summands of modules which belong
to the definable subcategory generated by the modules A* = Hom(A, k), with
AcA.

Clearly, D induces a bijection between the equivalence classes with respect
to topological equivalence. Unfortunately, even for a finite-dimensional k-algebra,
where k is some field, a pointwise description of the elementary duality does not
seem to be available: given an indecomposable algebraically compact R-module
M , one may expect that all the modules N in Z(R°P) such that D cl(M) = cl(N)
are direct summands of the k-dual M* of M, and then and one would like to
have an effective procedure for obtaining such a direct summand. Of course,
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if M is finite-dimensional and indecomposable, then M™* has the same dimen-
sion, is indecomposable and is just the required module N. But if M is infinite-
dimensional and indecomposable, then M* may be decomposable. As Krause has
shown [K3, K6]|, there is a class R(R) of indecomposable algebraically compact
R-modules M, the so-called simple reflexive ones, such that one can define a du-
ality D: R(R) — R(R°P) with the following properties: for any M € R(R), the
R°P-module DM is a direct summand of M* and D cl(M) = cl(DM). Of course,
DDM ~ M.

The denomination “elementary duality” refers to the fact that it is based on
the elementary language of R-modules. It has to be stressed that the elementary
duality does not preserve Y -algebraic compactness. We will discuss below the
Ziegler spectrum of a finite-dimensional algebra which is tame and hereditary;
for these algebras, the Priifer modules are X -algebraically compact whereas the
adic modules are not, and the elementary dual of a Priifer module is just an adic
module.

Generic modules. Detailed examples of indecomposable algebraically compact
modules will be presented in the next section. Here we want to mention only the
most prominent class, namely the generic modules: these are those indecompos-
able modules which are of finite length when considered as modules over their
endomorphism ring?°. Of importance is the following observation of Krause [K4]:
The closure of any tube contains at least one generic module of infinite length.
One obtains such a generic module as follows [R9]: Take a ray M; — My — - --
and its direct limit P = liin M; and form a countable product of copies of P; this

will be a direct sum of copies of P and of copies of finitely many generic modules
of infinite length. One conjectures that the closure of a tube contains precisely
one generic module of infinite length?!. Also, as Crawley-Boevey has shown, if
R is a tame k-algebra, where k is an algebraically closed field, then any generic
module of infinite length is obtained in this way. Namely, according to [CB1], such
a module is of the form M ®y) k(T), where M is an R-k[T]-bimodule which is

20 Some authors require in addition that the module itself is not of finite length.
This may be a reasonable convention in case one deals with a tame algebra, but
it is odd in general: The word “generic” refers to the fact that such a module
G serves to parameterize an algebraic family of indecomposable modules, just in
the same way, as in classical geometry generic points were used. To exclude the
possibility for G to be of finite length would correspond to the requirement that
only irreducible varieties of dimension at least 1 should have a generic point.

21 Tn the general setting as considered in [R9], one deals with a module P with
a locally nilpotent endomorphism ¢ such that ¢ has finite-dimensional kernel. Of
course, the direct limit module for a ray in a tube has these properties, but there
are other examples. A string algebra with a contracting Z-word z provides the
example of such a module P = M(z) such that the infinite direct products of
copies of P have two non-isomorphic generic modules as direct summands.
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finitely generated and free as a k[T]-module and such that for almost all elements
A € k, the modules M ®yq k[R]/(T — A)" form a tube.

If R is a finite-dimensional k-algebra which is connected, hereditary and
tame, there is precisely one generic module of infinite length; details will be given
below in the case where k is an algebraically closed field. There are other classes
of algebras where all the generic modules are known, let us mention at least the
tubular algebras, see for example [Le|, and also the string algebras. For the rel-
evance of maps between generic modules we refer to Bautista [Bt]. It has been
shown in [R11] that for many string algebras one can find sequences G1, G, ... of
generic modules such that for every ¢ there do exist both proper monomorphisms
G; — G;11 and proper epimorphisms G;11 — G;.

4. Finite-dimensional algebras

The impetus for this collection of surveys came from a maybe surprising, but ap-
parent need of using infinite-dimensional modules in order to understand the be-
haviour of finite-dimensional modules over a finite-dimensional algebra R. Much
effort has been spent in order to define the representation type of such an alge-
bra: this concerns the category of finite-dimensional R-modules, but the usual
approaches involve infinite-dimensional R-modules, thus infinite length modules.
Let us recall some of these developments.

Products of finite-dimensional modules. Of interest is Couchot’s charac-
terization [Ct] of the algebraically compact modules: For a finite-dimensional
k-algebra R, an R-module M is algebraically compact if and only if it is a direct
summand of a product of finite length modules. (Proof: On the one hand, the class
of algebraically compact modules is closed under products and direct summands,
for any ring R, and it includes, for any k-algebra R, all the finite-dimensional
R-modules. Conversely, assume that R is a finite-dimensional k-algebra and take
any R-module M. Consider the R°P-module M* = Hom(M, k). It is well-known
that there exists a pure exact sequence 0 — N’ — N — M* — 0 such that N is
a direct sum of finite-dimensional R°P-modules, and that the dual of a pure exact
sequence is split exact; see for example [Fc2] 1.23 and 1.28. Thus M** is isomor-
phic to a direct summand of N*. But the canonical inclusion M — M** is a pure
monomorphism. If M is algebraically compact, then M is a direct summand of
M** and thus also of N*. But since N is a direct sum of finite-dimensional R°P-
modules, N* is the direct product of these modules.) Thus, in order to deal with
all possible algebraically compact modules, no fancy constructions are needed: it
is sufficient to form products and to take direct summands.

But we may interprete this result also differently: after all, as we will see,
there do exist quite complicated algebraically compact modules. Thus we see that
the process of forming products?? of modules is not at all easy to control, see

22 A general discussion of products in Grothendieck categories should be very
worthwhile. The products we have considered here are always cartesian products,
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also [HO]. Forming products of finite-dimensional modules is a very effective way
in order to obtain new types of modules. In particular, we note the following
well-known result: Let (M;); be a set of finite-dimensional modules and assume
that any indecomposable module is a direct summand of at most finitely many M, .
Then the module [ M;/ @ M; has no finite-dimensional indecomposable direct
summand.

Representation types. We assume that R is a finite-dimensional algebra (or,
more generally, an artin algebra). In case R is representation-finite, the structure
of all the R-modules is known: Theorem: If R is a representation-finite algebra,
and M is any R-module, then M is a direct sum of indecomposable R-modules of
finite length [T, RT,A2]. Of course, such a direct sum is essentially unique, accord-
ing to the Azumaya Theorem. On the other hand, if R is not representation-finite,
then there are always indecomposable R-modules of infinite length [A3].

In [A1], Auslander has introduced the notion of a representation equivalence.
A representation equivalence (or an epivalence [GR]) is a functor which is full,
dense and reflects isomorphisms, and two categories A and A’ were said to be
representation equivalent (or to have equivalent representations) provided there is
a sequence of representation equivalences A = Ag — A; «— Ay — --- A, = A'.
Actually, this equivalence relation is not very useful, for the following reason: If
k is an algebraically closed field, then all the representation-infinite k-algebras R
are representation-equivalent: the category mod R/ rad(mod R) is the direct sum
of copies of modk, the number of copies is just the cardinality of k& (note that
the number of isomorphism classes of indecomposables is equal to the cardinality
of the field k).

The concept of a representation embedding as introduced by Crawley-Boevey
in [CB2] is more appropriate and avoids such difficulties: a k-linear functor
F: ModS — ModR is said to be a representation embedding provided it is ex-
act, preserves direct sums and products, preserves indecomposability and non-
isomorphy. Prest shows in [P4] that a representation embedding from Mod S to
Mod R induces a homeomorphic embedding of Z(S) into Z(R).

On the basis of examples considered by Corner, by Brenner and Butler and
others, there had been a vague feeling concerning a possible distinction between
tame and wild algebras; a challenging conjecture was formulated by Donovan and
Freislich at the Bonn workshop 1973 and proved by Drozd [Dd]. Let k be an

but one should be aware that a full subcategory C’ of a Grothendieck category C
which is closed under kernels, cokernels and direct limits (and thus a Grothendieck
category on its own) does not have to be closed under products, a typical example
is the subcategory C’ of all abelian p-groups in the category of all abelian groups.
In such a situation, the products in C’ are subobjects of the products formed
in C (in our example, the product in C’ is the torsion subgroup of the cartesian
product; note that for non-bounded p-groups the cartesian product is no longer a
torsion group).
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algebraically closed field. A k-algebra R is said to be tame provided for every
dimension d, there are finitely many R-k[T]-bimodules M; which are finitely
generated free as k[T]-modules, such that almost all indecomposable R-modules
of dimension d are isomorphic to modules of the form M; @y N, where N is
an indecomposable finite length k[T]-module. Let us call R to be t-domestic
provided ¢ bimodules Mj, ..., M;, but not less, are needed altogether (for all d),
and non-domestic, in case infinitely many bimodules M; are needed. If we fix
such a bimodule M; and consider the set of all the R-modules M; ®jr) IV, where
N runs through the indecomposable k[T]-modules say of dimension n, we obtain
what may be called a (rational) one-parameter family of R-modules. Thus, an
algebra is tame provided for every dimension d, almost all the indecomposable
R-modules belong to a finite number of one-parameter families. In this way, one
can reformulate the notion of tameness in terms of algebraic geometry. Since
these bimodules M; are free as k[T]-modules (and non-zero), they are infinite-
dimensional over k, thus, as R-modules they also have infinite length. Only
recently, Krause [K6,K7] gave the first characterization of tameness which only
relies on the category of R-modules of finite length, without reference to an infinite
length R-module, or the (external) algebraic geometrical structure.

