The shift orbits of the graded Kronecker modules.

Claus Michael Ringel

Abstract. Let k£ be a field. The Kronecker modules (or matrix pen-
cils) are the representations of the n-Kronecker quiver K (n); this is the
quiver with two vertices, namely a sink and a source, and n arrows.
The representations of K (n) play an important role in many parts of
mathematics. For n = 2, the indecomposable representations have been
classified by Kronecker, but not much is known in case n > 3. In this
paper, we usually will assume that n > 3.

The universal cover of K(n) is the n-regular tree with bipartite
orientation. Let T'(n) be the n-regular tree. We fix a bipartite orien-
tation Q of T'(n); the opposite orientation will be denoted by o2 (thus
02Q = Q). The k-representations of the quiver (T'(n),{2) can be con-
sidered as graded Kronecker modules and we denote by mod(7'(n), <)
the category of these graded Kronecker modules. Only few Kronecker
modules can be graded, but the graded Kronecker modules provide hints
about the behavior of general Kronecker modules.

There is a reflection functor ¢: mod(7'(n),2) — mod(7T'(n), o)
(the simultaneous Bernstein-Gelfand-Ponomarev reflection at all sinks);
it will be called the shift functor. An indecomposable graded Kronecker
module M is said to be regular provided o*M # 0 for all t € Z.

If p, q are vertices of T'(n), we denote by d(p, q) their distance. Now,
let M be an indecomposable regular representation of (7'(n),2). We
attach to M a positive integer ro(M ) and a pair p(M ), g(M) of vertices
of T(n) with 0 < d(p(M),q(M)) < ro(M) and such that p(M) is a sink
if and only if ro(M) is even. Here are the essential properties of the
invariants 7o (M), p(M), g(M). The o-orbit of M contains a unique sink
module M, with smallest possible radius, say with radius ro = ro(M).
For i € Z, we write M; = oMy and call i = +(M;) the index of M;. By
duality, the og-orbit of M contains a unique source module with radius r,
say Mpy1, and we have b > 0. Let p(M) be the center of My, let q(M)
be the center of Mj,q, and denote by (p = ag,a1,...,ap—1,ap = q)
the unique path from p to ¢q. For ¢ > 0, the module M_; is a sink
module with center p(M) and radius rg + i, whereas the module Mj 14,
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is a source module with center ¢(M) and radius rg + ¢. The remaining
modules M; (with 1 < i < b) are flow modules with radius rg — 1, and
center {a;_1,a;}.

By construction, the triple ro(M), p(M), q(M) is invariant under
the shift. We show that any triple r, p, ¢ consisting of a positive integer
0, and vertices p, g of T'(n) with 0 < d(p, q) < rg and such that p a sink
if and only if rg is even, arises in this way.

If M, M’ are regular indecomposable modules with an irreducible
map M — M’ then we show that ((M’) = «(M) — 1. In this way, we
obtain a global way to index the regular indecomposable modules.

1. Introduction.

Let k be a field. We denote by T'(n) the n-regular tree and usually, we will assume
that n > 3. If (ao,...,a:) is a path in T'(n) and t = 2r is even, then a, will be called its
center and r its radius. If t = 2r 4+ 1, then the pair {a,, a,41} is called its center and r its
radius.

We fix a bipartite orientation 2 of T'(n) and denote by of2 the opposite orientation
and we set 02Q = Q. (Recall that an orientation of a graph is bipartite provided any
vertex is a sink or a source; there are just two bipartite orientations of T'(n).) The finite-
dimensional k-representations of the quivers (7'(n),2) and (T'(n),c2) will be called the
graded Kronecker modules or just modules and we denote by mod(7T'(n),2) the category of
the k-representations of (7'(n), ).

