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Foundation of the Representation Theory
of Artin Algebras,
Using the Gabriel-Roiter Measure

Claus Michael Ringel

ABSTRACT. These notes are devoted to a single invariant, the Gabriel-Roiter
measure of finite length modules: this invariant was introduced by Gabriel
(under the name ‘Roiter measure’) in 1972 in order to give a combinatorial
interpretation of the induction scheme used by Roiter in his 1968 proof of the
first Brauer-Thrall conjecture. It is strange that this invariant (and Roiter’s
proof itself) was forgotten in the meantime. One explanation may be that both
Roiter and Gabriel pretend that their considerations are restricted to algebras
of bounded representation type which are shown to be of finite representation
type, thus restricted to algebras of finite representation type. But, as we are
going to show, this invariant is of special interest when dealing with algebras
of infinite representation type! And there may be a second explanation: in
the early seventies, it was possible to calculate this invariant only for few
examples, whereas nowadays there is a wealth of methods available. Looking
at such examples, we are convinced that the Gabriel-Roiter measure has to be
considered as a very important invariant and that it can be used to lay the
foundation of the representation theory of artin algebras.

The notes are based on lectures given at Hirosaki (2003), Queretaro (2004),
Hangzhou and Beijing (2005) looking at some basic questions in the representation
theory of artin algebras. The main emphasis in the Hirosaki lectures was to develop
a direct approach to the representation theory of artin algebras, using the Gabriel-
Roiter measure, independent of Auslander-Reiten theory. Indeed, the Gabriel-
Roiter measure should be considered as being elementary: only individual modules
are considered (as abelian groups with a set of prescribed endomorphisms), whereas
the notions of Auslander-Reiten theory relate from the beginning the given module
to the whole module category. In the later lecture series (at Queretaro, Hangzhou
and Beijing), some useful connections between the Gabriel-Roiter measure and
Auslander-Reiten theory have been included. In the present notes we do not hesitate
to mingle the different approaches whenever it seems suitable.
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The presentation centers on some old topics in representation theory, and we
hope to convince the reader of the usefulness of the Gabriel-Roiter measure when
dealing with results of the following kind:

e The first Brauer-Thrall conjecture established by Roiter and Auslander, which
asserts that infinite representation type implies unbounded representation type.

e Any module for an artin algebra of finite representation type is a direct sum of
finitely generated modules.

e Auslander’s theorem asserting that artin algebras of infinite representation type
have indecomposable modules which are not finitely generated.

Of course, it is not surprising that the Gabriel-Roiter measure is useful when
dealing with the Brauer-Thrall conjectures, since it was introduced in this context.
But it seems that the relationship to the other two topics was not realized before.

This report has three parts. The first part develops general properties of the
Gabriel-Roiter measure, the second part deals with what we call the “take-off part”
of the module category of an artin algebra, the third one with the “landing part”.
With respect to the Gabriel-Roiter measure, the category mod A for any artin
algebra A is divided into three different subcategories: the take-off part, the central
part and the landing part. Of highest concern should be the central part — however,
at present, there is not yet a single result available in print concerning the central
part.

We do not touch at all the dual construction, the Gabriel-Roiter “comeasure”.
Concerning the Gabriel-Roiter comeasure, and the interrelation between the mea-
sure and the comeasure, we propose to look at [R5]: the rhombic picture seems to
provide a fascinating description of the module category, but also here we have to
wait for future research in order to get a full understanding of what is going on.

The core of the notes is self-contained, but for some of the proofs we refer to
[R5]. There are several remarks and examples (usually marked by a star: Example*,
Remark*) which involve notions which are unexplained. They may be helpful for
some (or most) of the readers, but can be skipped in a first reading.

Notation: Ny = {1,2,...} denotes the positive natural numbers. Given two
integers a < b, let [a, b] be the set of integers z with a < z <b.

0. Preliminaries

Let R be an arbitrary ring, we consider left R-modules and call them just
modules. We will assume some basic results from module theory and homological
algebra. All our consideration are related to finite length modules: we only deal
with modules which are unions of modules of finite length. Recall that finite length
modules are modules which are both artinian and noetherian; they have a finite
chain of submodules which cannot be refined (such a chain is called a composition
series). The Jordan-Holder theorem asserts that the length of such a chain depends
only on the module, it is called the length of the module. We denote the length
of a module M by |M|. A module M is said to be indecomposable, provided it is
non-zero and cannot be written as a direct sum M = M; @ My of two non-zero
modules (a direct sum decomposition M = M; @ My is given by two submodules
My, Ms of M such that M; + Ms = M and M; N My = 0.) It is obvious that any
finite length module is a finite direct sum of indecomposable modules (and they are
again of finite length). The Fitting Lemma tells us that the endomorphism ring of
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an indecomposable module of finite length is a local ring (the set of non-invertible
endomorphisms forms an ideal), and this implies the Krull-Remak-Schmidt theo-
rem: A decomposition of a finite length module into indecomposable modules is
unique up to isomorphism.

0.1. Questions. Given a natural number d, are there indecomposable mod-
ules of length d? And how many such modules are there? In particular: are there
infinitely many isomorphism classes of indecomposable modules of length d? Let
a(d) be the number of isomorphism classes of indecomposable modules of length d
(recall: we mean left R-modules, the R being fixed; of course we could write ag(d)
in order to specify the ring). Thus, we consider the questions:

e When is a(d) #0 ?
e When is a(d) = co?

ExXAMPLE* 1. Let R be a discrete valuation ring, for example R = k[[T]], the
power series ring in one variable, or R = Z,) the ring of p-adic integers. The
maximal ideal of R is a principal ideal, say generated by the element w. The
module R/R7? is indecomposable and of length d, and is, up to isomorphism the
only indecomposable module of length d. Thus we see that a(d) = 1 for any d € Nj.

EXAMPLE 2. Let k be a field and let R = T),(k) be the ring of upper triangular
(n x n)-matrices with coefficients in k. Then a(d) =n—d+1, for 1 <d <mnand 0
for n < d, thus altogether we obtain ("‘2"1) isomorphism classes. Using “quivers” (as
we will often do), we can interprete R = T, (k) as the path algebra of the linearly
ordered quiver of type A,,, with vertices1 — 2 — --- — n, and the indecomposables

of length d correspond bijectively to the intervals [i,i 4+ d — 1] with 1 <i <n —d.

REMARK*. More generally, Gabriel’s theorem asserts that the following quivers
are of finite representation type (this means: ), a(d) < oo) and that the
number of indecomposables is as follows (and in particular independent of the
orientation):

type ‘ A, D, Es E; Ex

>-q a(d)

The types A which occur here are just the simply laced Dynkin diagrams (which
occur in Lie theory, but also in many other parts of mathematics); and the numbers
below are known as the number of positive roots of A: in fact, there is a natural
bijection between the indecomposable representations and the positive roots.

("I n(n-1) 36 63 120

ExAMPLE 3. The Kronecker quiver: it has two vertices z,y and two arrows,
say going from « to y. Then one knows that a(n) = 2 for n odd, and a(n) > 3 for n
even. For n even, the number a(n) depends on the base field k. In case we deal with
representations over an infinite field k, then a(n) = oo for n even. (Here we have
an example of what has been called strongly unbounded representation type:
there are infinitely many natural numbers d; < d2 < ... such that a(d;) = oo for
all 4.)

The main problem of representation theory is to find invariants for modules and
to describe the isomorphism classes of all the indecomposable modules for which
such an invariant takes a fixed value. A typical such invariant is the length of a
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module: the simple modules are those of length 1 (and there is just a finite number
of such modules), the information concerning the indecomposable modules of length
2 is stored in the quiver (in case we deal with a finite dimensional algebra over some
algebraically closed field) or the “species” of A. Given any invariant -y, as a first
question one may look for values of finite type: these are those values v such that
there are only finitely many isomorphisms classes of indecomposable modules M
with v(M) = v. The invariant to be discussed here is the Gabriel-Roiter measure.

In most parts of these lectures we will assume that R is an artin algebra. This
means that the center z(R) of R is artinian and that R is a finitely generated
z(R)-module. Typical examples are the finite-dimensional k-algebras, where k is
a field, but also all finite rings. Some elementary properties of the Gabriel-Roiter
measure hold for finite length modules over an arbitrary ring R, or, more generally,
for arbitrary finite length categories (a finite length category is an abelian category
such than any object is both artinian and noetherian, thus has a composition series;
for any ring R, the category of all finite length R-modules is of course a length
category).

0.2. The Brauer-Thrall conjectures. As we have mentioned the Gabriel-
Roiter measure was introduced by Gabriel in [G] in order to clarify the intricate
induction scheme used by Roiter [Ro] in his proof of the first Brauer-Thrall conjec-
ture. Roiter’s proof of this conjecture marks the beginning of the new representation
theory of finite dimensional algebras. Let us recall the precise statement of both
Brauer-Thrall conjectures.

BTh 1. Bounded representation type (that means a(d) = 0 for large d) implies
finite representation type. (Under the assumption that a(1) < oo.)

If a(d) < oo for all d, then bounded representation type implies finite represen-
tation type, trivially. Thus we can reformulate BTh 1 as follows:

BTh 1’ If a(d) = 0o for some d, then a(d) # 0 for infinitely many d.

BTh 2. Unbounded representation type implies strongly unbounded representa-
tion type. (Under the assumption that we deal with finite dimensional algebras over
an infinite field, or more generally, with infinite (and connected) artin algebras.)

The assumption is quite essential, since there are plenty of finite length cate-
gories which are of unbounded type, but not of strongly unbounded type. Example 1
above is a typical such example.

BTh 1 is true for R a semiprimary ring: for finite dimensional algebras this was
shown by Roiter, for left artinian rings by Auslander. Note: Bounded representation
type means that every simple module has a relative projective cover and a relative
injective envelope in the category of finite length modules; thus a semiprimary ring
of bounded representation type is necessarily left artinian.