It seems that an algebra R is tame (or representation-finite) if and only if any
non-zero algebraically compact module has an indecomposable direct summand. If
this is true, this would provide a very convenient and easy way for defining tame-
ness, using only the notions of indecomposability and of algebraic compactness.
Actually, taking into account Couchot’s characterization, we may even avoid the
notion of algebraically compactness, thus we arrive at the following reformulation:
An artin algebra R should be tame if and only if any product of finite length
modules is a discrete module.

The representation-finite algebras are quite well-understood (see [GR]): We
recall that a representation-finite algebra with a faithful indecomposable repre-
sentation is standard, so that one may use covering theory in order to recover
all the indecomposables from a suitable representation-directed algebra, and there
are very effective algorithms known in order to deal with the indecomposable
representations of a representation-directed algebra. For algebras which are not
representation-finite, no general theory is available at present: there does not yet
exist a structure theory even for the 1-domestic algebras, the algebras nearest to
the representation-finite ones.

Drozd’s definition of wildness involves, as that of tameness, infinite length
R-modules; here one uses an R-k(X,Y)-bimodule M which is finitely generated
free as k(X,Y)-module.

Strictly wild and controlled wild algebras. Let us start with a strictly wild
algebra R, here one requires that for any k-algebra S, there is a full and exact
embedding Mod S — Mod R which sends finitely presented S-modules to finitely
presented R-modules. Of course, as soon one knows one strictly wild algebra Sy,
it is sufficient to find an embedding Mod Sy — Mod R as required in order to know
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that also R is strictly wild. A typical example of a strictly wild algebra is the free
k-algebra k(X,Y) in two generators X,Y . Also all the generalized Kronecker
algebras kK (n) with n > 3 are strictly wild; by definition, kK (n) is the path
algebra of the quiver K (n) with two vertices, say a,b and n arrows b — a

a o . op
~—_
For example, for n = 3 one obtains an embedding as required Mod k(X,Y) —
Mod kK (3) by sending the (X,Y’)-module (M, X,Y) to the following representa-

tion of K (3)
1

/’X\

M=
(here, M is a vector space, X: M — M denotes the multiplication by X, and
similarly Y: M — M that by Y).

Why is it of interest to know that a k-algebra R is strictly wild? Of course,
this implies that every k-algebra S occurs as the endomorphism ring of a suitable
R-module, thus all module theoretical phenomena which can be read off from the
endomorphism rings of a module occur for R-modules; in particular, this applies
to all kinds of possible direct decompositions, since the direct decompositions of a
module are encoded into the set of idempotents of its endomorphism ring. Strict
wildness does not concern only individual modules, but also sets or even classes
of R-modules. For example, for certain considerations it is good to have large
sets of pairwise orthogonal modules at hand, a set (M;);c; being called pairwise
orthogonal provided Hom(M;, M;) = 0 for all pairs of indices i # j, and this is
the case for any strictly wild algebra.

It is well-known that there do exist k-algebras R which are not strictly wild,
but which have the weaker property that any k-algebra S can be realized as a
(nice) factor algebra of the endomorphism ring of an R-module. For example,
consider the polynomial ring k[X,Y, Z] in three variables and its factor algebra
R = k[X,Y,Z]/(X,Y,Z)? modulo the square of the ideal generated by X,Y, Z.
This is a local algebra, thus the only division ring which can be realized as an
endomorphism ring of an R-module is k itself (the only module M with endo-
morphism ring being a division ring is the simple module k). Also, if (M;);er
is a set of pairwise orthogonal R-modules, then the index set consists of at most
one element! On the other hand, given any k-algebra S, there does exist an R-
module M such that S = End(M)/J, where J is an ideal of End(M), it is even
a nicely defined ideal, namely the set of all endomorphisms of M with semisim-
ple image. Such “wild” algebras were studied by Corner, Brenner and others.
When Drozd formulated and proved his celebrated tame-and-wild theorem, he in-
troduced a definition of wildness which deviated from the older intuitive notion:
an algebra R is wild in the sense of Drozd provided there exists an R-k(X,Y')-
bimodule W which is finitely generated and projective as a k(X,Y")-module such
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that the functor F(—) = ( RW ®rix,v) —) preserves indecomposability and non-
isomorphy. Of course, in this definition, we may replace the (infinite-dimensional)
algebra k(X,Y) by the (five dimensional) algebra kK (3), considering a bimodule
rRWik(s) which is finitely generated and projective as a kK (3)-module and the
functor

F(=) = (rRW ®k(x,yy —): Mod kK (3) — Mod R,

or at least its restriction to mod kK (3). Now, given a k-algebra S, there is a
kK (3)-module N with End(N) = S and we may consider now the R-module
F(N) = W ®ik3) N. Its endomorphism ring End(F(/N)) has S as a subring,
but there is no reason that in this way S can be realized as the factor ring of an
endomorphism ring. The problem we are dealing with is the following: given a R-
kK (3)-bimodule W which is finitely generated and free as a kK (3)-module, such
that the functor F(—) = (W ®yx(s) —) is faithful, then F(—) is not necessarily
full. In which way is it possible to control the subspaces

F(Homy, g (3) (N1, N2)) € Homp(F(Ny), F(N2))

We say that R is controlled wild provided the subspace F'(Homyg(3y(N1,N2))
of Homp(F(Ny), F(N2)) is complemented by the set Hompg(F(Ny), F(N3))y of
homomorphisms F'(N;) — F(N2) which factor through a prescribed additive sub-
category U of R-modules (and U may be called the corresponding control class):

(*) HOIHR(F(N1>, F(NQ)) = F(Hoka(g)(Nl, NQ)) D HOIIlR(F(N1>, F(NQ))M

For example, for the local algebra R = k[X,Y,Z]/(X,Y,Z)? the class U of
all semisimple modules serves as such a control class. Recent investigations by
Rosenthal and Han [Ha] support the conjecture that all finite-dimensional wild
k-algebras (k is algebraically closed) are controlled wild. We can reformulate this
concept??® as follows: Let V be the class of R-modules which are images under
F and consider the ideal (/) NV of V. According to (%), we see that the factor
category V/({U) NV) is equivalent to the category mod k(X,Y).

Tame is Wild. If we consider for a finite-dimensional k-algebra all modules and
not only those of finite length, the difference between “tame” and “wild” vanishes.
This is usually formulated as follows: tame algebras are Wild [R3,R12], here the
small “t” in tame refers to tameness with respect to modules of finite length, the
capital “W” in Wild refers to wildness with respect to arbitrary modules which

23 This seems to be an appropriate setting for discussing the wildness of many
categories; for example, we may take as V' the category of all abelian p-groups
and as U the subcategory of all bounded ones. Or, let V be the category of all
abelian groups which are slender, and U/ the subcategory of all free abelian groups
of finite rank.
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are not necessarily of finite length. To be more precise, the quoted papers show
that the Kronecker quiver K(2)

< TS0

ao\_/

is strictly Wild: they provide an explicit full exact embedding of the category
of representations of K (3) into the category of representations of K(2), and, of
course, K (3) is a typical strictly wild quiver. Similar to the notion of a strictly wild
algebra, one may call a k-algebra R strictly tame provided there is a full exact
embedding of the category Mod kK (2) of all kK (2)-modules into the category
Mod R of all R-modules. The precise formulation is: All strictly tame algebras are
Wild. There is a strong belief that for all tame finite-dimensional k-algebras, where
k is an algebraically closed field, the one-parameter families of indecomposables
can be obtained using functors Mod kK (2) — Mod R which are quite well-behaved
also with respect to infinite-dimensional modules. If this turns out to be true,
then one will see that really all tame algebras are Wild. In this way, for the global
behaviour of finite-dimensional algebras, the only relevant distinction seems to be
that between finite representation type and infinite representation type.

The main observation behind the tame-is-Wild theorem concerns the exis-
tence of (many) infinite-dimensional kK (2)-modules with endomorphism ring k.
Here is a recipe in case k is infinite: let k(7") be the field of rational functions
in one variable, let I be an infinite subset of k. Let U, be the subspace of k(T)

generated by the elements ﬁ with A € I and U, = U+ k1. The representation
U = U(I) we are interested in is
1
et
T.

This is a subrepresentation of the generic one (k(7T),k(T);1,T-), and it is not
difficult to check that its endomorphism ring is k. Moreover, if I, J are disjoint
infinite sets then Hom(U(I),U(J)) = 0, but Ext'(U(I),U(.J)) # 0. Using such
representations U([), it is easy to construct many different full exact embeddings
of strictly wild categories into Mod kK (2).

We have mentioned above that for any dualizing k-variety, the category modC
has Auslander-Reiten sequences. As a consequence, one can consider the corre-
sponding Auslander-Reiten quiver. It incorporates the basic concepts developed
by Auslander and Reiten, in particular the notion of an irreducible map and that of
the Auslander-Reiten translate 7 (“dual of the transpose”), in order to provide a
first overview over the category mod C. Here we will use this theory in the classical
case where R is a finite-dimensional algebra over some field (or, more generally, an
artin algebra) and denote by I'g its Auslander-Reiten quiver. This is a quiver with
vertex set the isomorphism classes [X] of the indecomposable R-modules of finite
length, and with an arrow [X] — [Y], where X,Y are indecomposable, provided
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there exists an irreducible map X — Y. In addition, this quiver is endowed with
the partial translation 7, it has the following property: 7[Z] is defined if and only
if Z is not projective, and then there is an arrow [Y] — [Z] if and only if there
is an arrow 7[X] — [Y]. If R is connected and representation-finite, then I'g is
connected. It has been conjectured that also the converse is true (this is known
to be true in case k is algebraically closed). A component of ' which does not
contain any projective or injective module is said to be a stable component.