Let M be an indecomposable module. We denote by T'(M) its support, it is by
definition the full subgraph of T'(n) given by all vertices a with M, # 0. Any path in
T(M) of maximal length will be called a diameter path. The length of the diameter paths
will be denoted by d(M) and called the diameter of M. By definition, the radius r(M) of
M is the radius of a diameter path of M, thus r(M) = |2d(M)]. All diameter paths of M
have the same center (see section 2), called the center of M.

The module M is called a sink module (or a source module) provided a diameter path
(and hence all diameter paths) starts and ends in sinks (or in sources, respectively). Of
course, the diameter of a sink module or a source module is even. If the diameter of M
is odd (so that any diameter path for M connects a sink with a source), then M will be
called a flow module. The center of a sink or a source module is a vertex, the center of a
flow module is an edge.

There is a reflection functor o: mod(7'(n),?) — mod(T'(n),o?) (the simultaneous
Bernstein-Gelfand-Ponomarev reflection at all sinks); it will be called the shift functor.
An indecomposable module M is said to be regular provided oM # 0 for all t € Z. If
M is regular, we attach to M a positive integer ro(M) and a path 7(M) = (ag,...,ap) in
T'(n), such that ag is a sink if ro(M) is even and a source otherwise.

Theorem 1. Let M be a regular indecomposable module. Then the shift orbit of
M contains a unique sink module My with smallest possible radius, say with radius ro =
ro(M). Let M; = o' My for all i € Z. Then there is an integer 0 < b < ro(M) and a path
(ag, . ..,ap) in T(n) with the following properties:
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(1) Fori >0, the module M_; is a sink module with radius ro + i and center ay.
(2) Forl <i<b, the module M; is a flow module with radius ro—1 and center {a;—1,a;}.
(3) Fori >0, the module Myy14; is a source module with radius ro + 1 and center ay.

The integer ro(M) is positive. If ro(M) is even, then ag is a sink, otherwise a source.

We call 7(M) = (ao, - . ., ap) the center path of M. and define p(M) = ag, ¢(M) = ap
and b(M) =b=d(p(M), q(M)). By construction, ro(M) and 7(M), thus also p(M), ¢(M)
and b(M) are invariant under the shift.

Theorem 2. Let r be a positive integer. Let (ag,...,ap) be a path in T'(n) of length
0<b<r. Ifr is even, we assume that ag is a sink, otherwise that ag is a source. Then
there is a regular indecomposable module M with ro(M) = r and (M) = (ao, . . ., ap).

If M is a regular indecomposable module and My = o~ *M is the sink module in
the o-orbit of M with smallest possible radius, we call i = «(M) the index of M, thus
M = o) pp,.

Theorem 3. If M,M' are regular indecomposable modules and M — M’ is an
irreducible map, then o(M') = (M) — 1.

Since the regular Auslander-Reiten components of the category mod(T'(n),2) are
of the form ZA., we may define an operator 1 on the set of isomorphism classes of
indecomposable regular modules as follows: if 0 - X - Y @Y’ — Z — 0 is an Auslander-
Reiten sequence with Y, Y’ indecomposable, and |Y| < |Y’|, let nY =Y. By Theorem 3,
Y and n(Y') have the same index.

Theorem 4. LetY be an indecomposable regular module. Then'Y is a sink module (or
a flow module, or a source module), if and only if nY is a sink module (or a flow module, or
a source module, respectively). Also, nY has the same center as Y and r(nY) =r(Y) + 2.

The proof of Theorem 1 will be given in section 3, the proof of Theorem 2 in section
5. Section 2 collects relevant definitions and some preliminary results. In section 4, we
discuss in which way the diameter paths of M and oM are related.

According to Gabriel, the Auslander-Reiten translation 7 in mod(7'(n), ) is nothing
else than o2 (see [Gab]). Thus, Theorem 1 provides information about the 7-orbits of the
regular indecomposable modules and on the shape of the components of the Auslander-
Reiten quiver, see sections 6 and 7. In particular, section 7 will contain a proof of Theorem
3 and Theorem 4.