REMARK*. One should be aware of the V-rings as constructed by Cozzens:
here all simple modules are injective, thus also relative projective in the category
of finite length modules. These rings satisfy a(d) = 0 for d > 2, however they are
not semiprimary. Note that there are such examples with a(1) being finite, as well
as examples with a(1) being infinite.
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0.3. Smalg [S] has shown the following:

THEOREM. Let R be an artin algebra with a(d) = oo for some d, then a(d") = oo
for some d’ > d.

We see that in order to show that an artin algebra is of strongly unbounded
representation type, it is sufficient to show that a(d) = co for some d.

Thus we can reformulate BTh 2 as follows:

BTh 2'. Let R be an infinite artin algebra. If a(d) # 0 for infinitely many d,
then a(d) = oo for some d.

We therefore see: The two assertions BTh 1’ and BTh 2’ are inverse to each
other. They claim that there is a strong interrelation between large indecompos-
ables on the one hand, and families of indecomposables of the same length on the
other hand.

The investigations presented below (and those in [R5]) yield a lot of insight
into BTh 1, but there is not yet any corresponding result concerning BTh 2. But
it seems that the Gabriel-Roiter measure should also be helpful in dealing with
BTh 2.

I. General Results.

1. The Gabriel-Roiter measure

In the first three sections of the paper, all the modules considered are finite
length modules.

1.1. The definition. We define the Gabriel-Roiter measure p(M) for modules
M of finite length by induction on the length. It will be a rational number. For the
zero module 0, let 1(0) = 0. Given a module M of length n > 0, we may assume by
induction that p(M’) is already defined for any proper submodule M’ of M. Let

27" indecomposable,
u(M) = max u(M') + in case M is
0 decomposable,

Here, the maximum is taken over all proper submodules M’ of M; in order to see
that this maximum exists, we have to observe inductively: If M is of length n > 1,
there is a set of natural numbers I(M) C [1,n] such that p(M) = 3.7 271,
(The set I(M) will be analyzed in more detail below.)

1.2. Here are some elementary properties:

PROPERTY 1. For any non-zero module M, there is an indecomposable sub-
module M' of M with u(M") = p(M).

Thus, when taking the maximum p(M’) in the definition of u(M), it is sufficient
to consider only proper submodules M’ of M which are indecomposable.

PROPERTY 2. LetY be a module and X CY a submodule. Then p(X) < u(Y).
IfY is indecomposable and X is a proper submodule of Y, then u(X) < u(Y).



6 CLAUS MICHAEL RINGEL

PROPERTY 3. For any module M of length n > 1, we have

- on — 1
) <> 2= o <L
=1

| =
I

The lower bound is clear, since M contains a simple submodule S and p(S) =
271, The upper bound follows from the fact that there is the subset I(M) C [1,n)

with u(M) = ZzGI(M) 27,

1.3. Some examples:
o If M is a local module of length n, then pu(M) = p(rad M) +27™.

e If M is a simple module, then p(M) = 3.

o If M is of length two, then p(M) is equal to:
% if M is decomposable
% + i = % if M is indecomposable,

o If M is of length three, there are already four possibilities: p(M) may be one

of the following numbers:

% if M is semisimple,

% + % = % if M is indecomposable with socle of length 2,

% + % = % if M has an indecomposable direct summand of length 2,
% + % + % = % if M has simple socle.

o In general, if M is of lengthn > 1, there are 2"~ possibilities for (M), namely
I(M) may be an arbitrary subset of [1,n] containing 1. Proof, by induction,
that all these possibilities actually do occur (for suitable finite dimensional
algebras): The assertion is clear for n = 1. Let n > 2. Let J C [1,n] be
an arbitrary subset containing 1. By induction there is a finite-dimensional
algebra R and an R-module N of length n — 1, such that I(N) = JN[1,n—1].
If n ¢ J, let S be a simple module. Then I(N @ S) = J, see property 5 below.

IfneJ, let R = [ 0 & } this is again a finite-dimensional k-algebra called the

one-point-extension. There is an mdecomposable projective R'-module P with
radical equal to N, and I(P) = I(N)U {n} =

1.4. Gabriel-Roiter submodules. If M is an indecomposable module, and
M’ is an indecomposable submodule of M with p(M’) maximal, then we call M’
a Gabriel-Roiter submodule of M (and the embedding M’ C M a Gabriel-Roiter
inclusion). We may reformulate this as follows: If X C Y is an inclusion of in-
decomposable modules, then X is a Gabriel-Roiter submodule of Y if and only if
u(X) = p(Y) — 2771,

PROPERTY 4. If M is indecomposable and |M| = n, then u(M) = 5 with a
an odd natural number, such that 2"~ < a < 2". In particular, the Gabriel-Roiter

measure of an indecomposable module M determines the length of M.

Proof, by induction on the length of M. If M is simple, then u(M) = %
Otherwise, take a Gabriel-Roiter submodule M’ of M. Let n’ = |M’|, thus n’ < n.
By induction pu(M') = 2“,, with @’ odd. Thus p(M) = p(M’) 427" = 5 with

n
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a=a'2"" +1. Since n —n’ > 1, it follows that a is odd. The bounds on a follow
from the bounds on p(M) mentioned in Property 3.

COROLLARY. Let X,Y be modules with u(X) = p(Y). If X is indecomposable,
then | X| < |Y].

Proof: According to Property 1, there is an indecomposable submodule Y’ of
Y with u(Y’) = u(Y). Now X, Y’ are indecomposable modules with same Gabriel-
Roiter measure, thus they have the same length. Therefore | X| = [Y'| < |Y].

1.5. Gabriel-Roiter filtrations. A chain
(*) XiCcXoC---CXy

will be called a Gabriel-Roiter filtration (of X;), provided X; is simple and all the
inclusions X;_1 C X; are Gabriel-Roiter inclusions, for 2 < i < t. Note that all the
modules X; involved in a Gabriel-Roiter filtration are indecomposable.

1.6. There is a another possibility for introducing and calculating the Gabriel-
Roiter measure of a module M of length n, concentrating on the set I(M) C [1,n]
such that p(M) =3, 27"

This approach deals with the set U of all possible chains

U.:(U1CU2C"'CU,5)

of indecomposable submodules U; of M. Given such a chain U,, we consider the
set |Us| = {|Ui] | 1 < i < t} of the length of these submodules (or finally the
corresponding rational number Zse‘ Udl 27%). Thus we deal with finite sets of nat-
ural numbers, let us denote by Py(Ny) the set of finite subsets of Ny. We want to
consider this set as a totally ordered set. We introduce the following order relation:
Let I # J be elements of P;(Ny). Set I < J provided the smallest element in the
symmetric difference (I'\ J)U (J\ I) belongs to J (since we assume that I # J, the
set (I'\ J)U (J\ I) cannot be empty, thus there is a smallest element). It is easy
to see that this relation is transitive, and of course it is anti-symmetric. It follows
that Py(N;) with this ordering is totally ordered. For any module M, let I(M)
be the maximum of the sets |U,| in the totally ordered set (Pf(Ny), <), where U,
belongs to U. Note that if M is of length n, then all the sets |U,| are subsets of the
set [1,n] = {1,2,...,n}, thus there are only finitely many possible |U,|.
The relationship between I(M) and p(M) is established via the equality:

pM)= > 27"
ieI(M)
Note that if I, J belong to P;(Ny), then
I<J < ) 27"<)y 27,
i€l jed
This shows that the order introduced on P;(N;) and the usual ordering of rational
numbers are compatible.
If
U.:(U1CU2C"'CUt)
belongs to U, then I(U;) = |U,| is and only if U, is a Gabriel-Roiter filtration.
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In future, when referring to the Gabriel-Roiter measure of module M, we will
deal either with p(M) or with I(M), whatever is more suitable.

When Gabriel introduced the (Gabriel-)Roiter measure, he used this second
approach of dealing with I(A) as an element in the totally ordered set (P;(Ny), <).
We should stress that the set I(M) may be considered to be more intrinsic than the
rational number p(M). After all, the reference to the base number 2 used in the
definition of p(M) is really arbitrary, and 2 could be replaced by any other prime
number. On the other hand, to deal with an invariant which takes values in the
well-known set of rational numbers seems to be quite satisfactory for psychological
reasons — in contrast to an invariant which takes values in the rather strange totally
ordered set (Py(N1), <) (by the way, it is more the totally ordering which seems
to be horrifying than the set itself). Of course, it is well-known (and easy to see)
that any countable totally ordered set can be realized as a subset of the totally

ordered set Q, however the embedding used here (mapping I to »_,.; 27%) seems
to be really manageable.

1.7. MAIN PROPERTY (Gabriel). Let X,Y1,...,Y,, be indecomposable modules,
and let u: X — @, Y; be a monomorphism. Then
(a) 1(X) < max; u(Y).
(b) If u(X) = max; u(Y;), then w is a split monomorphism.

For the proof we refer to [R5], or see [G].

PROPERTY 5. If X, X' are modules, then

p(X & X') = max(u(X), p(X)).
For the proof we first show: If Xq,..., X, are indecomposable modules, then

(P, Xi) = max; pu(X;). The inequality > follows directly from the definition. The
inequality < follows from Gabriel’s main property (a) and the definition. Now, if
X, X' are modules, write them as direct sums of indecomposables and apply the
first assertion.

COROLLARY. If X is an indecomposable submodule of M with (X) = pu(M),
then X is a direct summand. In particular, if M # 0, then M has an indecompos-
able direct summand X with p(X) = u(M).

Proof: Write M = @ M; with indecomposable modules M;. Property 5 asserts
that p(M) = max p(M;). Gabriel’s main property (b) shows that the embedding
X — M = @ M, splits. The second assertion follows from property 1.

1.8. Before we proceed, let us insert here several characterizations of modules
with simple socle. Of special interest seems to be condition (5) and the equivalence
of this condition with the other ones is again an immediate consequence of Gabriel’s
main properties.

