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Arising in Representation Theory

Claus Michael Ringel

One of the reasons for the introduction of the Hall algebras for finitary
algebras in [R1, R2, R3] was the following: Let A be a finite dimensional al-
gebra which is hereditary, say of Dynkin type ∆. Let g be the simple complex
Lie algebra of type ∆, with triangular decomposition g = n−⊕h⊕n+. The
degenerate Hall algebra H(A)1 of A is the free abelian group on the set of
isomorphism classes of A–modules of finite length. The Grothendieck group
K(A–mod) of all A–modules of finite length modulo split exact sequences
may be identified with the free abelian group on the set of isomorphism
classes of indecomposable A–modules of finite length, thus with a subgroup
of H(A)1. Now, with respect to the degenerate Hall multiplication, the sub-
group K(A–mod) becomes a Lie subalgebra of H(A)1, so that K(A–mod) is
isomorphic to the Chevalley Z–form of n+, and H(A)1 to the corresponding
Kostant Z–form of the universal enveloping algebra U(n+).

With U(n+) also H(A)1 is a bialgebra. The papers mentioned before
have concentrated on the definition of a multiplication using the evaluati-
on of certain polynomials at 1. This approach was first presented at the
Antwerp Conference in 1987, and the discussion there helped to direct the
further investigations. In particular, M. van den Bergh proposed to consider
instead of the Hall polynomials the Euler characteristic of corresponding va-
rieties. This idea was developed in detail by Schofield [Sc] and Riedtmann
[Rm], and also Lusztig’s presentation [L] of the Hall algebras proceeds in
this way. Schofield has considered the complete coalgebra structure. The
aim of this short note is to point out the nature of the comultiplication
of H(A)1. Of course, these considerations also may be used in the Euler
characteristic approach.
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1. The Comultiplication

An additive category (not necessarily with finite sums) will be called a
Krull–Schmidt category provided any object can be written as a finite direct
sum of objects with local endomorphism rings. Let A be a Krull–Schmidt
category. For any object M in A, we denote by [M ] its isomorphism class,
and we assume that the isomorphism classes of objects in A form a set.
Given M in A, we denote by d(M) the number of indecomposable direct
summands in any direct decomposition of M, this is an invariant of M,
according to the Krull–Schmidt theorem.

We denote by C(A) the free abelian group with basis (u[M ])[M ] indexed
by the set of isomorphism classes [M ] of objects M in A, with the following
comultiplication:

∆(u[M ]) =
∑

D(M)

u[M1] ⊗ u[M2]

where D(M) is the set of pairs ([M1], [M2]) such that [M1 ⊕ M2] = [M ],
and with the counit

ǫ(u[0]) = 1, ǫ(u[M ]) = 0, for [M ] 6= [0].

Let C(A)(n) be the free abelian group with basis (u[M ])[M ] indexed by the
set of isomorphism classes [M ] of objects M with d(M) = n. Thus C(A) =
⊕

n≥0 C(A)(n).

Proposition 1.C(A) is a strictly graded cocommutative Z–coalgebra.

Recall that a graded Z–coalgebra C =
⊕

n≥0 C(n) is called strictly
graded provided C(0) = Z, and C(1) is the set of primitive elements of C (an
element x ∈ C being called primitive in case ∆x = x ⊗ 1 + 1 ⊗ x.)

Proof. Let ∆2(u[M ]) =
∑

u[M1] ⊗u[M2] ⊗u[M3], where the sum is taken
over all triples ([M1], [M2], [M3]) such that [M1 ⊕ M2 ⊕ M3] = [M ]. Since

(1 ⊗ ∆)∆(u[M ]) = ∆2(u[M ]) = (∆ ⊗ 1)∆(u[M ]),

∆ is coassociative. If we apply 1 ⊗ ǫ to ∆(u[M ]) =
∑

D(M) u[M1] ⊗ u[M2],

then only u[M ] ⊗ 1 remains, similarly, if we apply ǫ ⊗ 1 to ∆(u[M ]), then
only 1 ⊗ u[M ] remains. Thus ǫ is a counit. This shows that C = C(A) is a
Z–coalgebra, and, of course, it is cocommutative. Also,