It will be convenient to call a module even or odd, provided it is indecomposable and
regular and its index is even or odd, respectively.
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2. Preliminaries.

(2.1) Trees. A graph G is given by a set G (called the vertices of G) and a set Gy
of subsets of Gy which have cardinality 2 (the elements of GGy are called the edges of G if
{a,d’'} is an edge, then a,a’ are also called neighbors). A path in G of length t > 0 is a
sequence (ao, . . ., at) of vertices such that for 1 < ¢ <'t, the vertices a;_1, a; are neighbors,
and for 1 < i < t, we have a;_1 # a;4+1; we say that the path (ag,...,a;) connects ag
and a;, or also that it goes from ag to a;. Instead of m = (aq,...,a;) we also will write
m = (ql{ao,a1},...,{at—1,a}|as). If (ag,...,a;) is a path of even length ¢ = 2r, then a,
(or also {a,}) is called its center and r its radius. If (ag,...,as) is a path of odd length
t =2r+1, then {a,, a,41} is called its center and r its radius. Thus, the center of a path
is either a vertex or an edge.

A graph is connected provided for any pair a,a’ of vertices, there is a path which
connects a and a’. A graph G is a tree provided T is connected and the only paths which
connect a vertex with itself are the paths of length 0. If T is a tree, for every pair a,a’
of vertices, there is a unique path going from a to a’; the length of this path is called the
distance between a,a’ and is denoted by d(a,a’). If x is a vertex of T and A a subset of
T, let d(x, A) = min{d(z,a) | a € A}.

If T is a finite tree, the paths of maximal possible length d are called the diameter
paths and d is called the diameter of T'.

Lemma 1. Let T be a finite tree and 7w a diameter path in T with center {c,c'} and
radius v. If x is any vertex of T, then d(z,{c,c'}) <r.

Proof. Let m = (ag,...,aq) and A = {ag,...,aq} Let = be a vertex of T. Let
j = d(x,A). Note that there is a path (z = zo,...,z;) with z; = a,; for some i and
Tj—1 7& Qj—1, Tj—1 7& Qjy1-

First, assume that ¢ < r. Since x;_1 # a;y1, we see that (xo,...,z;-1,2; =
aj,ai+1,-..a9) is a path. Its length is j + (d — ). Since d is the maximal length of a
path in 7', it follows that j < i. Thus, (z¢,...,2;—1,2; = a;,...,a,) is a path of length
Jj+ (r—1i) <r. Since a, € {c, '}, we have d(z, {c,'}) <.

In case 7 > r, we obtain in a similar way a path from xg via a; to ¢ = a4_,, and its
length is again at most r. U

Corollary. All diameter paths of a finite tree T' have the same center (and, of course,
the same radius).

Proof: Let m = (ag,a1,...,aq) be a diameter path with center {c,c'} and radius
r. Consider a diameter path 7’ which connects z with a’. Then d(z,{c,¢'}) < r and
d(z',{c,c'}) < r. Thus there is a path from x say to c of length at most r. If there is also
a path from 2’ to ¢ of length at most r, then d(z,z") < 2r, thus d = d(x,2’) < 2r < d. It
follows that d is even, thus ¢ = ¢/, and that the path from x to 2’ runs through c. But this
means that ¢ is the center of 7.

Thus, it remains to consider the case that ¢ # ¢’ and that there is a path from 2’ to
¢ of length at most . Then 7’ has to be the concatenation of the path from z to ¢ with
the edge {c, '} and the path from ¢’ to «’, thus the center of 7’ has to be {¢, ¢'}. O
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By definition, the center C(T') and the radius r(T') of T are the center and the radius
of the diameter paths of T

If T is a finite tree, the boundary of T is defined to be the set of endpoints of the
diameter paths (these are leaves of T'; but usually, 7" will have additionsl leaves).

A vertex x of a graph is called a leaf provided = has at most one neighbor. Of course,
the boundary vertices of a finite tree are leaves.