LEMMA. Let M be a module of length n. Then the following conditions are
equivalent:
(1) The socle of M is simple.
(2) Any non-zero submodule of M is indecomposable.
(3) There exists a composition series of M with all terms indecomposable.
(4

) I(M) = [1,n].
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(5) w(M’") < u(M), for any proper factor module M' of M.

Modules with these properties are often called uniform modules.

Proof: The implications (1) = (2) = (3) are obvious. If there exists a
composition series U, of M with all terms indecomposable, then clearly |U,| = [1, 7]
is the maximal possibility, thus U, is a Gabriel-Roiter filtration and I(M) = [1, n].
This shows that (3) implies (4). If we assume (4), and M’ is a proper factor
module, say of length n’ < n, then I(M’) C [1,n] C [1,n] = I(M), thus also
I(M') < I(M). It remains to show that (5) implies (1). Assume M has two
different simple submodules S and S’. Then we can form the factor modules M/S
and M /S’ and the canonical maps give rise to an embedding M — M/S @ M/S".
Main property (a) yields I(M) < max(I(M/S),I(M/S")), but by assumption both
I(M/S) < I(M) and I(M/S’) < I(M), thus also max(I(M/S),1(M/S")) < I(M),

a contradiction.

We may reformulate the essential implication (5) = (1) as follows: If M is
a module, then either the socle of M is simple, or else there is an indecomposable
factor module M’ of M with pu(M) < u(M'). Indeed we have:

PROPERTY 6. If M is indecomposable, then either M has simple socle, or else
there is a factor module M’ of M with simple socle such that u(M) < p(M').

Proof. If the socle of M is not simple, then write soc M = €@ S; with S;
simple. For any 4, choose a submodule U; of M with S; "\U; = 0 and such that U; is
maximal with this property. Then M/U; has simple socle and the canonical maps
M — M/U; combine to an embedding M — &, M/U;. Gabriel’s main property
(a) asserts that u(M) < max u(M/U;). We even must have u(M) < max u(M/U;),
since otherwise M would be isomorphic to M/U; for some ¢ by property (b). Thus
there is M’ = M/U; with u(M) < u(M/U;).

1.9. We consider now maps f: X — Y, where X,Y are indecomposable mod-
ules with pu(X) > pu(Y).

PROPERTY 7. For any indecomposable module M, let M’ be the intersection
of the kernels of all maps M — Z with u(Z) < u(M). Then
o u(M/M'") < u(M), and
e if U is a submodule of M, such that p(M/U) < p(M), then M’ C U.

This means that M /M’ is the largest factor module of M with Gabriel-Roiter
measure smaller than the p(M). Of course, M’ # 0, since u(M/M') < p(M).

Proof: Let M’ be the intersection of the kernels of all maps f: M — Z with
w(Z) < p(M). There are finitely many maps f;: M — Z;, say 1 < i <t, such that
w(Z;) < u(M), and such that the intersection of the kernels of these maps f; is
equal to M’ (since M is of finite length, thus artinian). So (f1,..., ft): M/M’' —
@ Z; is injective. But this implies, by Gabriel’s main property, that u(M/M’) <
max(u(Z;)) < p(M). If M’ =0, then we get u(M) < pu(M), a contradiction. Thus
M’ # 0. Of course, for any f: M — X with u(X) < pu(M), the kernel of f contains
M’. In particular, if M" is a submodule of M such that u(M/M") < p(M), then
M C M".

Note that property 7 conversely implies Gabriel’s main property (a): Namely,
assume that indecomposable modules X, Y7,...,Y, and a monomorphism u: X —
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@Y, are given. Denote by u;: X — Y; the composition of u with the corresponding
projections. If p(X) > u(Y;), then property 7 asserts that X’ C Ker(u;). But
since u is a monomorphism, 0 # X’ cannot be contained in Ker(u;) for all ¢, thus
w(X) < p(Y;) for some 3.

1.10. Definition. For every rational number v, we denote by A(y) the class
of all indecomposable modules (of finite length) with Gabriel-Roiter measure .
Similarly, let us denote by A(< ) the class of all indecomposable modules (of
finite length) with Gabriel-Roiter measure <+ (here we may start even with a real
number 7). We say that + is a Gabriel-Roiter measure (for A, in case there could
be a doubt) provided A(¥) is not empty.

There always is a smallest Gabriel-Roiter measure I; = % (provided A is non-
zero) and A(I7) is the class of all simple modules. This holds for any ring R. In
our case of an artin algebra A, there also is a largest Gabriel-Roiter measure (again
provided A is non-zero), namely I' = [1,¢q], where ¢ is the maximal length of an
indecomposable injective module. (For a general ring R, there may exist arbitrary
large finite length modules with simple socle, as in the case of a discrete valuation
ring; then there is no largest Gabriel-Roiter measure.)

We will use the Gabriel-Roiter measure p in order to visualize the category
mod A.

A(<7)
N N

mod A

i — Q

[T
—

What really matters is the fact that all the subcategories add A( <) are closed
under submodules (or, equivalently, that the categories A( <+) are closed under co-
generation). By the way, there are a lot of investigations dealing with subcategories
which are closed under submodules — but often one requires in addition that the
subcategory is also closed under extensions. In our setting, this latter assumption is
satisfied only in trival cases: Namely, as soon as vy > %, the subcategory add A( <~)
contains all the simple objects. Thus, if we require that such a subcategory is closed
under extension, we will just obtain all the finite length modules!

The set of Gabriel-Roiter measures which occur for a given A gives a lot of
information about A (or better, its Morita equivalence class). But note that differ-
ent types of rings may yield the same Gabriel-Roiter measures. For example, there
are four different quivers of type Ay, they are distinguished by the number of sinks
and sources. The linear orientation leads to just one sink and just one source, the
corresponding path algebra is serial, and the Gabriel-Roiter measures are

{1} < {1,2} < {1,2,3} < {1,2,3,4}.

The same Gabriel-Roiter measures occur for the second orientation with precisely
one sink (and two sources). For the remaining two orientations (with two sinks,
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and one or two sources), the list of all Gabriel-Roiter measures is

{1} <{1,3} < {1,2} < {1,2,4} < {1,2,3}.

2. Gabriel-Roiter inclusions

An indecomposable module M has a Gabriel-Roiter submodule if and only if
M is not simple (this is obvious: on the one hand, a simple module has no proper
indecomposable submodule; but any module which is neither zero nor simple has
indecomposable proper submodules). If M is not simple, M may have several
Gabriel-Roiter submodules, but all have the same length.

2.1. THE MONO-IRREDUCIBILITY OF GABRIEL-ROITER INCLUSIONS. If X C
Y is a Gabriel-Roiter inclusion, and if U is a proper submodule of Y which contains
X, then the inclusion map X — U splits.

We call a monomorphism u mono-irreducible, provided first, it does not split,
and second, for every factorization u = u”u’ with v a monomorphism, either w’
is a split monomorphism or «” is an isomorphism. The statement asserts that a
Gabriel-Roiter inclusion is mono-irreducible.

Proof: We assume X C U C Y and that X is a Gabriel-Roiter submodule of Y.
We decompose U = @ U; such that all U; are indecomposable. Now u(U;) < p(Y),
since U; C U C Y is a proper submodule of Y and Y is indecomposable. Since X is
a Gabriel-Roiter submodule of Y, it follows that u(U;) < u(X), thus max; u(U;) <
p(X). However X is a submodule of €, U;, thus by part (a) of Gabriel’s main prop-
erty we see that also u(X) < max; u(U;). Thus p(X) = max; u(U;), and therefore
the inclusion X — U splits, according to part (b) of Gabriel’s main property.

REMARK*. In order to explain the terminology, one should compare this defini-
tion with that of an irreducible map in the sense of Auslander and Reiten: there, one
considers arbitrary factorizations, not just factorizations using monomorphisms.

Irreducible monomorphisms are mono-irreducible; however, there are obvious
mono-irreducible maps which are not irreducible: for example consider the path

algebra of the quiver:
a
>
b

The inclusion map of the simple module S(a) into its injective envelope is mono-
irreducible, however it factorizes through the projective cover of S(c), thus it is
not irreducible. Also, there is the following phenomenon: Given indecomposable
modules X,Y, there may be irreducible monomorphisms f: X — Y and also a
monomorphism ¢g: X — Y which is not even mono-irreducible. For example, take
the hereditary algebra 12[21, let S be simple projective and P the indecomposable
projective of length 4. Then Hom(S, P) is 2-dimensional and the non-zero maps are
monomorphisms. Thus the monomorphisms (up tp scalar multiplication) S — P
form a projective line; one of these equivalence classes is not mono-irreducible (it
factorizes through an indecomposable length 2 submodule), the remaining ones are
irreducible, thus mono-irreducible.

2.2. LEMMA. Let X be an indecomposable module, let X C Y be mono-
irreducible. Then Y/X is indecomposable.
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Proof: First, we show the indecomposability of Y/X. If Y/ X is decomposable,
there are proper submodules X’, X"’ of Y containing X such that X'+ X" =Y and
X'NX" = X. But the mono-irreducibility implies that the inclusions X — X’ and
X — X" split: there are submodules U’,U"” with X' = X® U’ and X" = X o U".
This implies Y = X@U'®U”, thus the inclusion X — Y also splits, a contradiction.

COROLLARY. IfY is indecomposable and not simple, then there exists an exact
sequence
0-X—-Y—-2-0

with X and Z indecomposable (just take as X a Gabriel-Roiter submodule of Y ).

One may wonder about the possible modules which occur as factor modules
Y/X, where Y is indecomposable and X is a Gabriel-Roiter submodule. For the
path algebra of a quiver of type A,, all these factors are serial and of length at
most ”T'H A factor of length "TH occurs for the sincere representation of the quiver
of type A, (n odd) with a unique source

and with arms of equal length. More details about such factor modules Y/ X will
be found in [Ch].

2.3. If X is a Gabriel-Roiter submodule of Y, then we just have seen that
the factor module Y/X is indecomposable. However something stronger holds: the
cokernel of any monomorphism X — Y is indecomposable. The reason is trivial:
the image of any monomorphism X — Y is a Gabriel-Roiter submodule again.
This shows the first of the following two assertions.