The tame hereditary algebras. One class of domestic algebras is very well-
known, the tame hereditary k-algebras, where k is an algebraically closed field:
these are just the path algebras of quivers of type A,, D,, Fg, F7, Fs. Let us
recall the structure of the module category of such an algebra: There are two
components of the Auslander-Reiten quiver which are not stable, one consists of
the indecomposable projective modules and their 7~ !-translates (it is called the
preprojective component P ), the other contains the injective modules and their 7-
translates (the preinjective component Z). The remaining components are stable,
all these components are “tubes”, and the set of these components is indexed in
a natural way by the projective line P1k. The modules belonging to these stable
components and their direct sums are said to be regular. The regular modules form
an abelian subcategory R, thus one may speak of simple regular representations
(these are the regular representations which are simple objects when considered as
objects in R). Any regular module M is 7-periodic (this means that 7P M ~ M
for some p > 1), the indecomposable modules in all but at most three of the tubes
are homogeneous (this means that 7M ~ M ); the remaining tubes are said to be
exceptional and the minimal period for all the modules in a tube is said to be its
rank. The global structure of the category mod R is as follows:

1

iy

Globally, all the maps go from left to right: there are no maps from R to P
and no maps from Z to P or R. (Actually, the subcategories P and Z are also
directed: the indecomposable modules in these subcategories can be arranged in
such a way that there are no maps from right to left; but inside R, there do exist
cycles of maps.)

For a tame hereditary algebra R, the structure of the category mod mod R
is well-known, see [Gg]. Let us recall the shape of the indecomposable projective
objects in modmod R, these are the functors Hom(—, X) with X an indecom-
posable R-module of finite length. The top of Hom(—, X)) is the simple functor
Sx = Hom(—, X)/rad(—, X), its socle is of the form &, Sp,, where @, P; is a
projective cover of soc X. Of course, Hom(—, X) is of finite length if and only if X

P 7
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is preprojective. If X isnot preprojective, then the socle sequence soc; Hom(—, X)
and the radical sequence rad; Hom(—, X) are controlled by the Auslander-Reiten
structure of the category mod R. It is instructive to specify suitable subobjects of
Hom(—, X) in Mod mod R, namely the restriction to P and to PVR. The restric-
tion Hom(—, X')|P is just the union (J, soc; Hom(—, X), in particular this is an
artinian functor. In case X is regular, Hom(—, X')/(Hom(—, X)|P) is noetherian.
Of special interest is the case where X = FE is simple regular. In this case the
shape of Hom(—, F) (or the corresponding dual configuration) has been studied
quite carefully in [R5] as the patterns which are relevant for tubular one-point
extensions. If X is preinjective and F = Hom(—, X), let F” be the restriction of
F to PV R and F” the restriction to P. Then 0 C F” C F' C F, the functor
F" is artinian, F/F’ is noetherian, and F’/F" is the direct sum of infinitely
many functors (the summands correspond to the stable components, thus to the
elements of P1k), and none of these summands is artinian or noetherian.

X preprojective

X regular

X preinjective

Recall that the functor category mod mod R is a dualizing k-variety. In particular,
this means that given any R-module X of finite length, the functor D Hom(X, —)
is finitely presented. For example, starting with an indecomposable regular R-
module X, this functor D Hom(X, —) can be displayed as follows:

X regular

How do we obtain a finite presentation of DHom(X,—)? If X = P(i) is an
indecomposable projective R-module, then D Hom(P(i), —) ~ Hom(—, I(4)), thus



44 CLAUS MICHAEL RINGEL

D Hom(P(i),—) is an indecomposable projective functor. Otherwise we can use
the Auslander-Reiten formula D Hom(—, X) ~ Ext'(—,7X); we embed 7X into
an injective module I, the exact sequence 0 — 7X — I — [/7X — 0 yields
the exact sequence Hom(—,I) — Hom(—,I/7X) — Ext!'(—,7X) — 0, thus a
finite presentation of Extl(—, 7X). Of course, since our ring R is hereditary, the
module I/7X is injective again. — Finally, let us single out also the shape of the
projective-injective objects: recall that these are just the functors Hom(—, I(7)) ~
DHom(P(i),—) :

Let us deal with a specific example of a tame hereditary algebra. We consider
the following quiver @’ of type As

2 g 1
as ,° °
30/ \oo
Q4 O<—O/Oé6

4 gy 5

First of all, let us indicate, on the left, part of the preprojective component, and,
on the right, part of the preinjective component. Here, the vertices are replaced
by the corresponding dimension vectors?*, some of the modules are also labeled:
Given a vertex i of Q)', the corresponding indecomposable projective kQ’-module
will be denoted by P’(7); the corresponding indecomposable injective k£Q'-module
by I'(i). Note that in both pictures, the solid horizontal lines have to be identified.

00 01 11
0.1 0,1 — ) 1
00 11 01
\Ooﬂ \ \21% \OO
0111 ....... e 1111 ....... 0010 I/(5)
00/ \00/ 7 \10ﬂ
P/(4) 0100 ....... 1111 ....... e e 1110
NN NN
/ 1(1)80 AAAAAAAAAAAAAA 1110 ....... 1(1)80
P'3) N A 7N 7N
1111 AAAAAAA e 1110 AAAAAAA 0100 I/(Q)
10 00 00
o/ N N AN S
%0001\% ...... ;011\;000 I/(l)
P’(0) 0°% 0?11 ol
00 11 01

24 The dimension vector of a quiver representation M exhibits the dimensions
of the different vector spaces involved. For a directed quiver, these dimensions
are just the Jordan-Holder multiplicities [M : S(i)] of the corresponding simple
representations S(i).
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For this algebra, there are two exceptional tubes, both of rank 3. We are going to
present also part of these tubes, again using dimension vectors and some labels.

N NSNS NN TN T

1 1 AAAAAAA 0 1 ,,,,,,, 1 0 1 1 ,,,,,,, 0 1 AAAAAAA 1 O

11 01 10 00 11 11
LA AN AN AN AN AN
1 00 AAAAAAA 0001 ,,,,,,, 0010 AAAAAAA 1100 1000 ....... 0 1 AAAAAAA OOOO AAAAAAA 1000
10 01 00 10 00 00 11 00
FEs FEo FEr E} E} E]

It is easy to list the indecomposable algebraically compact modules: Of
course, all the indecomposable modules of finite length have to be mentioned. In
addition, every simple regular module E gives rise to two indecomposable modules
which are algebraically compact: the Prifer module E[oc] and the adic module E .
They are obtained as follows: Consider all the finite-dimensional indecomposable
regular R-modules M with Hom(E, M) # 0. These modules can be labeled in
the form M = E[s] and arranged as a so called ray:

E=E[l]CE2]C---CE[s]C---

where all the inclusion maps FE[s] C E[s + 1] are irreducible maps, and

Eloc] = JEJs].

Similarly, consider all the finite-dimensional indecomposable regular R-modules
M with Hom(M, E) # 0. These modules can be labeled in the form M = [s|E
and arranged as a coray:

o B B [JE=F

where all the maps E[s+1] — E[s| are irreducible epimorphisms. The adic module
E is defined as the inverse limit

E =1lim [s]E

“«—

and we denote by 7, : E— [s] E the canonical projection (the names Priifer module
and adic module are parallel to the use of the corresponding names for abelian
groups, where one speaks of a Priifer group and the p-adic integers; the p in “p-
adic” specifies the simple top Z/Zp, in a similar way, we may call E the F-adic
module).

Let us indicate why both modules E[occ] and E are indecomposable. It is
well-known that for any s > 1, any non-zero map F — FE]s| (and therefore also
E — E[o0]) is the composition of an automorphism of E and the inclusion map.
Thus, given a direct decomposition F[oo] = U @ U’, we may assume that £ C U
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and Hom(F,U’) = 0. Inductively, one sees that E[s] C U for all s, thus U’ = 0.
Similarly, we want to see that any non-zero map F — FE is the composition of 7
and an automorphism of E. Note that Ext'(77'E, E) ~ limExt'(r'E, [s|E),

and the maps [s + 1]JE — [s]E induce isomorphisms Ext'(r='E,[s 4+ 1]E) —
Ext'(r7'E,[s]E) — Ext'(r~'E, E). Now, we use the Auslander-Reiten formula
which yields Hom(E\7 E) ~ DEth(T_lE,E) ~ DExt'(r~'E,E) ~ Hom(E, E).
This shows that any mapAE — F vanishes on the kernel of 7;. Using induction,
it follows that any map E — [s]E vanishes on the kernel of 74, and this implies
that for any decomposition E=UaU , one of the summands has to be contained
in the intersection of all these kernels, thus has to be zero.

Also, both modules E[co] and E are algebraically compact. This is trivial for
E, since it is the inverse limit of finite-dimensional modules, and such an inverse
limit is always algebraically compact. But it is also clear for the Priifer module
E[oo], since it is artinian when considered as a module over its endomorphism
ring.

There is just one additional R-module which is indecomposable and alge-
braically compact, the generic module G of infinite length, see [R4]. There are
several ways to construct G. Starting with a Priifer module E[oco], note that there
is an epimorphism (7FE)[oc] — E]oo] whose kernel is simple regular. We obtain a
sequence of maps

= (T"E)[o0] = -+ = (TE)[o0] — E[0]
and we may form the inverse limit lim (7" E)[occ]. This inverse limit is a direct

sum of copies of G. Dually, starting with an adic module E , note that there is
an embedding E C (771E)” with simple regular cokernel. We obtain a sequence
of inclusion maps R

Ec(r'Eyc---c(r"E)ycC---
This time, we have to form the direct limit and obtain a module which again is
the direct sum of copies of G.