(2.2) Orientations. Given a graph G, an orientation €2 of G is a map Q: G; —
Go x G such that Q({a,a’} is either (a,a’) or (a’,a). If Q({a,a’}) = (a,ad’), we write
a — o’ and call a the start and o’ the target of the arrow a — a’. A vertex a of (G, ) is
a sink (or a source) provided a is not the start (or the target, respectively) of any arrow.
The orientation €2 is called bipartite provided any vertex is a sink or a source. If ) is an
orientation of G, then (G, ) is called an oriented graph.

Let (T, 2) be a finite tree with bipartite orientation. If the diameter of 7" is odd, then
any diameter path connects a sink with a source. If the diameter of 7" is even, and there is
a diameter path which connects a sink with a sink, then all diameter paths connect sinks
with sinks (since all diameter paths have the same center).

(2.3) Balls. Now we consider finite subgraphs of T'(n). If ¢q,...,¢; are vertices of
T(n), let B.(c1,...,ct) be the full subgraph of T'(n) given by all vertices a with d(a, ¢;) < r
for some 1 < ¢ < t. We are only interested in the case ¢ = 1 and in the case t = 2 with
c1, c2 being neighbors. Of course, given a vertex ¢, then B,.(c) has center ¢ and radius r.
Similarly, if ¢1, co are neighbors, then B,.(c1,c2) has center {c1,co} and radius r. We call
B.(c) and B;(c1,c2) the ball with radius r and with center ¢ or {¢1, ca}, respectively.

(2.4) Representations. If G is a graph and 2 an orientation of G, the oriented graph
(G, Q) is nothing also than a quiver without loops and multiple arrows, and we denote by
mod(G, §2) the category of finite-dimensional k-representations of this quiver. The case
we are interested in is G = T'(n) and 2 a fixed bipartite partition. The finite-dimensional
k-representations of (1'(n), ) are the modules we are dealing with.

If M is an indecomposable module, we denote by T'(M) its support; it is the full
subgraph given by all vertices a of T'(n) with M, # 0. Of course, this is a finite tree and
we write C(M) = C(T(M)) and r(M) = r(T(M)) and call it the center and the radius of
M, respectively.

An indecomposable module will be called a sink module provided any (and thus all)
diameter paths in T'(M) start and end in sinks, and a source module provided any (and
thus all) diameter paths in T'(M) start and end in sources. An indecomposable module
with even diameter is either a sink module or a source module. An indecomposable module
with odd diameter will be called a flow module. Note that any diameter path of a flow
module connects a sink with a source. Recall that the center of an indecomposable module
is either a vertex or an edge. For the sink and the source modules, the center is a vertex,
for the flow modules, the center is an edge.

If M is an indecomposable module with center C' and radius r, then we write B(M) =
B, (C). We have T'(M) C B(M), and T'(M) and B(M ) have the same radius and the same
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center. Note that the boundary vertices of T'(M) are just the leaves of B(M ) which belong
to T'(M).

(2.5) Completeness of an indecomposable module. Let M be a sink or a source
module with center C' and radius . The module M is said to be complete provided r > 1
and for any path (z(0),z(1),...,2(r)) in T'(n) with z(r) = p and such that all the vertices
x(i) with 1 <4 < belong to T'(M), one has dim M,y = dim My (so that, in particular,
also z(0) belongs to T'(M)).

Let M be a flow module with radius . The module M is said to be complete provided
r > 1 and such that for any path (z(0),z(1),...,2(r)) in T'(n) such that z(r) is a central
vertex, but z(r —1) is not a central vertex and such that all the vertices z(i) with 1 <i <r
belong to T'(M), one has dim M,y = dim M) (so that, in particular, also z(0) belongs
to T'(M)).

A module is said to be incomplete provided it is indecomposable and not complete.
Let us stress that by definition the simple modules and the indecomposable modules of
length 2 (these are the indecomposable modules with radius 0) are incomplete.