THEOREM. Let X be a Gabriel-Roiter submodule of Y. Then the cokernel of
any monomorphism X — Y is indecomposable and the set of non-monomorphisms
X — Y is closed under addition.

Let us denote by Sing(X,Y") the set of non-injective maps X — Y. Then we
claim that Sing(X,Y") is a subgroup of Hom(X,Y"). For a short direct proof of the
last assertion, we refer to [R6]. Here we will show a stronger assertion:

PROPOSITION. Let X be a Gabriel-Roiter submodule of Y. Let X/X' be the
largest factor module of X with w(X/X') < w(X). Then X' is contained in the
kernel of any map in Sing(X,Y).

Proof of Proposition: Let f € Sing(X,Y"). Then |f(X)| < |X| < |Y| shows that
f(X) is a proper submodule of Y. By the definition of a Gabriel-Roiter submodule,
we see that u(f(X)) < u(X). However, X and f(X) have different lengths, thus
u(f (X)) = p(X) is impossible. Therefore u(f(X)) < u(X). Let U be the kernel of
f, thus f(X) is isomorphic to X/U and u(X/U) = p(f(X)) < u(X). The definition
of X’ implies that X' C U.

Proof of Theorem: If f, f’ belong to Sing(X,Y), then X’ is contained both in
the kernel of f and in the kernel of f/, thus in the kernel of f + f’. This shows that
Sing(X,Y) is closed under addition. (Of course, if f is in Sing(X,Y’), also —f is in
Sing(X,Y), thus Sing(X,Y") is a subgroup of Hom(X,Y).)
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The fact that Sing(X,Y) is closed under addition is very helpful when mak-
ing calculations. In order to look for the possible Gabriel-Roiter submodules of a
given module Y, it is enough to deal with generating sets for the various groups
Hom(X,Y'). Thus, if we deal with an artin algebra A of finite representation type,
and if X C Y is a Gabriel-Roiter inclusion, then there is a Gabriel-Roiter inclu-
sion u: X — Y which is a composition of irreducible maps between indecomposable
modules, thus which is given by a path in the Auslander-Reiten quiver of A.

2.4. Let us stress that the properties encountered for the pair (X,Y’), where
X is a Gabriel-Roiter submodule of Y, are very special. Let us provide two typical
examples of the usual behavior of pairs (X,Y"), where X is a submodule of a module
Y. We cousider quivers of type D4 (and many more examples can be produced by
looking at quivers of type Eg, E7, or Eg).

Both examples are rather similar and are obtained from each other using re-
flection functors (thus tilting functors). In both cases one deals with a mesh with
three middle terms:

EXAMPLE 1 EXAMPLE 2
quiver: mesh: . quiver: mesh: 0
10 11
0 1
] o]
/ 0 / 0 \ 1 AN ! / 1 \ 1
10 —> 11 —> 21 11 —> 01 —> 12
0=<—0 0=<—0
\ 0 \ 0 / 1 / 1 \ 1 / 1
] 0 o] 1
10 11
1 0
X Y X Y

EXAMPLE 1. Here we present a pair (X,Y’) of modules with a family of em-
beddings X — Y such that for some of these embeddings, the cokernel will be
indecomposable, for some other embeddings, the cokernel will be decomposable.
Take the subspace orientation (one sink, three sources), let X be simple projective,
and Y the indecomposable module of maximal length. Then dim Hom(X,Y) = 2.
Any generic map X — Y will have an indecomposable cokernel (this is then the
indecomposable injective module of length 4), but note that such homomorphism
do not exist in case the base field k has only two elements. There are three differ-
ent kinds of monomorphisms with decomposable cokernel: here the cokernel is the

direct sum of a simple injective module and an indecomposable module of length
3.

EXAMPLE 2. A pair (X,Y") of modules with a monomorphism ¢: X — Y which
can be written as a sum ¢ = ¢; +¢2 such that neither ¢; nor ¢, is a monomorphism.
This time take D4 with the factor space orientation (one source, three sinks). Again
let Y be the indecomposable module of maximal length, and X the indecomposable
projective module of length 4. Again, we have dimHom(X,Y) = 2. Here, any
generic map X — Y is a monomorphism (but such a monomorphism does not exist
in case the base field k& has only two elements). There are three different kinds of
homomorphisms X — Y which are not monomorphisms: the corresponding images
are the three indecomposable modules of length 3.
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The examples show another (but related) complication when dealing with
monomorphisms: field extensions may create new types of monomorphisms. Con-
sider a field k¥’ of characteristic 2, and let k = Z/2Z be the corresponding prime
field. When dealing with the subspace orientation, we see that for the prime field
k, any monomorphism X — Y factorizes through an indecomposable module of
length 2, whereas for k' # k, there are monomorphisms without such a factoriza-
tion. On the other hand, if we look at the factorspace orientation and if k is the
prime field, all the maps X — Y have non-zero kernel, thus belong to Sing(X,Y).
This shows that for k& the prime field Sing(X,Y) = Hom(X,Y) and thus Sing(X,Y)
is closed under addition, whereas for k' # k, the set Sing(X,Y’) is a proper subset
of Hom(X,Y). The subset Sing(X,Y) of Hom(X,Y) generates Hom(X,Y) as a
vector space, thus it is not closed under addition.

Let us add a further example of a pair of modules X,Y with monomorphisms
f1, f2: X — Y such that the cokernel of f; is indecomposable whereas the cokernel
of fo is not: let A be the path algebra of the Kronecker quiver and let X,Y be
preprojective A-modules of length 1 and 5, respectively.

2.5. Given an indecomposable module X, we have seen in property 7 how to
construct the largest factor module X/ X’ of X with Gabriel-Roiter measure smaller
than u(X).

PROPOSITION. Let X1 C Xo C --- C Xy = X be a Gabriel-Roiter filtration.
Let X/ X' be the largest factor module of X with Gabriel-Roiter measure smaller
than u(X). Then X1 C X'.

Proof: Since X’ # 0, there exists s minimal with X; N X’ # 0. If s = 1, then
X1 N X" # 0 implies X; € X', since X7 is simple. And this is what we want to
show.

Now assume s > 1. Let U = X,;NX’. Then U is a submodule of X, and we can
consider Y = X;/U. Of course Y = X, /(Xs; N X’) is isomorphic to (Xs + X’)/ X",
thus it can be embedded into X/X’ and therefore pu(Y) < u(X/X’) < p(X).

By the minimality of s, we have X, _1NU = X,_1NX’ = 0, thus X,_1 is mapped
under the projection map X; — Y injectively into Y, thus pu(Xs—1) < u(Y), by
Gabriel’s property (a). We even have u(X,_1) < u(Y), since otherwise the map
Xs—1 — X5 — Y would be a split monomorphism by Gabriel’s property (b), and
then also the map Xs_1 — X, would be a split monomorphism, which is impossible.
Altogether we have

p(Xs—1) < p(Y) < p(X),
thus also
I( X)) <IY) < I(X) = I(Xs—1) U{| X5, ., | Xe|}
in the totally ordered set (Py(Np),<). We can apply the following lemma for
I =1(Xs-1),J =I(Y) and n; = | Xs44] for 0 < i <r =1 — s and conclude that
J = 1(Y) is not contained in the interval [1,ng]. However, Y = X, /U is a proper
factor module of X, thus |Y| < ng = |X;|, a contradiction.

LEMMA. Let ng < nj < --- < n, be natural numbers. Let I, J be finite subsets
of Ny, with I C [1,no—1]. If

I<J<IU{n0,...,nT}
in the total ordering (Py(Ny), <), then J < [1,n0].

)y —
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Proof: Write I’ = I U {no,...,n,}. Consider the smallest element [ in the
symmetric difference (J \ I’) U (I" \ J). Since J < I’, we know that ! belongs to
I' =TU{ng,...,n,}. Assume [ belongs to I. Then [ belongs to I \ J, thus to the
symmetric difference (J\ I) U (I \ J), and is the smallest element in this set, but
this means J < I, a contradiction. Thus [ = n; for some 0 < ¢ < r. But then the
elements of I all belong to J (since [ is the smallest element in I’ \ J). Since I < J,
there is I’ € J\ I'. Since n; is the smallest element in (J\ I')U (I"\ J), we see that
ng < n; < l’. This completes the proof.

2.6. COROLLARY 1. Let X1 C X5 C --- C Xy = X be a Gabriel-Roiter filtra-
tion. Let Z be a module with u(Z) < u(X) and let f: X — Z be a homomorphism.
Then either f is a split monomorphism or else f(X1) =0.

Proof. We can assume that Z is indecomposable, thus we have to show that f
is an isomorphism or vanishes on Xj.

Consider first the case u(Z) < u(X). According to property 7, the kernel of
f+ X — Z contains X', thus X;. Second, let u(Z) = u(X). If f is a monomorphism,
then f is an isomorphism since X and Z have the same length. If f is not a
monomorphism, then we consider instead the corresponding map X — f(X). Since
f(X) is a proper submodule of Z, we have u(f(X)) < u(Z) = p(X), thus we are
back in the first case and see that f(X7) = 0.

COROLLARY 2. Let X1 C Xo C -+ C Xy = X be a Gabriel-Roiter filtration.
Let U be a nonzero submodule of X with X1 NU = 0. Then u(X) < u(X/U).

Proof: Assume for the contrary pu(X/U) < u(X). Since X is indecomposable
and |X/U| < |X|, we have even pu(X/U) < u(X). According to Corollary 1, the
projection map X — X/U vanishes on X7, but this contradicts the assumption
XiNU =0.

3. Auslander-Reiten theory and the successor lemma

Assume from now on that R = A is an artin algebra. This implies that the
Auslander-Reiten translations 7 (dual of transpose) and 77! (transpose of dual)
are defined, see for example [ARS].