We have constructed the infinite-dimensional indecomposable algebraically
compact modules using limits and colimits (and direct summands) of regular mod-
ules. It is also possible to construct the adic modules as well as the generic module
of infinite length as direct limits of preprojective modules, and the Priifer modules
as well as this generic module as direct summands of inverse limits of preinjective
modules. We are going to insert the additional algebraically compact modules into
our global picture of mod R, the arrows indicate the directions of all the possible

maps.
G
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We recall that any algebraically compact R-module occurs as a direct sum-
mand of a product X = Hz’e ; X; of finite-dimensional modules X;. Since we
only are interested in algebraically compact modules which are indecomposable,
we may assume that we start with a collection of modules X; where all these mod-
ules are preprojective, or regular, or preinjective. First, consider the case where
all X; are preinjective. Then X is a divisible module?®, thus it is a direct sum of
indecomposable divisible modules. An indecomposable divisible module is either
finite-dimensional and then preinjective, or else a Priifer module or the generic
module G of infinite length. Next, consider the case where all the modules X; are
regular. Then X will contain a submodule which is a direct sum of indecompos-
able modules which are finite-dimensional (and regular), or adic modules, and such
that X /X'’ is a direct sum of copies of G. Usually X’ will be a proper submodule
of X, thus it will not be possible to write X as a direct sum of indecomposable
modules. Finally, in case all the modules X, are preprojective, then the only
indecomposable summands of X are the finite-dimensional ones. Let us assume
that all the modules X; are indecomposable, let P(1), P(2),... be a complete
list of all the indecomposable preprojective modules, one from each isomorphism
class, and denote by I(s) the set of indices i with X; isomorphic to P(s). Note
that the product [];c;) X: can be written as a direct sum of copies of P(s).
The submodule X" = P, [];c;(5 Xi of X is a direct sum of finite-dimensional
indecomposable modules, and it is maximal with this property. Of course, in case
I(s) is non-empty for infinitely many s, then X’ is a proper submodule of X . —
It is of interest to compare the two extreme cases when dealing with preinjective
or preprojective modules X;. In the preinjective case, several new types of inde-
composable direct summands occur, but X can be written as the direct sum of
indecomposable modules. On the other hand, in the preprojective case, no new
isomorphism classes of indecomposable direct summands do occur, but usually X
cannot be written as a direct sum of indecomposable modules. — The case where
all X; are regular is intermediate and is similar to the well-known situation of
analyzing reduced algebraically compact abelian groups [Ful].

Having determined all the indecomposable algebraically compact modules, let
us describe the Ziegler topology (see [Gr], [P5] and [R10]). A subset X of Z(R)
is closed if and only if the following conditions are satisfied: First, if F is a simple
regular R-module and if there are infinitely many finite length modules X € X
with Hom(E, X) # 0, then E[oo] belongs to X'. Second, the dual condition, if E is
a simple regular R-module and if there are infinitely many finite length modules
X € X with Hom(X,FE) # 0, then E belongs to X. And third, if there are
infinitely many finite length modules in X" or if there exists at least one module in
X which is not of finite length, then the generic module of infinite length belongs
to X.

We see that the Ziegler closed subsets of Z(R) are related to the support

25 For the notion of divisibility as well as the structure of products of prepro-
jective modules, we refer to [R3], sections 5 und 2, respectively.
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of the functors Hom(F,—) and Hom(—, F), where E is simple regular. These
functors play an important role for many questions in the representation theory of
tame hereditary algebras, for example for one-point extensions and coextensions.

- N

String algebras. We are going to describe the structure of some additional
indecomposable algebraically compact modules. They are similar to the Priifer
modules and the adic modules, or to pairs of such modules. The algebras we will
consider are string algebras, this is a class of tame algebras whose indecomposable
modules can be constructed with bare hands. We are going to outline how to de-
termine all the indecomposable algebraically compact modules for a string algebra
R; in case R is domestic, we will give a complete description of these modules.

We recall that for a connected tame hereditary algebra2® the indecompos-
able algebraically compact modules which are not of finite length are the Priifer
modules, the adic modules and one endofinite module of infinite length. These
kinds of modules do also exist for any string algebra, more precisely: for any prim-
itive cyclic word (or better: its equivalence class) there are Priifer modules, adic
modules and one endofinite module of infinite length, but there may be additional
ones which are built up using Priifer modules, adic modules and finite dimensional
ones. For the almost periodic N-words, one Priifer module or one adic module is
used, for the biperiodic Z-words two such modules are used, and all three possible
combinations occur. Of special interest seems to be the mixed case which involves
at the same time a Priifer module and an adic module.

Let us start with the case of R being domestic, even 1-domestic. First, let
us mention an easy way for constructing some 1-domestic string algebras (fol-
lowing [R7]), this should help to illustrate some of the phenomena occurring for

representation-infinite algebras. We start with a quiver @’ of type gn_l, thus
there are n vertices, say labeled by the integers modulo n, and n arrows «;, with
0 <i < n,such that {s(a;),t(a;)} = {i —1,i}. We assume that n is even and we
assume that there is given also a fix point free involution w: i — i’ on the set Q)
of vertices of Q'. We form the algebra R(Q’,w) = kQ(po, ..., p), where the quiver
@ is obtained from @’ by adding vertices a, for any w-orbit ¢ of Q) and arrows
B; with {s(8;),t(3:)} = {i,a,}, for any 0 < i < n with 7 € «. The orientation of
(B; is chosen so that the arrows «; and [3; can be composed in order to form a
path labeled p;; thus, if s(a;) =14, let t(5;) = i, and let p; = «;5;; similarly, if
t(a;) = i, let s(B;) =i, and let p; = B;c;. As an example, consider the quiver
Q' of type Ajs exhibited above and the map w: Qf — @ which exchanges 1 and
2; and 3 and 5; and 4 and 0. We obtain the following quiver @, the dotted lines

26 and similarly for a Dedekind ring.
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indicate the relations:

2 1

3o ——> o 0 <——10(

O<—0O

4 S

here, a = ayy 2),0 = ay3 5y and ¢ = ayg 4}, and the six new arrows are those labeled
B;. This algebra R(Q’,w) is a string algebra [BuR], thus it is easy to list all the
indecomposable modules of finite length. Since there is (up to equivalence) only
one primitive cyclic word, namely w = ajasas ay 'asag T, we see that R(Q',w)
is 1-domestic. As an intuitive description of the new algebra R(Q’,w) we may say
that we have added some “bridges” to the quiver @’ (connecting a vertex i with
its image wi ), these bridges correspond to the orbits of w.

Of course, the full subcategory of all £Q’-modules in mod R(Q’,w) is known,
and it consists of all representations M of () for which all the vector spaces M,,
are zero.

Let us describe some interesting R(Q’,w)-modules. Recall the following: A
string algebra has two kinds of finite-dimensional indecomposable modules, the
string modules and the band modules. In our case, all the band modules are actu-
ally kQ'-modules, thus let us concentrate on string modules. They are obtained by
choosing a (finite) walk w in the quiver @, this is a word w = lyl5...l, , where we
use as letters [; the arrows and their formal inverses, subject to the requirement
that never an arrow and its inverse are neighbors, and that consecutive arrows
are composable. The kQ-module M (w) is given by a k-space (here of dimension
n+ 1, since w is supposed to have length n), and the word w describes the oper-
ation of the arrows of ) on this space. In order to obtain an R(Q’,w)-module, we
have to require in addition that w avoids the relations p;; this means that these
relations do not occur as a subword or as the inverse of a subword of w. We also
may work with words using as letters the vertices of ), say replacing the sequence
lils .. .1, by the sequence t(11)t(l3)...t(l,)s(l,), provided this does not lead to
confusion. This has the advantage that now the letters of the word w correspond
bijectively to basis elements of M (w).

In order to construct infinite-dimensional indecomposable modules, we will
use N-words w = lpla...l, ... or Z-words ...l_1lglyly... (here N and Z refer
to the sets of indices used). For example, for the algebra R exhibited above, there
are precisely six Z-words, namely the words

z(a) = °°(105432) a (123450)°°,
z(b) = *°(210543) b (501234)>°,
z(e) = °°(321054) ¢ (012345)>°,
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and their inverses27. All the possible N-words occur as subwords of these Z-words.
As for finite words, we can attach to every Z-word or N-word w a corresponding
string module M (w). In addition, we also may consider suitable completions of
M (w), see [R8], in order to obtain algebraically compact modules.

To be more precise, consider any N-word z = lyl5..., where the letters
l; are arrows or inverses of arrows. The string module M(x) is constructed as
follows: take a (countably dimensional) vector space with basis eg, e1,... and let
R act according to the word z: in case the letter [; is an arrow, say [; = «, then
define a(e;) = e;_1, otherwise [; is the inverse of an arrow, say [; = a~ !, then let
a(e;—1) = e;. In this way, we have defined the action of some arrows on some basis
elements, the action of arrows on all other basis elements should be zero. Besides
M(z) = @ ke;, we also consider the product M(x) = [[ke; with a similarly
defined action. It is well-known that the string modules M (x) are indecomposable,
and it is obvious that the modules M (z) are algebraically compact. Observe that
at most one of the two modules can be both indecomposable and algebraically
compact: The embedding +: M(x) — M(x) is a pure embedding, thus, if M (x)
is algebraically compact, then ¢ splits and M (z) cannot be indecomposable.