∆(C(n)) ⊆
⊕

0≤i≤n

C(i) ⊕ C(n−i),

and, for n ≥ 1, ǫ(C(n)) = 0, thus we deal with a coalgebra grading. It
remains to be seen that any primitive element belongs to C(1). Consider an
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element x, say x =
∑n

i=1 xiu[Mi] with non–zero integers xi, and pairwise
different isomorphism classes [Mi]. We can assume that d(M1) ≤ d(M2) ≤
· · · ≤ d(Mn). We remark that C ⊗ C is the free abelian group with basis
u[M ′] ⊗ u[M ′′], where both [M ′] and [M ′′] run through the isomorphism
classes of objects in A. If x is primitive, then [M1] 6= [0], since otherwise
∆(x1u[0]) = x1u[0]⊗u[0] shows that x1 is the coefficient of ∆(x) at u[0]⊗u[0],
whereas the coefficient of x ⊗ u[0] + u[0] ⊗ x at u[0] ⊗ u[0] is 2x1. Since the
elements in C(1) are primitive, we may assume that d(M1) ≥ 2. Take a
direct decomposition [M ′

1 ⊕ M ′′
1 ] = [M1], with an indecomposable object

M ′
1, then x1 is the coefficient at u[M ′

1
] ⊗u[M ′′

1
] for ∆(x). On the other hand,

the coefficient of x⊗ u[0] + u[0] ⊗ x at u[M ′

1
] ⊗u[M ′′

1
] is zero. This shows that

any primitive element is in C(1). Thus C =
⊕

C(n) is strictly graded.

Remark. In case A is a length category, there is a different grading
on C(A), which is of interest in representation theory, namely let C(A)n be
the free abelian group with basis (u[M ])[M ] indexed by the set of isomor-
phism classes [M ] of objects M of length n. Then ∆(Cn) ⊆

⊕

0≤i≤n Ci ⊕
Cn−i, and, for n ≥ 1, ǫ(Cn) = 0, whereas C0 = C(0) = Z. Thus, we deal
with a coalgebra grading, however, C(A) =

⊕

C(A)n is not strictly graded.

Example. Let A = A(k) be the category of finite dimensional vector
spaces over the field k, or, more generally, a Krull Schmidt category which
contains (up to isomorphism) just one indecomposable object X, and all
its finite direct sums nX, with n ∈ N0. Let un = u[nX]. Then ∆(un) =
∑n

i=0 ui ⊗ un−i, and, for n ≥ 1, ǫ(un) = 0 (this is Example 2.2 in [A]).

We should remark that the coalgebra C(A) only depends on the free
commutative semigroup S(A) of all isomorphism classes of objects in A
with multiplication ⊕. Given any free commutative semigroup S, the free
abelian group C(S) with basis S is a coalgebra with respect to the following
operations:

∆(d) =
∑

d′d′′=d

d′ ⊗ d′′, ǫ(1) = 1, ǫ(d) = 0, for d 6= 1,

and we have C(A) = C(S(A)).
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2. Bialgebras

Let C(A) be endowed with an associative and unitary multiplication
◦. Let cY

ZX ∈ Z be the structure constants, for X, Y, Z ∈ A; thus

u[Z] ◦ u[X] =
∑

[M ]

cM
ZXu[M ].

Proposition 2. (C(A), ◦) is a bialgebra if and only if u[0] is the unit
element, and the following condition is satisfied for all objects X, Z, M1, M2

∈ A
cM1⊕M2

ZX =
∑

cM1

Z1X1
cM2

Z2X2
,

where the sum on the right ranges over all pairs ([Z1], [Z2]) ∈ D(Z), and all
pairs ([X1], [X2]) ∈ D(X).

Proof: We have

∆(u[Z] ◦ u[X]) = ∆(
∑

[M ]

cM
ZXu[M ]) =

∑

[M ]

cM
ZX∆(u[M ])

=
∑

[M ]

cM
ZX

∑

D(M)

u[M1] ⊗ u[M2],

thus the coefficient at u[M1] ⊗ u[M2] in ∆(u[Z] ◦ u[X]) is just cM1⊕M2

ZX .
On the other hand, since

∆(u[Z]) ◦ ∆(u[X]) = (
∑

D(Z)

u[Z1] ⊗ u[Z2])(
∑

D(X)

u[X1] ⊗ u[X2])

=
∑

D(Z),D(X)

u[Z1]u[X1] ⊗ u[Z2]u[X2]

=
∑

D(Z),D(X)

∑

[M1]

∑

[M2]

cM1

Z1X1
cM2

Z2X2
u[M1] ⊗ u[M2],

the coefficient at u[M1] ⊗ u[M2] in ∆(u[Z]) ◦ ∆(u[X]) is
∑

cM1

Z1X1
cM2

Z2X2
. Of

course, ∆ is a ring homomorphism if and only if the coefficients of ∆(u[Z] ◦
u[X]) and ∆(u[Z]) ◦ ∆(u[X]) at any u[M1] ⊗ u[M2] coincide.