3.1. LEMMA. Let X be an indecomposable module, let X C Y be mono-
irreducible. Then Y/X is a factor module of 771 X.

Proof: We look at the exact sequence 0 — X — Y — Y/X — 0. Since this
sequence does not split, X cannot be injective. Since X is indecomposable, there is
an Auslander-Reiten sequence starting with X, and we compare the two sequences:
we obtain a commutative diagram

0 X 2> F 7iX —5 0
| | I
0 X Y Y/X —— 0

The existence of the map f so that the left square commutes is due to the fact that
the upper sequence is an Auslander-Reiten sequence and that X — Y is not split
mono. The commuting left square gives rise to the map f’ so that the right square
comimutes.
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We claim that f is surjective: otherwise the image of f would be a proper
submodule of Y, but then fu would yield a split monomorphism X — f(Y),
according to the mono-irreducibility of the inclusion map X — Y. In particular,
u itself would be a split monomorphism, this is impossible. With f also f is
surjective.

COROLLARY. If X — Y is a Gabriel-Roiter inclusion, then |Y| < pq|X|, where
p is the mazimal length of an indecomposable projective module and q is the mazximal
length of an indecomposable injective module.

Proof: One knows that |771X| < (pg—1)|X|. Namely, take a minimal injective
presentation 0 — X — @y — @1 of X, then the socle of Qg is of length at most
| X |, thus Qo is of length at most ¢|X| and Qo/X is of length at most (¢ — 1)|X].
This shows that the socle of @1 is of length at most (¢ — 1)|X|. Thus the length of
the top of the projective cover Py of 771X is at most (¢ — 1)|X| and therefore P, is
of length at most p(q — 1)|X| < (pg — 1)|X|. Consequently, |71 X| < (pg — 1)|X|.
Of course, |Y| = |X|+|Y/X| < pg|X].

REMARK*. Such a bound reflects an interesting finiteness condition. Example:
Take a bimodule algebra with an indecomposable projective module P of length 2

and an indecomposable injective module of infinite length, for example P§‘ (IS] .
Then there is an indecomposable module M,, with top length n and socle length
n — 1, for any n > 1. Any Gabriel-Roiter submodule of M,, is of length 2, thus
we have Gabriel-Roiter measures (1,2,n) for any n. (A factor module M, /P is a

M, 1, for n > 3.)

3.2. SUCCESSOR LEMMA. Any Gabriel-Roiter measure I different from I' has
a direct successor I'. If I C [1,n], then I' C [1,pgn|, where p is the mazimal
length of an indecomposable projective module and q is the mazximal length of an
indecomposable injective module.

Here, we call I’ a direct successor of I provided, first, I < I’ and second, there
does not exist a Gabriel-Roiter measure I” with I < I < I'.

Proof: Let I # I' be a Gabriel-Roiter measure, let I C [1,n], with n minimal
(thus the modules in A(I) are of length n).

We claim that for any Gabriel-Roiter measure J with I < J, there is a Gabriel-
Roiter measure J’ with I < J’ < J and such that J’ C [1, pgn].

Let ¢ be minimal in (I \ J)U (J\ I). Since I < J, we know that ¢ € J. Let
J = JnJL,t. Then I < J' < J. Since J is a Gabriel-Roiter measure for A and
J' == JnNI1,t] for some t, also J’ is a Gabriel-Roiter measure for A.

We claim that ¢ < pgn. If ¢ < n, then clearly ¢ < pgn. Thus we can assume
t > n. In this case, let Y be an indecomposable module with Gabriel-Roiter measure
J’, and let X be a Gabriel-Roiter submodule of Y. Then we have a Gabriel-Roiter
inclusion X — Y with |X| = n and |Y| = ¢. As we have seen above, this implies
that t < pgn.

But there are only finitely many possible Gabriel-Roiter measures in the set
[1, pgn]. This shows that for any J with I < J there is a Gabriel-Roiter measure J’
with I < J’ < J and such that J' C [1, pgn].

In particular, for J = I' there is a Gabriel-Roiter measure J’ C [1, pgn| with
I < J'. Now take the smallest Gabriel-Roiter measure I’ C [1,pgn| with I < I’.
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Then there cannot be any other Gabriel-Roiter measure J between I and I’, since
otherwise we would obtain a Gabriel-Roiter measure J’ with I < J' < J < I, in
contrast to the minimality of I’.

This completes the proof.

3.3. REMARKS*. (a) We may draw a quiver as follows: its vertices are the
Gabriel-Roiter measures, and we draw an arrow v — 4’ in case 7' is a direct
successor of v. Then the connectivity component containing I' is either finite or of
the form —N, the remaining connectivity components of this quiver are of the form
N or Z (here we consider Z as a quiver with vertices the integers and with arrows
z — z+1, and we consider N and —N = {z | —z € N} as the corresponding full
subquivers). The connectivity component containing I' is finite only in case there
are only finitely many Gabriel-Roiter measures, see the discussion in part III.

(b) In case we deal with an arbitrary ring (not an artin algebra), or an arbitrary
length category, then I; may not have a direct successor: Consider, for example,
% ﬁ] or [% g , or the category
of representations of the quiver with countable many vertices, say labeled by the
natural numbers Ny and with one arrow 0 — 4 for all ¢ € Ny (so that 0 is a source,
whereas all the other vertices are sinks). Then one of the indecomposable projective
modules is not of finite length; its non-zero factor modules of finite length are all
local and have Loewy length at most 2, and we obtain in this way modules in
A({1,7}), with r arbitrarily large. Thus we get a decreasing sequence of Gabriel-
Roiter measures

one of the following triangular matrix rings [

<A{L,5} < {1,4} < {1,3} < {1,2}
and for any Gabriel-Roiter measure I # I', there is some r > 2 with {1,r} C I,
then also {1,r} < I.
(c) There is no corresponding “predecessor lemma”: Consider, for example, the
Kronecker quiver. The measure {1, 2} has no immediate predecessor.

4. Relative Y-injectivity and direct sums of finite length modules

We are going to consider arbitrary, not necessarily finitely generated modules.
Let M be an indecomposable module of finite length. Gabriel’s main property (b)
asserts that M is relative injective in add A(y). We want to extend this relative
injectivity property to arbitrary modules.

4.1. For any real number ~, consider the full subcategory

D(v) = limadd A( <7).

By definition, a module M belongs to D(v) if and only if any indecomposable
submodule M’ of M of finite length satisfies u(M') < .

Note that the subcategories D(7y) are definable subcategories in the sense of [Cr]
(this means that D(v) is closed under products, direct limits and pure submodules).
We only have to show the following:

LEMMA. D(v) is closed under products.

Proof: Let M; be modules in D(y), and consider M = [], M;. We have to show
that any indecomposable submodule M’ of M of finite length has Gabriel-Roiter

measure at most y. But if M’ is a submodule of M = [[,.g M;, then M is also
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a submodule of some finite sum @, g M;, where S’ is a finite subset of S (see
Lemma 9.2). Thus Gabriel’s main property (a) yields pu(M’) < ~.

4.2. THEOREM ON RELATIVE Y-INJECTIVITY. Let X be an indecomposable
module of finite length with w(X) =~. Then X is relative X-injective in D(7).

This means: Let M be a module in D(y). If M’ is a submodule of M which is
a direct sum of copies of X, then M’ is a direct summand of M.

Proof: Here we need some knowledge about pure submodules, see [JL] and also
[R2]. We show that M’ is a pure submodule of M. Since X and therefore M’ is
endofinite, we know that M’ is pure injective. Altogether this means that M’ is a
direct summand.

In order to show that M’ is a pure submodule of M, consider a submodule M”
of M which contains M' and such that M” /M’ is of finite length. We have to show
that the embedding M’ — M" splits. Take a finite length submodule U of M" such
that M'+U = M". Since M NU is of finite length, there is a direct decomposition
M' = N& N’ such that N is a finite direct sum of copies of X and such that M’'NU
is contained in N. We claim that M" is the direct sum of U + N and N’. Clearly,
U+N+N =U+M =M". In order to see that (U + N)NN' = 0, take elements
w € U,z € N such that u+x € N’. Then u = —z+ (u+z) belongs to UNM' C N,
thus in the decomposition u = —x + (u + z) with —z € N and u + = € N’ the
second summand has to be zero. But this assertion, u + = = 0, is what we wanted
to show.

Now we only have to observe that U + N as a finite length submodule of M
belongs to add A( < +). Since N is relative injective in add A(< ~), we obtain a
direct decomposition U+ N = U'@ N, and now M = (U+N)eN' =U'@NaN'.

WARNING. The theorem is about direct sums of copies of a fixed module in
A(7), not about direct sums of modules in A(y). Indeed, in case A(7) is infinite,
a direct sum of modules in A(7y) does not have to be relative injective in D(y). As

an example, take the Kronecker algebra A = [g k;} with £ an infinite field and

N = %, thus A(y) counsists of the indecomposable A-modules of length 2. Since k is
infinite, there are infinitely many isomorphism classes of module M; in A(y). Then,
according to the lemma above, [ M; belongs to D(y). However, the submodule
@ M; of [ M; is not a direct summand, see [R4].

As a consequence, there is the following result:

4.3. DIRECT SUM THEOREM. Assume M is a module with only finitely many
isomorphism classes of indecomposable submodules of finite length. Then M is a
direct sum of finite length modules.

Of course, the conclusion may be strengthened by saying that M is a direct sum
of indecomposable modules of finite length: just write the finite length modules as
direct sums of indecomposable modules. Note that the proof gives a precise recipe
in which order one may split off direct summands: one may use the ordering of the
Gabriel-Roiter measures of the indecomposable submodules of M of finite length,
starting with the maximal Gabriel-Roiter measure.