Let us assume that z is almost periodic (this means that = = 2’w®, where
x' and w are finite words). We claim that in this case, one of the two modules
is both indecomposable and algebraically compact, and thus this is the module
C(x) we are interested in. An almost periodic N-word z is either contracting
or expanding, using the terminology of [R8]. There, it has been shown that for
x contracting, the string module M(x) is algebraically compact. But it is not
difficult to see that for = expanding, the module M (z) is indecomposable?®.

Let us now consider Z-words. In our example, the module C(z(c)) is con-
structed as follows: Again, we start with the string module M (z(c)) = @, ke,
where e;, i € Z is the defining basis following the letters of the Z-word z(c).
Now, take the corresponding product module C(z(c)) = [];c; ke;. This module
C(z(c)) still has the simple module S(c¢) as a submodule, and C(z(c))/S(c) is the
direct sum of two adic kQ’-modules, namely those corresponding to the simple
regular modules Es and Fj. Second, consider the module C(z(b)), it is obtained
from M(z(b)) by a partial completion (“on the left”), so that C(z(b)) has sub-
modules N’ C N, where N is the Priifer kQ’-module with regular socle EY,

27 If u, v, w are finite words, we write vw> instead of vww - - - and *uwv instead
of ---wuv. For quite obvious reasons we say that vw> as well as the inverse of
uv are “almost periodic N-words”.

28 For any j, we consider the subspace C; = H#j ke; of M(x). Note that the
intersection (1); C; is zero. We use the functorial filtration of the forgetful functor
F asin [R1]. The word z defines a sequence of intervals G; C F; of subfunctors of
F. Now suppose there is given a direct decomposition M(x) = N @ N’. Clearly,
(Fo/Go)(M(x)) is one-dimensional, thus we may assume that (Fy/Go)(N') = 0,
and therefore Go(N') C Cy. Inductively one shows that G;(N’) C C;, but this
implies that N’ = 0, thus M (z) is indecomposable.
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N/N' = S(b) and C(z(b))/N is an adic module with regular top Fs3. And finally,
consider C'(z(a)) = M(z(a)). In this case S(a) occurs as a factor module, the
corresponding maximal submodule is the direct sum of two Priifer modules with
regular socles E7, E%. Here are some schematic pictures:

Do E 9. Sl F R
Pl B3 S®) i ) |
S(a) =
. ~— 5/
E} 3 = |Eg .
C(z(a)) C(z(b)) C(z(c))

Similar pictures can be drawn in the case of an almost periodic N-word z; to
the left, we exhibit the case where x is contracting (there is a submodule which
is a Priifer module such that the factor module is indecomposable and of finite
length), to the right, = is expanding (there is an indecomposable submodule of
finite length such that the factor module is an adic module):

) R

Z

If R is a string algebra, then all the indecomposable algebraically compact
modules can be determined and one can show that the only algebraically compact
module which is superdecomposable is the zero module [R14]. For the proof, one
determines R-modules M such that the functor (— ® M) is N-uniform; this
implies that the pure injective envelope M (z) of M (z) is indecomposable. If z
is a Z-word which has no expanding end, then the functor (— ® M(z)) is N-
uniform. For the proof, write z = zy, and further = = ---x9x129, where the z;
are finite words with last letter being an arrow, and y = yoy1ys---, where the
first letter of y; is the inverse of an arrow. Observe that for all ¢, the two modules
N! = M(zyo---y;) and N/ = M(x;---zoy) are factor modules of M = M(z).
Let g;: M — N; = N/@® N/ be given by the canonical maps. One has to check that
for any simple submodule S of M , the canonical projection f: M — M/S can be
factored through one of the maps g;, and also that any inclusion map f: M — N
whose cokernel is finite-dimensional and indecomposable can be factored through
some ¢;. Similarly, one shows that if vy is a non-expanding N-word, then the
functor (— ® M(y)) is N-uniform.

5. Hammocks and quilts.

Hammocks. As mentioned above, the hammocks have been introduced in the
realm of representation-finite algebras R by S. Brenner in order to obtain a com-
binatorial characterization of the translation quivers which occur as Auslander-
Reiten quivers. The word “hammock” describes in a very intuitive way the shape
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of the representable functors Hom(—, I(S)) ~ D Hom(P(S),—), where S is a
simple R-module, I(S) its injective envelope, P(S) its projective cover. One
can attach to such a functor a translation quiver I'(S) whose vertices are equiva-
lence classes of non-zero maps from P(S) to indecomposable R-modules M, thus
equivalence classes of composition factors of indecomposable R-modules which
are isomorphic to S. These translation quivers I'(S) have a unique source (cor-
responding to the top of P(S)) and a unique sink (corresponding to the socle
of I(S)); in addition, there is a function I'(S)y — Nj, the hammock function,
which plays a role: it counts the number of composition factors of the form S
in suitable layers of the module in question; this function is additive on meshes.
An axiomatic treatment of such translation quivers with hammock functions has
been given in [RV], and there it has been shown that one obtains in this way pre-
cisely the Auslander-Reiten quivers of the categories of Q-spaces??, where ) is a
finite poset. Altogether the hammock philosophy uses three different approaches:
a functorial one, dealing with functors which are both projective and injective, a
combinatorial one, dealing with translation quivers and additive functions, and a
linear one, dealing with subspace configurations in vector spaces.

An extension of these considerations to finite-dimensional algebras which are
representation-infinite is needed. Of course, there is a strong interest to be able
to extend all three approaches, but it seems clear that at present a combinatorial
procedure can serve only as an auxiliary device: in dealing with representation-
infinite algebras one cannot avoid to take the infinite radical rad” into account
and too little is known about the possibilities to handle it combinatorially. The
main problem presently concerns the question under what conditions hammock
functors Hom(—, I(S)) ~ D Hom(P(S),—) can be desribed in terms of S-space
categories or related categories.

Note that these hammock functors are objects in a diamond category. To
deal with objects in a diamond category has to be rated as a strong finiteness
condition: such objects may be arbitrarily large, but the local structure of their
subobject lattices is coined by their finite subfactors.

Tiles. Let us return to the algebras R = R(Q',w) obtained from a quiver of
type gn_l by adding bridges. We consider in more detail whole parts of the
category of all R-modules. Let a be a label of such a bridge, let S(a) be the
corresponding simple module. Let us consider all the words (finite words, as well
as N-words and Z-words) w which contain the fixed letter a. For every such word,

29 Given a poset Q, an Q-space (V;V;), is given by a k-space V and subspaces
V, of V indexed by the elements s € 2, such that for s < s’ one has V, C V,,. By
definition, the dimension of (V;V;), is that of V. Given two Q-spaces (V;Vy)s
and (W;Ws)s, amap f: (V;Vy)s — (W; Wy)s is given by a k-linear map f: V —
W such that f(Vy) C W for all s € ). The category of all {2-spaces is an exact
category. In case () is finite, the category of finite-dimensional (2-spaces has
Auslander-Reiten sequences.
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there is given an indecomposable algebraically compact module C(w) (for finite
words, C(w) = M (w), otherwise C(w) may be a proper completion of M (w)).
Given two such words w, w’, write w < w’ provided there exists a homomorphism
f: C(w) — C(w") with f, # 0. We obtain a rectangle (a tile) of the following
form (here, small elements with respect to the ordering are on the left, large ones
on the right), and we denote it by 7 (a):

There is a smallest element, namely the word w with C(w) = P(a), the projective
cover of S(a), and a largest element, the word w with C(w) = I(a), the injective
envelope of S(a). The remaining two corners of the rectangle are given by suitable
serial modules. The simple module S(a) occurs in one of the four corners: if a is
a sink, then S(a) = P(a); if it is a source, then S(a) = I(a); otherwise S(a) is
one of the other two corners. The center of this rectangle is the unique Z-word
which contains the letter a, on the two diagonals through the center, we have in
addition just all the corresponding N-words.

Given two posets €, Q" write ' LI for the disjoint union of these posets
and Q' x Q" for the product. Instead of Q'L we also write 2Q’. In addition, we
also need the ordered sum €' <" it is obtained from the disjoint union of " and
Q" by adding the relations s’ < s’ for all ' € ', s” € Q”. When we consider
subsets of Z as posets, then we use the natural ordering. Let Q2 = N<(—N) and
consider also its completion Q = N< {x} < (=N):

Q) P PY oo - - —eo PY °

ﬁ . . PREIPYIIPY —e Py °

We may describe 7 (a) as the product Q x Q and, as Drixler has pointed out, this
product is the just Auslander-Reiten quiver 'y of the category of all (2€2)-spaces,
thus

T(CL) = ﬁ X ﬁ = FQQ.

Indeed, the category which we consider when dealing with 7 (a) can be identified
with the category of all (2Q2)-spaces: Let I(a) be the ideal of Mod R of all maps
f with f, = 0. Then (Mod R)/I(a) is the category in question and it is equivalent
to the category of (2Q2)-spaces. On the other hand, all the indecomposable (2€2)-
spaces are one-dimensional. The following fact should be stressed: Whereas some
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of the vertices of 7 (a) are infinite words, thus correspond to infinite-dimensional
R-modules, the (2€2)-spaces which are the vertices of I'sq are one-dimensional.

Hammock functors. Let us remove from 7 (a) for a while the modules of infinite
length. What we obtain in this way is:

and this is just the product Q x . On the other hand, this clearly describes
the hammock functor Hom(—, I(S)) which corresponds to the simple module S =
S(a).

In general, Schréer [Scl] has described the structure of such hammock func-
tors for all simple modules S over string algebras. The description is rather easy
if one restricts the attention just to string modules. This part H(S)o of the ham-
mock functor can be visualized by a subset of the product 7" x T" of two totally
ordered sets T, T’ which are similar, but usually more complicated than N<(—N).