We denote by K(A) = C(A)(1) the subgroup of C(A) generated by the
elements u[M ], where M is an indecomposable object of A. Since K(A) is
the free abelian group on the set of isomorphism classes of indecomposable
objects in A, we may consider it as the Grothendieck group of A with respect
to split exact sequences.
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Corollary. Assume that (C(A), ◦) is a bialgebra. Then K(A) is a Lie
subalgebra (with respect to the Lie bracket [z, x] = z ◦ x − x ◦ z.)

Proof: We have to show that for indecomposable objects X, Z ∈ A, the
commutator [u[Z], u[X]] is a linear combination of elements u[M ], with M
indecomposable. Clearly, it is a linear combination of elements u[M ], with
M non–zero, thus consider an object M = M1⊕M2, with both M1, M2 non–
zero, and let us calculate cM

ZX and cM
XZ . Since X and Z are indecomposable,

the sets D(Z), D(X) both have just two elements, namely ([Z], [0]), ([0], [Z]),
and ([X ], [0]), ([0], [X ]), respectively. Since the objects M1, M2 are non–zero,
we have cM1

00 = 0 = cM2

00 , thus

cM
ZX = cM1

Z0 cM2

0X + cM1

0X cM2

Z0 = cM
XZ .

Consequently, the coefficient of [u[Z], u[X]] at u[M ] is 0.

3. Hall algebras

Let A be a k–algebra, and X, Y, Z A–modules of finite length. We
denote by MY

ZX the set of submodules U of Y which are isomorphic to X
such that M/U is isomorphic to Z. Also, let A = A–mod be the category
of A–modules of finite length. In order to introduce a multiplication on
C(A–mod), we will work with MY

ZX .

Let us assume that k is a finite field, say with q elements. Let X, Y, Z
be A–modules of finite length, and define

cY
ZX = |MY

ZX |.

Proposition 3. Let X, Z, M1, M2 be A–modules. Then q − 1 divides

cM1⊕M2

ZX −
∑

cM1

Z1X1
cM2

Z2X2
.

where the sum on the right ranges over all pairs ([Z1], [Z2]) ∈ D(Z), and all
pairs ([X1], [X2]) ∈ D(X).

For the proof of Proposition 3, we need the following Lemma (see [R1]
and [Sc]): Given a direct sum M = M1 ⊕M2, we may describe its endomor-
phisms by 2 × 2–matrices. For an endomorphisms f of M1, let ∗f be the

action of the matrix

[

f 0
0 1

]

on M1 ⊕ M2. Note that any element α ∈ k

yields an endomorphism of any A–module, using multiplication. We denote
by k∗ the set of non–zero elements of k.
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Lemma. Let U be a submodule of M = M1 ⊕ M2. The following
assertions are equivalent:

(i) U = (U ∩ M1) ⊕ (U ∩ M2),
(ii) For all α ∈ k we have U ∗ α ⊆ U,
(iii) There exists α ∈ k∗ with U ∗ (1 + α) ⊆ U.

Proof: We only have to show that (iii) implies (i): Let u ∈ U. Write
u = (m1, m2) with mi ∈ Mi. By assumption, u′ = u ∗ (1 + α) belongs to U,
thus also u′ −u = m1α. Since α is invertible, we see that m1, and then also
m2 belong to U.

Proof of Proposition 3. Consider MM
ZX for M = M1 ⊕ M2, and we

fix this decomposition. We have defined above an operation ∗ of k∗ on
MM1⊕M2

ZX , and we want to use it now. Let M′ be the subset of MM
ZX ,

consisting of all submodules U of M which satisfy the equivalent conditions
of Lemma, thus M′ consists of fix points of the action ∗, and the elements of
MM

ZX\M′ have trivial stabilizers. It follows that the k∗–orbits in MM
ZX \M′

are of length q − 1. Consequently

|MM
ZX | ≡ |M′| (mod q − 1).

On the other hand, we may identify M′ with the disjoint union of the
products MM1

Z1X1
×MM2

Z2X2
, the union being indexed by the pairs in D(Z)×

D(X). For, given a submodule U = (U ∩ M1) ⊕ (U ∩ M2), isomorphic
to X, and with (M1 ⊕ M2)/U isomorphic to Z, let U1 = U ∩ M1, and
U2 = U ∩ M2. Then U1 belongs to some MM1

Z1X1
, and U2 to some MM2

Z2X2
,

where [Z1 ⊕ Z2] = [Z], and [X1 ⊕ X2] = [X ]. Thus |M′| is just the sum of
the cardinalities of the various MM1

Z1X1
×MM2

Z2X2
. This completes the proof.