Proof: Let My, ..., M; be the representatives of all the isomorphism classes of
indecomposable submodules of M of finite length. The proof is by induction on ¢,
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the case t = 0 being trivial. Thus, let ¢ > 1 and let u(M;) = ;. We can assume
that v1 < 2 < -+ < . By definition of D(y:), we know that M belongs to D(yz).
Consider submodules of M which are direct sums of copies of M;. Using Zorn’s
lemma, there exists such a submodule M’ such that M’ NU # 0 for any submodule
U isomorphic to M. Since we know that M; is relative Y-injective in D(7;), we see
that M’ is a direct summand of M, say M = M’ & M”. Now consider M": any
indecomposable submodule of M” of finite length is a submodule of M, thus of the
form My, ..., M;, however M; does not occur, by the maximality property of M’.
This shows that any indecomposable submodule of M of finite length is of the form
My, ..., M;_1, thus by induction M” is a direct sum of finite length modules.

4.4. We recover here the result that for algebras of finite representation type,
any module M is a direct sum of finite length modules ([RT], [T], and also [A1]),
with a precise recipe in which order one should split off direct summands.

Recall that this result in the special case of serial algebras is due to Nakayama
[N]. In this case one first splits off the indecomposables of longest possible length: if
the module is faithful (which we can assume), then the indecomposables of longest
possible length ¢ are injective, thus indeed such submodules (and even submodules
which are arbitrary direct sums of such modules) are direct summands. For a serial
algebra, all the indecomposable modules are uniform, so that the Gabriel-Roiter
measures are

[1,1] < [1,2] < [1,3] <--- < [L,q]
Thus the ordering of the indecomposables according to their length coincides with
the ordering using the Gabriel-Roiter measure.

REMARK. We have shown that if M is a module with only finitely many
isomorphism classes of indecomposable submodules of finite length, then M is a
direct sum of copies of finitely many indecomposable modules of finite length. We
should stress, that this conclusion cannot be reversed: there are direct sums of
copies of finitely many indecomposable modules N; of finite length which have
indecomposable submodules of arbitrarily large length, even if any of the modules
N; has only finitely many submodules. For example, consider any finite artin
algebra A of infinite representation type. Let Ni,..., Ny be the indecomposable
injective A-modules. Since we consider a finite artin algebra, the modules N; are
finite sets, thus they have only finitely many submodules. On the other hand, let
M be the direct sum of countably many copies of the various N;. Since € NV; is
an injective cogenerator, any finite length module can be embedded into M, thus
M has infinitely many isomorphism classes of indecomposable submodules of finite
length.

II. The Take-Off Part.

Recall that for A non-zero, Iy = % is the smallest Gabriel-Roiter measure,
wheras I' = ;.1:1 271 (with ¢ the maximal length of an indecomposable injective
A-module) is the largest Gabriel-Roiter measure. The successor lemma asserts that
any Gabriel-Roiter measure v # I' has a direct successor. In particular, starting
with I;, we may define I;; inductively as the direct successor of I;, provided

I; # I'. Thus there are either only finitely many Gabriel-Roiter measures for A,
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which then are labeled I; < Iy < --- < I, and I,,, = I', or else there is a countable
sequence of Gabriel-Roiter measures

L<b<---<ILi<...

such that any other Gabriel-Roiter measure v satisfies I; < v for all <. In both
cases, we call the measures I; displayed in this way the take-off measures. An
indecomposable module M of finite length will be said to be a take-off module
provided pu(M) is a take-off measure.

Let us describe I3 explicitly. Of course, I> only exists in case A is not semisimple
and then obviously Io = {1, s} with s as large as possible. Now an indecomposable
module M with Gabriel-Roiter measure of the form {1, 7} for some r > 2 is local and
of Loewy length 2: it has a unique maximal submodule M’ and M’ is semisimple.
Thus I5 yields the information about the largest possible local modules with Loewy
length 2.

Note that I = I' iff A is a serial algebra with radical square zero., and then
I, = I'' = {1,2}. (In general, A is left serial iff I, = {1,2}.) If I < I', then I3 is
either {1, r, s} with s > r as large as possible, or else I5 = {1,7—1}. By the way, an
explicit description of the take-off measures I; with large ¢ seems to be awkward.

5. The finiteness theorem for take-off measures

5.1. FINITENESS THEOREM. For any take-off measure I;, there are only finitely
many isomorphism classes of indecomposable modules M with (M) = I;.

We will discuss several proofs of the finiteness theorem. But before we do this,
let us mention the following consequences:

COROLLARY 1. If A is of infinite representation type, there are infinitely many
take-off measures.

Proof: If there are only finitely many take-off measures, say I < Ir < --- <
I, then these are all the possible measures. Thus there are only finitely many
isomorphism classes of indecomposable modules.

Note that the corollary provides a proof of BTh 1. Actually, it strengthens the
assertion of the first Brauer-Thrall conjecture. In contrast to the assertion of the
first Brauer-Thrall conjecture itself, the statement is meaningfull even in case A is
a finite ring (i.e. a ring with finitely many elements).

COROLLARY 2. For any natural number n, there are only finitely many iso-
morphism classes of take-off modules of length n.

Proof: If M is an indecomposable module of length n, then I(M) C [1,n],
thus there are only finitely many possible Gabriel-Roiter measures. The finiteness
theorem asserts that for any fixed take-off measure «y, there are only finitely many
isomorphism classes of modules with measure 7.

5.2. Three different proofs for the finiteness theorem are available.

FIRST PROOF. The first one is essentially due to Roiter, and has been exhibited
in [R5]. It uses the very interesting coamalgamation lemma.
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SECOND PROOF. The argumentation is parallel to the Auslander-Yamagata
proof of Brauer-Thrall I and uses the Harada-Sai lemma. Let us give an outline of
this proof.

We need: add . A( <+) has source maps. This comes from the fact that add .A(7)
is closed under cogeneration. Actually, we have:

LEMMA. The inclusion functor add A(<~) — mod A has a left adjoint which
sends M to M., where M., is the mazimal factor module of M cogenerated by
A(< 7). (Thus, the canonical map M — M, is a minimal left add.A(< v)-
approximation.)

COROLLARY. The category add A( <) has source maps.

Proof: If X is in A(<7), let f: X — X' be a source map in the module
category. Now, let p: X’ — X! be the minimal left add .A( <+)-approximation of
X'. Then pf is left almost split in add A( <+). Namely, given a map h: X — Y
which is not split mono, with YV in add .A(<~), then we can factorize h through
f, say h = h'f. Since Y belongs to add A( < ), we can factorize h’ through p,
say b/ = h'/p. Thus h = h'f = h/pf. This shows that pf is left almost split. A
minimal version of pf will be minimal left almost split (thus a source map).

WARNING. Note that add A( <) may not have sink maps: see v = {1, 2} for
the Kronecker quiver.

So here is the proof: The modules in C = A(<1,.) are of bounded length, say
bounded by b. From the Harada-Sai Lemma [R1] we know that the composition of
2° — 1 non-invertible maps between modules in C is zero.

Now take any module M in C, and a simple submodule X, of M, thus there is
given a non-zero map o: Xo — M.

We note the following: Assume there is given a sequence of non-invertible
maps ¢;: X;_1 — X; with 1 <+ <t and a non-invertible map ¢;: X; — M with
all the modules X; € C and such that the composition ¥:¢; - -- @1 # 0. Then we
can find a module X;y; in C, a non-invertible map ¢¢41: Xy — X1 and a map
¢t+11 Xt+1 — M such that wt+1¢t+1¢7t s ¢1 75 0.

For the proof, just factorize ¢, through a source map f: Xy — X/ of X; in C,
decompose X{ = P, Y; with Y; indecomposable, and let f = (f;); with f;: X] — Y;.
We obtain ¢y = 3, g; f; with fi: X; — Y; and g;: Y; — M. Then

?/Jt¢t"'¢1 = Zgifi¢t"'¢1

is non-zero, thus one of the summands must be non-zero, say the summand with
index i = 1. Let ¢¢41 = f1 and Y11 = g1. Thus Yep10i410: - - - d1 # 0. Also, since
¢e+1 = f1 is part of a source map, it is non-invertible.

Applying inductively this procedure, it has to stop after at most 2° steps, since
otherwise we would obtain a contradiction to the Harada-Sai Lemma. However,
the procedure stops only when we obtain a map 1)’ which is invertible. But this
then means that M is isomorphic to X¢4.

Altogether we see that we obtain all the objects in C by inductively forming
indecomposable direct summands of the target of a relative source map for a module
already constructed.
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REMARK. One sees in this way that the take-off part has an Auslander-Reiten
quiver, which can be constructed step by step looking at the various A(<I,.) (the
process stabilizes with increasing r, since the neighbors of a module of length n are
of length at most pgn).

The third proof will be presented in the next section.

6. Proof of the finiteness theorem, using infinite length modules

6.1. It is of interest that the theorem on relative ¥-injectivity can be used in
order to provide a third proof for the finiteness theorem for take-off measures: Let
I,. be a take-off measure. Then A(<I,) is finite for all r.

Proof. If not, choose pairwise non-isomorphic modules M; (i € N) in A(<1,.).
Consider W = [[ M;/ @ M;. Any finite length submodule of W is isomorphic to a
submodule of [] M; (see lemma 9.1), thus with [] M; also W belongs to A(<1I,).
Note that W = 0. Choose an indecomposable submodule U of finite length with
maximal possible Gabriel-Roiter measure. We can assume that U is not isomorphic
to any M; (otherwise delete that index 4, this does not change W.) By the theorem,
U is a direct summand of W. This shows that there are submodules U’, V' of [[ M;
such that U' + V' =[[M;, U' NV’ = @ M; with U’ /(D M;) = U. Since @ M; is
pure in [ M;, it follows that the embedding € M; C U’ splits: there is a submodule
U” of U’ such that U' = U"” & @ M,. It follows that [[M; = U” & V’. Since U”
is isomorphic to U, we see that [] M; splits off a copy of U, thus U is a direct
summand of some M;, according to the Auslander lemma (see 9.3). This yields a
contradiction.

6.2. SPECIAL CASE OF THE DIRECT SUM THEOREM. Let I,. be a take-off mea-
sure. Then any module which belongs to D(I,.) is a direct sum of finite length
modules.

Proof: Let M be in D(I,). The indecomposable submodules of M of finite
length belong to |J;_,; A(I;), thus there are only finitely many isomorphism classes,
and we can apply the direct sum theorem 4.3.