The chains T, T" are related to those introduced by Gelfand and Ponomarev ([GP],
see also [R1]) in order to identify indecomposable modules by using functorial
filtrations, but here we take into account only string modules. As before, the
ordering < goes from left to right; the unique minimal element is the projective
cover of S, the unique maximal element the injective envelope of S. Note that the
center is given by the module S itself. The position of S is important for describing
the subset of (T x T”) which corresponds to H(S)o, this subset is determined by
the (finite!) set of words w such that M (w) is serial, and is contained in the two
quarters which contain elements which are incomparable with S. Let us stress
that in general the structure of the chains T,7T" is quite complicated, whereas it
is easy to locate H(S)o inside T' x T".
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How can we recover T' and 7" from the hammock H(S)? Let us determine a

’

subfactor as follows: Let S = S(a), and suppose there are given arrows = — a = y
such that o’a = 0. These arrows yield maps

I(a) 1(y)

with zero composition. Let us denote by M («) the kernel of I(«). The zero
composition gives a map I(y) — M(«), and we are interested in the cokernel
Hom(—, M(«))/ Hom(—, I(y)). This is the functor which produces just one of the
crossing lines through S(a). Here is its support:

I(a) I(a’)
— —

I(z)

The support of Hom(—, M(«)) are the shaded parts, that of Hom(—,I(y)) is
shaded more heavily. As factor F' = Hom(—, M («))/ Hom(—, I(y)), there remains
the bold line. This functor F' is a serial functor. For a general discussion of serial

subfactors of representable functors in the case of a string algebra we refer to [Sc2]
and [PSc].

Quarters and Auslander-Reiten components. We return to the 1-domestic
algebras R = R(Q’,w). As we have removed the modules of infinite length from
a tile 7 (a), four connected parts (quarters) remain and these are actually parts
of the usual Auslander-Reiten quiver I'p (since all the small rectangles occurring
in 7(S) are just usual meshes in I'g).

Let us consider the special case of the gg, -quiver and the choice of w as
discussed above in greater detail. There are three tiles 7 (a), 7 (b), 7 (c¢) and they
give rise to altogether 12 quarters. We label them as follows and indicate always
the corresponding corner modules:

v (a) v (b) U (c)

IVa 2 IVb o IVC o
<a /\(\’ II> <I < 111,,> <C /\(\’ II>

U’(a) U’(b) U’( )

The modules labeled U(—),U’(—) all are serial, they are determined by their
composition factors: Here is the list of the factors:

UG@) U'(a) U®B) UG Ul Ule)

a,2,3,4 a,l b 3,b,5,0 5,4,¢ 2,1,0,c
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In order to describe I'p , we have to see how these quarters as well as the kQ’-
modules which are string modules have to be fitted together. The four components
of I'pgr which contain string modules have to be cut into rays or corays and then
we have to rearrange these pieces. Let us consider in more detail our special
example.

We cut the preprojective component in rays starting at the kQ’-projective
modules P’(0), P'(3), P’(4), such that the corresponding cokernels are of the form
E1, Es, E5. Similarly, we cut the preinjective component in corays ending at I'(1),
I'(2),I'(5) such that the corresponding kernels are of the form Ej, E}, EY. Here
are these rays and corays:

P/(0)—o 0
O% \o \/
A A ')
/ [e] . [e]
o N
( )O% \O \/
KA Ny I
A A « ()
P/(0)—° —o

The two exceptional tubes also have to be cut; the one containing Fq, F5, F3 into
corays, the other one into rays:

NN\ A A A

(] (] @) @) @) @)

N\ N N A A A
Es E, Ey Es E! E} Ej] Es
Altogether, we deal with the 12 quarters obtained from the three tiles 7 (a), 7 (b)
and 7 (c), and in addition with 6 rays and 6 corays; if necessary, a fixed ray starting
at a module M will be denoted by r,s, a coray ending in M by cps. It is not
difficult to see how these pieces fit together and that they yield two components
C1,Csy of the Auslander-Reiten quiver I'g; the first of the following three pictures
shows the structure of one of these components, the remaining two pictures still
have to be put together in order to obtain the second component, this has to be
done in the same way as one constructs the Riemann surface of the square root:
one has to identify the bold solid lines (this is the coray cp; ) as well as the bold
dashed lines (the coray cp/(9)).

~
70N
LN
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Topologically, both components are surfaces with a boundary; the left one is a
punched plane, the right one is a twofold covering of a punched plane.

Note that the construction of non-stable components of a string algebra is
easy, since we know all the modules lying on the boundary of these components
[BuR]. Here is the boundary region of the first of the two components (the punched
plane) exhibited above, it shows in which way rays, corays and quarters may be
connected:

CE} 11, Tpr(4)

Cr(1) 1V, TE,y

It seems to be of interest to compare this procedure of joining rays, corays and
quarters with the well-understood process of ray insertions and coray insertions
in tubes. For example, to deal with a ray insertion means to cut between two
rays to insert there a new ray. Here we also cut between rays and we cut between
corays, but we insert not rays or corays but quarters, for example the quarter
I in between the two rays rp/(4) and rg, (but these are rays of quite different
nature: the second is a ray coming from a tube, whereas the first one comes from a
preprojective component), the quarter IV, in between the ray rg, and the coray
crr1y and so on. A clear recipe for this procedure of quarter insertion is not yet
known.

In the example, the only stable components of I'r were tubes. A minor
modification allows to produce also stable components of the form ZAZ. Consider
the following algebra

20<«— o1

50 =0
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There are (up to inversion) four Z-words:

z1 = °(2103) a (0123)>, 2z = *°(1032) a (0123)>,
73 = °(2103) a (1230)%°, 24 = *°(1032) a (1230)>° .

For any of these Z-words z;, we may consider all the (finite or infinite) subwords
which contain the letter a, what we obtain in this way are again tiles. And,
deleting the infinite-dimensional modules from the tiles, every tile is cut into four
quarters:

We see that the four quarters containing the module S(a), namely 111y, 1V5, IV
and Iy, fit together and form an Auslander-Reiten component of the form ZAZ .
In general [BuR], stable components of a string algebra are either tubes or of the
form ZAZ, and Geif} [G] has shown that a component of the form ZAZ always
contains a unique module of smallest length3%. Of course, in our example S(a) is
such a Geifl module.

Note that a 1-domestic string algebra has only finitely many Z-words, thus
only finitely many tiles and only finitely many components of the form ZAY .
(Proof: write such a word in the form (w*) luw® with « minimal, where w is a
fixed primitive cyclic word. Then there are only finitely many possibilities for u.)
On the other hand, it is easy to construct examples of 2-domestic string algebras
with infinitely many Z-words, for example:

30 A finite word w will be called a Geil word provided there do exist N-words
1,22 which start with a direct letter and N-words yi,y2 which start with an
inverse letter such that y; 'wx; and x5 'wys are Z-words. If w is a Geifl word,
then the string module M (w) is contained in a component of the form ZAZ and all
the other modules in this component have larger length. Also the converse is true:
if M (w) is a module of smallest length in a component of the form ZA3, then w
is a Geifl word. Note that in case w contains both direct and inverse letters, then
it is sufficient to require the existence of N-words of the form wzi, w1y, w lzs
and wysy, such that x1,xo start with a direct letter and yi,y. with an inverse
letter.
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Up to inversion, the Z-words are of the form
_ > -1 5 -1 n —1\00
“n = (041 042) "1 (’72 ’71) B (041042 )

for n > 0. Note that by adding bridges to the cycle v, 171 we will obtain 2-
domestic algebras which have even more Z-words.

Quilts. Recall that we have removed the infinite-dimensional modules from the
tiles 7 (a), 7(b) and 7 (¢) in order to obtain pieces of I'r. Of course, we may
reinsert them. What we obtain in this way is a topological space which is connected
and compact: a very nice compactification of the union C; LICs.

Let us analyze this compactification process further: We start with a planar
component of a string algebra, say either with a component of the form ZAZ or
with a punched plane (similar considerations apply in the case of a finite covering
of a punched plane). The usual rule for drawing components is that all meshes
should have equal size (in the case of components with holes a slight squeezing
may be necessary). However, the focus of such a visualization is the central part
of the component and our aim is to understand also the relationship to other
components. Thus, the first step is a very innocent one: to change the metric in
such a way that the component fits into a finite region. We may think of a planar
component as a square or a lozenge shape, standing on one of its corners:

To the left, you see the case of a ZASS component (the center is its Geil module,
the uniquely determined module of smallest length), to the right, the punched
plane component considered before. This process of shrinking has mainly a
psychological meaning?3!, but it draws our attention to the endpoints of the rays
and corays and to the four corners.

31 A mathematical interpretation of such a metric could be as follows: fix a
real number A with 0 < A < 1 and define the length of an arrow «a: [X] — [Y]
by o(a) = NXIHIY Then the length of a ray [Xo] — [X1] — [X2] — --- (and
similarly that of a coray) will be bounded. When applied to a tube, such a metric
realizes it as a punched disk, and it can be used for the following consideration:
Call a cyclic walk inessential provided it is homotopic to walks of arbitrarily small
length (with respect to this metric). Given a tame hereditary algebra R, all cyclic
walks in the Auslander-Reiten quiver I'p are inessential.
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Now comes the second step of compactifying these components by adding
the boundary. We can formulate this purely combinatorially as follows: recall that
the components of I'r we deal with have as vertices string modules M (w), or,
equivalently, just the strings w, and the arrows correspond to the operations on
words of adding hooks or deleting cohooks (see [BuR]). Now, we also take into
account N-words (the small bullets on the four sides) and Z-words (the black
squares at the corners).