(2.6) The shift functor. If x is a sink of a quiver A, we denote by o, A the
quiver obtained from A by changing the orientation of all the arrows of A ending in x; in
particular, z is a source of o, A. Bernstein, Gelfand and Ponomarev ([BGP]) have defined
a so-called reflection functor o, : mod A — mod o, A; We denote by o the left adjoint of
o,. Note that o, sends S(x) to zero and if M is an indecomposable representation of A
different from S(z), then o 0, (M) is naturally isomorphic to M.

The reflection functors o, and o, for different sinks z, ' commute, thus the compo-
sition o of the reflection functors o, for all sinks = of A is well-defined and independent
of the order used, it is a functor mod A to mod oA, where oA is the quiver obtained from
A by changing the orientation of all the arrows of A ending in a sink. We denote by o~
the left adjoint of 0. Note that o sends S(z) with x any sink to zero. If M is an inde-
composable representation of A which is not simple projective, then o~ ¢ (M) is naturally
isomorphic to M.

In particular, if A = (T'(n),Q), then cA = (T'(n), o2), where o2 is the opposite orien-
tation (the orientation of all arrows is changed). The reflection functor o: mod(7'(n),2) —
mod(7'(n), o) will be called the shift functor.

Of particular interest is the composition o?: mod(T'(n),) — mod(T(n),Q). Ac-
cording to Gabriel [Gab], this is just the Auslander-Reiten functor 7 = DTr (“dual of
transpose”); note that [Gab] clarified and corrected a previous assertion by Brenner and
Butler [BB].

(2.7) From now on, we consider finite-dimensional k-representations of the quiver
(T'(n), Q) (or also of (T'(n),cf?)), thus graded Kronecker modules and call them just mod-
ules.

An indecomposable module M will be said to be preprojective provided oM = 0 for
some t > 1. The preprojective modules are of the form Pys(z) = 072%5(x) for some sink
z in (T(n),Q) or of the form Ppsy1(y) = 0=2715(y) for some sink y in (T'(n), o), with
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s > 0. Note that the preprojective modules are sink modules (these modules have been
considered in detail in [FR1]). Dually, an indecomposable module M will be said to be
preinjective provided oM = 0 for some t > 1. The preinjective modules are of the form
Q25(y) = 0248 (y) for some source y in (T(n), ) or of the form Qosy1(x) = 025T1S(x) for
some source z in (T'(n),of2), with s > 0. The preinjective modules are source modules.
The preprojective and the preinjective modules are simple or complete.

An indecomposable module M will be called regular provided it is neither preprojec-
tive, nor preinjective, thus provided oM # 0 for all ¢ € Z.

3. Proof of Theorem 1.

Let M be a regular indecomposable module. We apply ¢ and describe the change of
the diameter. Six different cases (1) ... (6) will occur.

Let M be a sink module with center c¢. Then:
d(M)-2<d(eM) < d(M).

There are the following three possibilities:

(1) d(oM) = d(M)-2 if and only if oM is a sink module if and only if M is complete.
In this case, the center of oM is c.

(2) d(oM) = d(M)—1 if and only if oM is a flow module. The center of M is of the
form {c,c'}. with a path (xg,x1,...,x,.), where g = ¢,x1 = ¢ such that x, is a source for

o).

(3) d(oM) = d(M) if and only if oM is a source module. In this case, the center of
oM is c again.

Proof. Let M be a sink module with center ¢ and radius r, thus T(M) C B,(c).
Since the leaves of B,.(c) are sinks, o(B,(c)) C B,(c). This shows that d(c M) < d(M).
Given a diameter path 7 in T(M) say connecting the leaves x and ', the vertices of 7
different from x and z’ are in the support of oM. This shows that d(ocM) > d(M)—2.
This completes the proof of the inequalities.