7. Indecomposable infinite length modules

7.1. Let us extend the definition of the Gabriel-Roiter measure u(M) to mod-
ules M of infinite length. If M is not of finite length, let u(M) be the supremum
of the numbers p(M’) taken over all submodules M’ of M of finite length (or just
the indecomposable ones).

Also, we extend the notion of a Gabriel-Roiter filtration as follows: Let M be
a A-module which is not finitely generated. A sequence

Us=(Uy CUy C--CUyp--)

is called a Gabriel-Roiter filtration of M provided the following three conditions are
satisfied:
(i) Uy is a simple module.
(i1) U;—1 is a Gabriel-Roiter submodule of U;, for all 2 < i.
(iii) M =, Us.
Note that by definition all the modules with a Gabriel-Roiter filtration are
countably generated. And there is the following pleasant result:
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7.2. THEOREM. Any module M with a Gabriel-Roiter filtration is indecom-
posable.

Of course, only the case when M is not finitely generated is of interest, since any
finite length module with a Gabriel-Roiter filtration is indecomposable by definition.
For the proof of the theorem we refer to [R5].

It remains to construct infinite sequences of Gabriel-Roiter inclusions.

7.3. THEOREM Assume A is of infinite representation type. Then there exists
an infinite sequence of Gabriel-Roiter inclusions

MycMycC---CM;C---
where all the modules M; are take-off modules.

Proof: Consider the following graph (or quiver): its vertices are the isomor-
phism classes [X], where X is an indecomposable take-off module, and draw an
arrow [X| — [Y] provided there is a Gabriel-Roiter inclusion X — Y. There are
only finitely many sources, namely the isomorphism classes of the simple modules
(since any non-simple indecomposable module Y has a Gabriel-Roiter submodule
X, and with Y also X is a take-off module). Also, for any vertex [X], there are
only finitely many isomorphism classes [Y] with an arrow [X] — [Y]. Namely, if
X is of length n, then we know that Y is of length at most pgn, where where p is
the maximal length of an indecomposable projective module and ¢ is the maximal
length of an indecomposable injective module. Now by the finiteness theorem for
take-off measures we know that there are only finitely many isomorphism classes of
take-off modules of length at most pgn. But there are infinitely many isomorphism
classes of take-off modules, thus the Konig graph theorem asserts that there are
paths of infinite length. But this is what we were looking for.

In particular, we get the Gabriel-Roiter measure I, = sup I,..

COROLLARY. Assume A is of infinite representation type. Then there is an
indecomposable module M with a Gabriel-Roiter filtration

MiCcMyCc---CcM;C---
where all the modules M; are take-off modules. In particular, p(M) = I,,.

Note that for such a module M any finitely generated submodule M’ of M
is contained in some My, thus belongs to the take-off part. In particular, for any
natural number n, M has only finitely many isomorphism classes of submodules
of length n. Using the notation introduced above, we see that such a module
M belongs to D(1,), If we call the modules in D(1,) take-off modules, we can
write: there do exist indecomposable take-off modules of infinite length. One should
compare this result with a corresponding result in the last section: there we have
seen that all the modules in D(I,) (with r € Ny) are direct sums of finite length
modules. To repeat: We have the chain of inclusion of subcategories

D(L) C D) C - CD(,)C -

and all the modules in the various subcategories D(I,.) are direct sums of finite
length modules. However, as soon as we go over to D(I,,), the behaviour changes
completely: there are infinite length modules in D(I,,) which are indecomposable.
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The existence of infinitely generated indecomposables for any artin algebra of
infinite representation type was first shown by Auslander [A2]. The Gabriel-Roiter
approach allows to locate some of these modules very well: one finds such modules
already in the take-off part of the module category.

7.4. Using different infinite sequences of Gabriel-Roiter inclusions as asserted
in theorem 7.3, we may obtain a large number of pairwise non-isomorphic indecom-
posable A-modules M, however all these modules have the same Gabriel-Roiter
measure!

ExamMpLE 1*. If A is the Kronecker quiver and k is a countable and alge-
braically closed field, then all the “torsionfree kA-modules of rank 1”7 (see [R2])
occur in this way, and I(M) = {1,2,4,6,8,...}.

ExaMpPLE 2*. Consider the tame hereditary algebra A of type Aoy
b
/ \
4 *———=¢

We will use this example in order to exhibit some typical phenomena which occur for
indecomposable infinite length modules M in D(1,). Note that A is special biserial,
thus the indecomposable A-modules of finite length are strings and bands and can
be exhibited by using finite “words”. Similarly, one may consider “N-words” in
order to obtain suitable indecomposable A-modules of infinite length, see [R3]. As
in [R3], these N-words are depicted below by bullets and arrows (all the arrows
point downwards, thus we will delete the arrowheads). As a further explanation of
these pictures, we note that the upper row of bullets refers to composition factors of
the form S(c), those of the middle row to S(b), and the lower row to S(a). Further
examples of A-modules will be presented below in part III, see also [R5].

e First, consider the string module corresponding to

AN

its Gabriel-Roiter measure is {1,2,4,5,7,8,...}; instead of {1,2,4,5,7,8,...}
let us write 124578 - - - | or better 12|45|78|--- (in order to mark the gaps).

e Here is an indecomposable module M in D(I,) which has a proper submodule
of finite index with a Gabriel-Roiter filtration. It is the Priifer module for the

simple module S(b):

its Gabriel-Roiter measure is again 12|45|78|- - - , but there is no corresponding
sequence of submodules which exhaust all of M.

e But there is also an indecomposable modules M in D(I,) which has no sub-
modules with an infinite Gabriel-Roiter filtration. Take the following string

module

its Gabriel-Roiter measure is again 12|45|78|.... There are indecomposable sub-
modules with measure 12|45] - - - |3n+1, 3n+2 for any n, but there is no infinite
chain of such submodules.
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7.5. We have introduced above (see section 1) an embedding of Py(Ny) into
Q. In order to deal also with modules which are not finitely generated, we consider
the set P;(Ny) of all subsets I of Ny such that for any n € Ny, there is n’ > n with
n' ¢1.

LEMMA. The Gabriel-Roiter measure (M) of any module M belongs to P;(Ny).

Proof. There is ¢ € Ny such that any indecomposable injective A-module has
length at most ¢. Let pu(M) = {a1 < az < --- < a; < ---} and assume that
for some n we have a4y = a, +t for all t € N;. Let s = ¢ - a,. There is a
chain of indecomposable submodules My C My C -+ C My4, with |M;| = a; for
1 S ) S n + s. Since |Mn+t| = Qp+t = An4t—1 +1= |Mn+t71| + 1, we see that
M, 4+4—1 is a maximal submodule of M,,1;. Since M,,; is indecomposable, the socle
of M,,++ has to be contained in M, 1;_1. Inductively, we see that the socle of M, 1,
is contained in M, for any ¢ > 1, in particular, the socle of M, ;. is contained
in M, thus M, ;s can be embedded into the injective envelope of M,,. Since any
indecomposable injective module is of length at most g, the injective envelope of
M, has length at most q - an, thus |M, 5| < ¢ an. But [My.s| = |My| + s =
(¢ + Da,, > q - an, a contradiction.

7.6. The embedding of P;(N;) into Q (thus into R) extends to an embedding
of P;(Ny) into the real interval [0, 1]:

LEMMA. The map r: Pi(N1) — R given by r(I) =3 ,c; 55 for I € Py(Ny) is
injective, its image is contained in the interval [0,1] and it preserves and reflects

the ordering.

REMARK. The map r can be defined not just on P;(Ny), but on all of P(Ny),
however it will no longer be injective (indeed, for any element I in P(Ny) \ P;(Ny),
there is a unique finite set I’ with »(I) = r(I")). Of course, one may easily change
the definition of r in order to be able to embed all of P(N;) into R: just use
say 3 instead of 2 in the denominator. However, our interest lies in the Gabriel-
Roiter measures which occur for finite dimensional algebras and the previous lemma
assures us that the definition of r as proposed is sufficient for these considerations.

II1. The Landing Part.

Let us recall that (for A non-zero) there exists a largest Gabriel-Roiter measure
I' = [1,q] with A(I') being the indecomposable injective A-modules of largest
length. Now in general, there will be a lot of Gabriel-Roiter measures without a
direct predecessor. However, there is the following result:

8.1. THEOREM. Let A be of infinite representation type. Then there are
Gabriel-Roiter measures It for A with

<P<I?<I!

such that any other Gabriel-Roiter measure I for A satisfies I < It for all t € Nj.
For any t, there are only finitely many isomorphism classes in A(I') and all the
modules in A(I') are preinjective (in the sense of Auslander-Smalg.)

Recall that Auslander-Smalg have introduced in [AS] the classes of preprojec-
tive and preinjective modules (actually with reference to the work of Roiter and
Gabriel), and this is the notion we refer to. For a proof of the theorem see [R5].
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The modules in |J, A(I") have been called the landing part of the category
mod A. Note that for any n, there are only finitely many isomorphism classes of
indecomposable modules of length n which belong to the landing part. Of course,
the landing part again provides a proof of BTh 1.

We have noted above that the existence of the take-off measures I; provides a
proof of BTh 1. The same is true for the existence of the landing measures It, and
again we obtain a strengthening, since also this statement is of interest for finite
artin algebras A.

As we have mentioned, the modules in A(I') are the indecomposable injec-
tive modules of largest possible length. For general ¢, it seems to be difficult to
characterize the modules in A(I;) or A(I") in a direct way.