Recall that a countable sequence of arrows wy — w; — wg — --- is called a ray,
provided Tw;y1 # w;—1, for all ¢ > 1. Two such sequences are called equivalent
provided they only differ by finitely many arrows. We may assume that we work
with words w; such that w;,; is obtained from w; by a change on the right hand
side, for all i, and then x is constructed as follows: for every natural number
n, almost all the words w; will be of the form w; = x,w;,, where x,, is a fixed
word of length n, and then the first n letters of x will just be x,. In case no
vertex w; is injective, we may form the sequence wj — wj — wh — --- where
Lw;_1. This is again a ray, let 2’ be the corresponding N-word. Note
that there are arrows w; — w) and these arrows assert that w, is obtained from
w; by a change on the left (addition of a hook or deletion of a cohook). For all
indices 7, the same change on the left occurs, and also z’ is obtained from z by
this change on the left, thus we will draw an arrow = — z’. For every component,
we obtain in this way two sequences of consecutive N-words z; (where i € Z) and
arrows x; — x;y+1. Lhere is the dual procedure for obtaining an N-word for any
equivalence class of corays (the dual of a ray), which again is almost periodic, and
also arrows between these N-words. Again, we obtain two sequences of consecutive
N-words x; (where i € Z) and arrows z; — x;41; altogether we obtain in this
way the four boundary lines of our lozenge. Finally, note that these procedures
combine and yield four biperiodic Z-words, corresponding to the corners of the
lozenge.

Here is the module theoretical interpretation: The vertices we have added
are almost periodic N-words x and biperiodic Z-words z. In [R8], we have con-
structed corresponding indecomposable algebraically compact modules C'(z) and
C(z). Also, the new arrows x; — ;411 between N-words indicate that x;;q is
obtained from z; by adding a hook or deleting a cohook, and this corresponds to
an irreducible map C(z;) — C(z;41)-

! —
w; =T



SOME EXAMPLES AS INTRODUCTION 61

In the case of a ZAZ component, the Geil module may be considered as the
origin, in case we need to index the modules. Note that any boundary line contains
precisely one word which starts with a Geifl word, and it will be convenient to use
the index 0 for this N-word:

A similar process of shrinking and compactifying can be achieved in the case

of components of the form ZD.,. Such components do not occur for string algebras

but they do for a related class of algebras, the so called clan algebras?3?.

32 Here are two typical such algebras:

O <— 0

(the relation on the left is a commutativity relation). Let us exhibit a ZDo,
component and its compactification: As for the ZA% components, the boundary
lines will be given by N-words, the corners by Z-words. However, at least two of
these Z-words yield decomposable modules, namely modules which are the direct
sums of two indecomposable modules, thus we have inserted pairs g of bullets:

Many components of this form arise for the algebra above depicted left; for example
the component containing the two simple modules which are neither projective
nor injective is of this kind. In general, the third corner of the compactification
(indicated by the black square ®) may also correspond to a decomposable module;
in this case, it is more appropriate to replace also ® by a pair of bullets g. This
happens for the algebra depicted right, namely for the component which contains
the two simple injective modules; of course, this is a non-regular component, it is
similar to a ZD,, component with a boundary part being missing — in the same
way as our punched plane was similar to a ZAS component.
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Sewing. It may happen that the same boundary line (the same sequence (x;); of
N-words) is obtained twice: once by dealing with rays, the second time by dealing
with corays. Then this boundary line can be considered as a sewing together of
the two components (or of two different sides of one component):

What we obtain in this way, by sewing together various components of a string

algebra R may be called the Auslander-Reiten quilt of R. Let us stress that the

sewing together is achieved by the infinite length modules which have been added.
Let us consider the following 2-domestic algebra:

b1 bo
ok\o
0oL =o% T
al ag

This algebra R has a an interesting Auslander-Reiten component, that containing
the projective modules P(b;), P(b2) and the injective modules I(aq), I(az). This
component is a ZAZ -component with a hole:

Using the sewing process, pairs of the sides of the square have to be ientified and
we have indicated in which way: the two sides labeled a have to be identified,
similarly, the two sides labeled b have to be identified, always in the direction
of the arrows (but note that these arrows indicate the direction of the irreducible
maps, thus no other identification would be possible). Clearly, in this way we
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obtain a torus with a hole. — We denote by K, the Kronecker quiver with
vertices ai,as, by K} that with vertices by,by. The preprojective component of
K, as well as a family of tubes of K,-modules indexed by the affine line A! remain
components of I'p. Similarly, the preinjective component of K; as well as a family
of tubes of Kj-modules again indexed by the affine line A' remain components of
I'r. Let us exhibit the Auslander-Reiten quiver I'g. To the left, there are those
components of the Kronecker quiver K, with which remain components in I'g,

to the right, those of Kj. In the middle, you see the torus33:

Al Al

It is easy to see that such a torus and a similar Kleinian bottle occurs already
for 1-domestic algebras: Let us present two typical examples, both being obtained
from an A-algebra by adding one bridge. Here is the first example: the algebra
R’, the punched plane with the labels a, b for identification and the torus:

In addition to the torus, there is a one-parameter family of homogeneous tubes,
indexed by P1k\{0, 00} (these are those components of the Kronecker quiver given
by the arrows «a,a’ which remain components of I'r/ ). Actually, using covering

33 The reader, or better here: the viewer, should be aware that this torus (as
well as similar pictures which follow) is misleading in at least one respect: the
torus concerns just a part of the given module category, here just one Auslander-
Reiten component, but does not take into account other parts of the category.
Indeed, the component C presented here contains the injective R-modules I(aq)
and I(az). Thus, for any non-zero R-module M whose support is not contained in
K, there are non-zero homomorphisms f from M to modules in C. In the same
way, given a module M whose support is not contained in K, there are non-zero
homomorphisms g from modules in C to M. But the picture exhibited here does
not care about the nature of these maps, it does not even give a hint where such
a map f arrives in the component or where a g will leave the component.
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theory, one can reduce the study of the module category mod A’ to the previous
example mod A.

Next, consider the second example, in this case the sewed component is a
Kleinian bottle with a hole. As additional components, there is a preprojective
component as well as a one-parameter family of homogeneous tubes, but here
indexed by the affine line A! = Pk \ {oo}. Again, to the left, we present the
quiver with relations, in the middle the punched plane with the labels a, b for the
sewing process, to the right the Kleinian bottle which ones obtains in this way

(see [HC]):

These quilts are convenient tools for the visualization of hammocks and for
distinguishing the different behaviour of representable functors. The difference
between the torus and the Kleinian bottle lies in the fact that the torus is orientable
whereas the Kleinian bottle is not. To consider rays and corays on the torus
amounts to consider foliations. What happens on the Kleinian bottle? Let us
start with a ray, say in northeastern direction. We travel along the ray until we
leave the component; thus we pass through an infinite dimensional module, say X,
and return to the component, via first a coray then a ray, but now in southeastern
direction. Again, we leave the component via an infinite-dimensional module, say
Y, and return to a coray and a ray, in northeastern direction, parallel to the ray
we have started with:

We hope that the sewing procedure of Auslander-Reiten components will help to
get a better understanding of some hammocks, thus of some typical objects in
diamond categories.

Let us reformulate the process of sewing together components and the way
infinite length modules are used. There is given a ray of irreducible maps Xg —
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X1 — X9 — -+ | the direct limit lim X; being a string module for an N-word,

say the N-word x. Second, there is given a coray of irreducible maps --- —
X4 — X1 — X{, and its inverse limit lim X is the product module corresponding

to the same N-word x; in particular, there is a canonical embedding ¢: lim X; —

lim X/. Altogether, we deal with the following configuration of modules:
Xo— X = Xo— - —limX; 5 limX, — - — X} — X] — X|.

Now, the direct limit module lim X; is always indecomposable, whereas the inverse
limit module lim X/ always is algebraically compact, and as we have mentioned,

one of the two modules (and only one) will be both indecomposable and alge-
braically compact. This is the module to be selected.

As the Auslander-Reiten quiver itself, also the Auslander-Reiten quilt is a
purely combinatorial object which yields generators and relations for describing
an additive category.

Unfortunately, the sewing procedure using rays and corays of irreducible
maps can be applied only in very special cases, since usually there are not enough
such rays and corays available. This is already the case for most of the tame
hereditary algebras: the rays in the tubes produce all the Priifer modules, their
corays give rise to the adic modules; but for the adic modules, we also would need
rays in the preprojective component, and for the Priifer modules, we would need
corays in the preinjective component.

Note that the Kronecker quiver K(2) has enough rays and corays of irre-
ducible maps, but the sewing of the preprojective component via the adic modules
with the tubes, and dually the sewing of the tubes via the Priifer modules with
the preinjective component gives a rather involved and unintelligible picture.

The algebras R of type Dn,E6,E7,E8 have no rays in the preprojective
component, and no corays in the preinjective component. Of course, in all these
cases, the category mod R contains as a full subcategory the category mod K (2),
thus we could use the preprojective rays and the preinjective corays in this sub-
category, but this adds new difficulties. On the other hand, we should stress that
the dissertation of Geigle [Gg] has to be named as first investigation dealing with
the process of sewing of components, and he discusses precisely this complicated
case: the tame hereditary algebras.

In the case of a tame hereditary algebra, the missing rays (and similarly, the
missing corays) concern indecomposable modules which belong to one component.
In general, we will have to deal with sequences Xg — X1 — --- or --- — X7 — X
where all the modules X; may belong to pairwise different components. Usually,
it should be hopeless to keep track of all sequences needed. But there are special
cases of algebras where one obtains a quite satisfactory description of the module
category.
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As our last example, let us consider the 3-domestic algebra R with the fol-
lowing quiver and relations:

I(b2)

Al .......