Given an extension field E of k, and a k–algebra A, we may consider
the E–algebra AE = A⊗E. A field extension E of k will be said to be con-
servative for the k–algebra A provided for any indecomposable A–module
M of finite length, the algebra (EndM/ radEndM)E is a field. Given a
representation–finite k–algebra A, there are infinitely many finite field ex-
tensions of k which are conservative. Given a k–algebra A with infinitely
many finite field extensions which are conservative, we say that A has Hall
polynomials provided for all A–modules X, Y, Z of finite length, there exists
a polynomial ϕY

ZX ∈ Z[T ], such that for any conservative field extension E
of k, we have

ϕY
ZX(|E|) = |MY E

ZE,XE |.

For representation–directed algebras, the existence of Hall polynomials has
been shown in [R1]. Of course, there also is the classical example: any local
uniserial algebra has Hall polynomials [H,M]. One may conjecture that any
representation–finite algebra has Hall polynomials.
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Assume that the algebra A has Hall–polynomials. Then the degene-
rate Hall–algebra H(A)1 is defined as the coalgebra C(A–mod) with the
multiplication

u[N1]u[N2] =
∑

[M ]

ϕM
N1N2

(1)u[M ],

where N1, N2 are arbitrary A–modules of finite length.

Theorem. H(A)1 is a bialgebra, and the subgroup K(A–mod) is a
Lie–subalgebra.

As a Q–bialgebra, H(A)1⊗Q is isomorphic to the universal enveloping
algebra of K(A–mod) ⊗ Q.

Proof: Let E be a conservative field extension of k, and assume that
|E| = qn. Then, according to Proposition 3, qn − 1 divides ϕM1⊕M2

ZX (qn) −
∑

D(Z),D(X) ϕM1

Z1X1
(qn)ϕM2

Z2X2
(qn), and therefore, T−1 divides ϕM1⊕M2

ZX (T )−
∑

D(Z),D(X) ϕM1

Z1X1
(T )ϕM2

Z2X2
(T ), (see [R1]), thus

ϕM1⊕M2

ZX (1) =
∑

D(Z),D(X)

ϕM1

Z1X1
(1)ϕM2

Z2X2
(1).

It follows that we may apply Proposition 2 and its Corollary, thus H(A)1 is
a bialgebra and K(A–mod) is a Lie subalgebra.

The remaining assertion follows from general Hopf algebra theory: Any
graded coalgebra C =

⊕

n≥0 Cn with C0 = Z is irreducible (there is just
one group–like element). But a bialgebra over a field which is irreducible
as a coalgebra is always a Hopf algebra ([Sw], Theorem 9.2.2). And an
irreducible cocommutative Hopf algebra H over a field of characteristic zero
with P (H) the set of primitive elements is just the universal enveloping
algebra U(P (H)) of the Lie algebra P (H) ([Sw], Theorem 13.0.1). We apply
this to the Q–bialgebra H = H(A)1 ⊗Q, its set of primitive elements being
P (H) = C(A–mod)(1) ⊗ Q = K(A–mod) ⊗ Q.

4. Subbialgebras

Let C be a bialgebra, and let C′ be a subalgebra of C generated by a
subset S such that ∆(S) ⊆ C′⊗C′, then C′ is a subbialgebra. Indeed, assume
that we deal with elements x, y ∈ C′ so that ∆(x), ∆(y) ∈ C′ ⊗ C′. Then
also ∆(x + y), ∆(xy) belong to C′ ⊗ C′, since ∆ is a ring homomorphism.
Of course, with C also C′ is irreducible. Also, if C is cocommutative, then
also C′ is cocommutative.

Assume we have endowed C(A) with a multiplication so that it is a
bialgebra. Let B be a full subcategory of A which is closed under direct
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summands, let C(A;B) be the subalgebra of C(A) generated by the elements
uX , with X ∈ B. Then C(A;B) is a subbialgebra.

We may apply these considerations to the category A = A–mod of fini-
te length A-modules, where A is some algebra, and to the full subcategory B
either of all simple, or of all semisimple modules. In the Hall algebra case, we
will obtain the corresponding composition algebra, and the corresponding
Loewy algebra, respectively (see [R4],[R5]).
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