8.2. The indecomposable modules of finite length which belong neither to the
take-off part nor to the landing part are said to form the central part. It is the
central part which should be of particular interest in future (by the way, one also
should be concerned about the military involvement of the publisher of this volume):

I Iz I? It

take-off part central part landing part

8.3. Usually there will exist preinjective indecomposables which do not belong
to the landing part. For example, any simple module belongs to A([1), thus a
simple injective module is preinjective and in the take-off part, thus not in the
landing part. Also, there may exist preinjective modules @ such that A(u(Q)) is
infinite, as the example of the radical-square-zero algebra with quiver

O=<——0 ]

-
shows: take for @) the indecomposable injective module of length 2. But there may
be even infinitely many isomorphism classes of preinjective indecomposables which
do not belong to the landing part:

ExaMPLE. Consider again the tame hereditary algebra A of type Agy

QG «<———C

Note that for the Auslander-Smalg preinjective A-modules are just those modules
which belong to the preinjective component.

There are two kinds of such modules. First, let us consider those preinjective
indecomposable modules which have projective socle (thus the socle is a direct sum
of copies of S(a)). Then the Gabriel-Roiter-measures are as follows:

-+ > 1235689, 10 > 123567 > 1234,
the general form is

123(56/89] - - +|3i — 1, 34| - - |3n — 1, 3n|3n + 1,
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with n > 0. For n = 4, it looks as follows

AN

and for n > 1, the Gabriel-Roiter filtration starts with My C My C M3, where Mjy
is the indecomposable length 3 module seen left: it is uniform, but not serial.
On the other hand, those preinjectives with S(b) in the socle have Gabriel-
Roiter measure
12316(9] - - - 37| - - - |3n|3n + 2,
with n > 0. For small n > 1, we obtain the values

<> 12369, 11 > 12368 > 1235.

ANAAAS

now, for n > 1, the Gabriel-Roiter-filtration starts with My C My C M3, where M3
is the serial length 3 module seen right.

It follows that all the preinjective modules with S(b) in the socle belong to the
central part.

Here is the picture for n =4

8.4. In contrast to the landing part, the modules in the take-off part are usually
not preprojective. Here is an example: Let A = k[X,Y]/(XY, X3 Y?) and J the
ideal generated by X2 and Y2. The take-off part for A is the same as the take-off
part for A/J and these modules are the preprojective A/J-modules, but none of
them is preprojective as a A-module.

Note that there is no dualization principle concerning the take-off and the
landing part (whereas the notions of preprojectivity and the preinjectivity are dual
ones)! If we want to invoke dual considerations, then we have to work with a
corresponding Gabriel-Roiter comeasure which is based on looking at indecom-
posable factor modules in contrast to the Gabriel-Roiter measure which is based
on indecomposable submodules, see [R5].

8.5. It is usually difficult to specify the position of the possible Gabriel-Roiter
measures. But here is such an assertions, dealing with uniform modules:

PROPOSITION. Let I' = [1,q] and 1 < s < q. Assume the following: for
any simple A-module with injective envelope Q(S) of length greater than s, there
are only finitely many indecomposable A-modules with a submodule of the form S.
Then [1,s] is a landing measure.

Proof: As a start, let us note the following observation: for any subset J €
P;(Ny), the relation [1,s] < J with respect to the total ordering < is equivalent to
the subset relation [1,s] C J.

We want to show that there are only finitely many indecomposable modules
M with [1,s] < p(M). Take such a module M, say with Gabriel-Roiter filtration
M, C My C --- C My = M. Since [1,s] < p(M), we have [1,s] C u(M), thus
|M;] =i for 1 < i < s. In particular, M is uniform. It follows that the injective
envelopes Q(Ms) = Q(My) of My and M coincide. Since Q(Ms) is injective, there
is a map f: My — Q(M;) whose restriction to M; is the identity. The map f
cannot be surjective, since otherwise the embedding M, C M; would be a split
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monomorphism. Thus Q(M;) = Q(M7) has length at least s + 1. By assumption,
there are only finitely many indecomposable modules with submodule M; (and
there are only finitely many possibilties for M7). It follows that there are only
finitely many indecomposable modules M with p(M) > [1,s]. Thus [1, s] belongs
to the landing part.

9. Appendix. Products of modules and finite length modules

9.1. LEMMA. Consider W = [[ Mies/ @D Mics with arbitrary modules M.
Any finite length submodule of W is isomorphic to a submodule of [ M;.

Proof: Let U be a finite length submodule of W, let P(U) be its projective
cover and QU the kernel of P(U) — U. The inclusion map u: U — W can be lifted
to a map u': P(U) — [[; M;, thus we get also a map u”: QU — @, M; such that
the following diagram commutes:

0 —— QU —— P(U) U 0
O
0 —— @,M; —— [[;M; —2— W 0

Since U is of finite length, «” maps into a finite sum, say into @, ¢ M; with
S’ C S a finite subset. Let as factorize the projection p: [, M; — W through

HiGS M;/ 691'65/ M;:

1M 5 [ M/ @ M = [ M/ P M.

ies = ies’ = €S
By the definition of S’, the kernel of p’u’ contains QU. Since the kernel of pu’ =
p"'p'u’ is equal to QU, we see that also the kernel of p’u is equal to QU. Thus the im-
age of p'u’ is isomorphic to U. However, [[,c Mi/ @,cq Mi = [1;c5 Mi/ [1;cs Mi
is a direct summand of [],_ g M;, thus U is isomorphic to a submodule of [, ¢ M;.

9.2. LEMMA. Let U be of finite length, let M; be arbitrary modules with ¢ € S.
If U embeds into [[;cg M;, then also into @, M;, for some finite subset S" of S.

Proof: Denote by u the embedding u: U — M =[], 4 M;, thus there are given
maps u;: U — M; such that the intersection of their kernels is 0. However, then
there is a finite subset S’ of the index set S such that the intersection of the kernels
is 0, say [);cq Ker(u;) = 0 (since a finite length module is artinian). The maps u;
with i € S’ combine to a monomorphism U — @, ¢ M;.

9.3. LEMMA (Auslander). Let A be an artin algebra. Let M; be arbitrary
modules with i € S. Let U be an indecomposable module of finite length. If U is
a direct summand of [[;cg M, then U is a direct summand of at least one of the
modules M.

Proof: There are given maps u: U — [[M; and p: [[M; — U with pu = 1.
Write v = (u;); with u;: U — M;. If no u; is split mono, factorize u; = u}f where
f is the minimal almost split map starting in U. However, then 1 = pu = pu'f

with « = (u}); implies that f is a split monomorphism, which is impossible.
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Added in proof (22.04.2006)

For the benefit of the reader, some additional developments concerning the
Gabriel-Roiter measure and variations of it should be mentioned.

1. Bo Chen [Ch] has pointed out that the discussions in section 1.8 should be
completed by the following lemma:

LEMMA. Let M be an indecomposable module. Then there is at most one simple
submodule S of M with u(M/S) < p(M). In particular, if M is indecomposable
and not uniform, then there is a simple submodule S’ such that u(M) < u(M/S").

The second assertion yields the implication (5) = (1) in 1.8. Also, as an
immediate consequence of the lemma, one obtains Property 6: Assume that M
is indecomposable and not uniform. Then there is a simple submodule S’ with
w(M) < u(M/S"). Let M’ be an indecomposable direct summand of M/S" with
w(M/S") = p(M’). Either M’ is uniform, or by induction there is a uniform factor
module M of M’ with pu(M') < u(M").

2. The crucial lemma 3.1 shows that given a Gabriel-Roiter inclusion X C Y,
the module Y/X is an epimorphic image of 771 X. This can be strengthened as
follows:

LEMMA. Let X C Y be a Gabriel-Roiter inclusion. Then there is an irre-
ducible homomorphism p: X — Y’ with Y' indecomposable and an epimorphism
m:Y' =Y such that wp is a monomorphism. (In particular, p itself has to be a
monomorphism and 7y is again a Gabriel-Roiter inclusion. The main point is the
fact that the cokernel of 7u is a factor module of the cokernel of p.).

Note that the cokernels of irreducible monomorphisms p: X — Y’ with X, Y’
indecomposable have attracted a lot of interest. In particular, there do exist inter-
esting classes of representation-infinite algebras where these modules are of bounded
length (for example the domestic string algebras over an algebraically closed base
field). Also, we see that an indecomposable module X can occur as a Gabriel-Roiter
submodule of some other module only in case there is an irreducible monomorphism
X — Y’ with Y’ indecomposable.

3. It should be stressed that there is a whole family of functions from the
set of finite length R-modules to the rational numbers which behave similar to
the Gabriel-Roiter measure: they are obtained by asserting weights to the simple
R-modules.

For example, when dealing with an artin k-algebra A’, we may replace in the
definition 1.1 the use of the length of the module M by the use of its k-length.
The function p’ obtained in this way will have essentially the same properties
as the ordinary Gabriel-Roiter measure (in particular, Gabriel’s main property
will still hold). However such a function will distinguish some of the simple A-
modules. Starting with a basic artin algebra A, we may look at all the artin
algebras A’ which are Morita equivalent to A and obtain in this way “weighted
Gabriel-Roiter measures” on the category mod A (since the categories mod A and
mod A’ are equivalent).

Note that the weighted Gabriel-Roiter measures may yield different take-off
parts and different landing parts. As an example, consider a tubular algebra A’
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with quiver as shown on the left
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such that the dimension d(S(7)) of the simple modules S(7) is as exhibited on the
right. Let M be an indecomposable A’-module without a simple submodule of
dimension 1. Then M lives on the Kronecker subquiver and is not simple injective.
Since any simple submodule of M has dimension 2, its weighted Gabriel-Roiter
measure as an element of P;(Ny) is a subset of [2,n], thus it corresponds to a
rational number 1/(M) < 3. On the other hand, the remaining indecomposable
A’-modules N have a one-dimensional submodule, thus p/(N) > 1. It follows that
the preprojective Kronecker modules form the take-off part with respect to this
weighted Gabriel-Roiter measure, whereas for the usual Gabriel-Roiter measure p,
the take-off modules are just those A’-modules which belong to the preprojective
component of mod A’.

4. An aximomatic characterization of the Gabriel-Roiter measure has been
given by H. Krause in his Trieste lectures 2006, see his Notes on the Gabriel-Roiter
measure. In addition, he discusses possible extensions of the Gabriel-Roiter measure
to the corresponding derived categories.
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