AN\ {0}

Al .......

I(c1)
This picture exhibits all the Auslander-Reiten components, but taking into account
the sewing procedure for ZAZ components as outlined above. To the left, there are
those components of the Kronecker quiver K, with vertices a1, as which remain
components in I'g: there is the preprojective component of K, as well as a family
of tubes indexed by the punched affine line A\ {0}. Let K,, K. be the Kronecker
quivers with vertices by,bs or ci,co, respectively. To the right of the picture,
there are those components of K; and K., which remain components in I'g: the
preinjective components as well as tubular families indexed by the affine line A'.

Of interest are the remaining components and there are countably many.
There is one additional non-regular component C, it contains the projective mod-
ules P(by), P(b2), P(c1), P(c2), and the injective modules Iy = I(ay), Is = I(as).
Its shape is obtained from the Riemann surface of the square root by cutting a
central hole (in the same way as one of the components of the 1-domestic algebras
discussed above). For later use, decompose I5/socly = E(b) @ E(c), such that
the support of E(b) is Kj, that of F(c) is K.. For i > 1, we denote by M; the
preinjective K,-module of dimension 2i—1. It is easy to see that this is a Geif3
module, thus we obtain countably many ZAY components C;. The components
C and C; are all the remaining ones, they can be sewed together to a big connected
quilt. What one obtains in this way are the “Chinese baby trousers” seen in the
middle. Here is another view of the trousers, this time using three cuts:

"""" Ms M <>
E(b)
b/
M, M, I1C lc)
c/
()
"""" Ms My
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one cut yields the solid line through the modules M; with odd index ¢, the other
two cuts are labelled b and c¢. The position of the Geifl modules indicate the
ZA components C;. On the right we see the non-regular component C, there
are three pieces which are sewed along two seams; we also provide the position of
the injective modules I, I and of their factor modules E(b), E(c).

It remains to consider the boundary lines labelled b’ and ¢’ (the openings
for the legs in the trousers). There are indeed infinite-dimensional indecompos-
able algebraically compact modules which live on these lines and as usually they
are approached by rays of irreducible maps. The modules for the seam ¢’ are
given by N-words and the unique biperiodic Z-word *°(ajaz)(c1c2)>® with sup-
port on K, and K_; those for the seam b’ are similarly given by N-words and the
unique biperiodic Z-word *°(ajaz)(b1b2)>° with support on K, and K. Since
the support of the boundary line b’ is related to K}, we are tended to direct the
corresponding leg of the trousers towards the Kj-components, and similarly, we
have directed the leg ¢’ towards the K.-components, but as we will see this is
questionable.

The modules occurring on the boundary lines b’ and ¢’ are approached by
rays of irreducucible maps, but, in contrast to previous situations, not by corays
of irreducible maps. For example, consider x = °°(aja2)(cic2)™, this is (the
inverse of) an N-word lying on the boundary line ¢’. As we have mentioned, the
R-module C(x) = M(x) is approached by a ray, namely it is the union of the
sequence

M((clcg)") C M(alag(clcg)”) C M((alag)Q(clcg)") c .-

of inclusions and these inclusions are irreducible maps. On the other hand, we
may consider the modules N; = M ((aza1)’az(cico)™) and the canonical surjective
maps

c N2 — N1 — No.

However, these modules belong to pairwise different Auslander-Reiten compo-
nents: the module Ny belongs to C, the module N; to C;. But note that the
maps can be controlled quite well: they are jumps from one component to a
neighboring one and are compositions of a ray and a coray of irreducible maps;
the corresponding arrows all point in northeastern direction. The following picture
indicates a ray r approaching the module M(x) as well as the modules N; and
the maps N;y1 — N;.
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In the same way, we may approach any module on the boundary line b’ by
a sequence of modules in the various components C;, this time using sequences of
arrows which point in southeastern direction.

The sequences of modules needed approach the waist of the trousers, thus we
sew a second time, now joining the legs of the trousers with the waist:

Since we join both legs to the waist, the waist becomes a branching locus. We
stress that also the second sewing procedure is achieved by infinite length modules

which we have added.

Conclusion. When dealing with finite length modules, there are two essentially
different ways in which infinite length modules or similar objects in related abelian
categories play a decisive role: on the one hand, as objects which can be used in
order to describe infinite families of R-modules (two typical ways: a Priifer group
incorporates all indecomposable p-groups as all its proper non-zero subgroups;
Crawley-Boevey introduced the generic modules for tame algebras in order to
parameterize the one-parameter families), on the other hand in order to describe
in a module-theoretical language the behaviour of functors on mod R. But these
two ways turn out to be just two sides of one and the same coin, it is a challenging
demand to descibe the correspondences.

Epilogue. A clear misunderstanding.

There are by now several books available which deal with questions in the repre-
sentation theory of finite dimensional algebras, starting with Curtis and Reiner:
Representation Theory of Finite Groups and Associative Algebras (1962) and its
successor Methods of Representation Theory I (1981) and II (1987); then the vol-
ume 73 of the Encyclopaedia of Mathematical Sciences by Gabriel and Roiter,
with the title Representations of Finite-Dimensional Algebras (1992) and finally
the book Representation Theory of Artin Algebras (1995) by Auslander, Reiten
and Smalg. All these treatises restrict their attention to finite-dimensional
representations and take it for granted that a title which does not mention this
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specification will not be considered as misleading. We do not object that the books
are confined to a specific class of representations with nice properties, namely the
finite-dimensional ones, but we wonder why the authors do not see the necessity
to mention this in the title. Actually, the orientation on these titles had the ef-
fect that some mathematicians now seem to distinguish between the representation
theory and the module theory of finite-dimensional algebras, meaning that the first
one concerns finite-dimensional representations, in contrast to the second. But, of
course, this does not correspond to the usual use of the word representation theory,
say when dealing with representations of Lie algebras or algebraic groups, where
the study of infinite-dimensional representations is considered as an essential part
of the theory. There seems to be the attitude that dealing with finite-dimensional
algebras (or also with finite groups), the most natural representations are the
finite-dimensional ones, but there should be real doubts! The belief that the nat-
ural representations of a finite-dimensional algebra are just the finite-dimensional
representations has to be rated as very naive. In the same vein, the natural setting
for considering finite Galois groups should be the realm of finite fields only.

The examples discussed up to now were motivated from within representation
theory. Here, let us draw the attention to an application, the possible use of Kro-
necker modules in order to deal with operators on a vector space. The Kronecker
modules are the representations of the Kronecker quiver K (2), the corresponding
path algebra kK (2) is four dimensional, thus really a very small algebra. Look-
ing at the algebra, one may be inclined to consider its indecomposable projective
representations (their dimension is 1 and 3) or its indecomposable injective rep-
resentations (again dimension 1 and 3) as the most natural ones. But is this
justified? The Kronecker algebra kK (2) is one of the tame hereditary algebras,
thus the structure of the category mod kK (2) is as displayed above: besides the
preprojective and the preinjective modules, there are the indecomposable regular
modules, they belong to tubes, and these tubes are indexed by the projective line
Py (k). If we delete one of these tubes, the remaining regular representations form
a category which is equivalent to the category fink[T] of all finite-dimensional
k[T]-modules, where k[T is the polynomial ring in one variable. As usual, the
additional tube is indexed by the symbol oco. Of course, k[T]-modules are nothing
else than pairs (V, 3), where V' is a vector space over k and #: V — V a linear
transformation (where one writes 1" - v instead of G(v), for v € V'), or, as it is
also called, a linear operator on V. The embedding

t: Mod k[T] — Mod kK (2)
is achieved by sending the pair (V,3) to the Kronecker module
1
Vv Vv

&)

The image under this functor ¢ are all the representations of K(2) for which
the upper map « is an identity map; up to a categorical equivalence, these are
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all the representations of K(2) for which « is an isomorphism. Of course, for
this subcategory one tends to rate the module ¢(k[T]) as being a very natural
representation. The indecomposable finite-dimensional k[T]-modules are (in case
k is algebraically closed) of the form k[T]/(T — A\)"™, and we may assume that
L(k[T]/(T — X\)™) belongs to the tube with index A, thus the labeling of the tubes
reflects the eigenvalue behaviour of the operator. The label oo refers to situa-
tions where the map « is not invertible. Of particular interest is the module
G = 1(k(T)), the only infinite-dimensional generic representation of K(2). We
may consider the one-dimensional projective representation P(2) of K(2) as a
submodule of G (up to automorphisms of G there is just one such embedding),
and G/P(2) is just the direct sum of all possible Priifer modules, each one occur-
ring with multiplicity one.

What are typical operators? The vector spaces dealt with in functional anal-
ysis are usually function spaces, the operators are differential or integral operators.
Let us look at a very elementary example: consider a space F' of functions closed
under differentiation, and let g = % . If we take for F' the space of all polynomial
functions, the module we obtain is a very interesting one, it is the Priifer module
corresponding to the eigenvalue 0, provided we work with a field k& of character-
istic zero. For an example concerning the use of infinite-dimensional Kronecker
modules in studying perturbations of differential operators we refer to [AB].

A more detailed look at the development of the representation theory of finite-
dimensional algebras reveals an interest in arbitrary representations from its be-
ginning, at least in some papers. For example, when dealing with serial finite-
dimensional algebras, Nakayama and later again Eisenbud and Griffith were very
proud to be able to decompose all the modules, not just the finite-dimensional
ones, as a direct sum of indecomposables. There has been a parallel development
in the representation theory of finite groups: until recently, the main emphasis was
lying on finite-dimensional representations. New approaches which are based on
the use of infinite-dimensional representations are outlined in the paper by Benson

[Be].
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