For the proof of (1) we note that M is complete if and only if T(6¢ M) C B,_1(c), thus
if and only if d(c M) = d(M)—2. In this case oM is a sink module. On the other hand, if
there is a vertex © € T'(0 M) which does not belong to B,_1(c), then there is a diameter
walk in T'(c M) which starts at « and this is a source for of2, thus oM is not a source
module. This completes the proof of (1).

(3) If d(o M) = d(M), then there is a diameter walk for 0 M starting and ending in
boundary vertices of B,.(c), thus in sources of cOmega. This shows that oM is a source
module. On the other hand, if oM is a source module, consider a diameter walk 7 for
oM. Its ends cannot lie in B,_1(c), thus its length is 2r = d. In this way, we see (3).

The first part of assertion (2) follows from the inequalities and (1) and (3), since any
indecomposable module is a sink module, a source module, or a flow module. It remains to
describe in this case the center of o M. We start with a diameter path (a1, ..., as,) of oM
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and we may assume that a; is a sink and as,- a source with respect to €. Then the center
of oM is {a,,a,41}. Let ag be a neighbor of a; different from as. Then (ag, a1, ..., a2.—1)
is a path in the support of M = c~'ocM and aq is a sink with respect to €. Since the
support of M lies in B,(c), it follows that a, = ¢. Thus, we obtain the required path
(o, ..., z,) by looking at the vertices z; = a;4, for 0 <1i <r. O

Corollary. If M s a reqular indecomposable sink module with radius r. Then there
is 1 < i <r such that c*M is a flow module or a source module.

Proof. We use induction on r. We have r > 1 since a sink module with radius » = 0 is
simple, thus not regular. Thus, we start with a sink module M with radius » > 1. Either
oM is a flow or a source module (then we take i = 1) or else oM is a regular sink module
with radius 7 — 1. In the latter case, induction shows that /(o0 M) is a flow or a source

module, for some 1 < j <r—1. Thusi=j+1 <r and ¢’M is a flow or a source module.
O

Let M be a flow module. We assume that (ag,...,aq) with d = 2r + 1 is a diameter
path of M with ag a sink and ag a source. Then:

d(M) < d(cM) < d(M) + 1.

There are the following two possibilities:

(4) d(oM) = d(M), thus oM is a flow module. Let aqi1 be a neighbor of aq different
from ag—1. Then (ai,...,aq+1) is a diameter path for oM. In particular, the center of
oM is {ar41,ar12} (and we note that a is a sink for €2 and a4y is a source for o2.)

(5) d(cM)=d(M) + 1, then oM is a source module and the center of oM is ay1.

Proof: Let (ag,...,aq) be a diameter path of M with ag a sink and a4 a source.
Let agq+1 be a neighbor of a4 different from ay4_;. Clearly, the path (aq,...,aq,a441) is
in the support of oM. This shows that d(oM) > d(M). Also, if d(oM) = d(M), then
(a1,...,aq4,a4+1) is a diameter path for M, thus the center of oM is {a,41,a,42}. This
completes the proof of (4).

Now assume that d(cM) > d(M). The support of oM is contained in B,i1(ar4+1),
thus d(cM) < 2(r +2) = d + 1. It follows that d(cM) = d(M) + 1 and that a,4 is
the center of oM. The path (a,41,...,aq) in (T'(n),2) ends in a source, thus the path

(@rg1y- .- aq41) in (T'(n),02) ends also in a source. This shows that the boundary vertices
of By1(ar4+1) are sources, therefore oM is a source module. This completes the proof of
(5). O

(6) Let M be a source module with center ¢ and radius r. Then oM is a source module
with center ¢ and radius r + 1.

Proof: The support of M is contained in B,.(c), thus the support of ¢ M is contained
in By41(c). It follows that the radius of oM is at most r + 1. Any diameter walk in M
starts and ends in a source. In oM such a walk is prolonged on both sides by an edge,
thus we obtain in this way a walk of length 27 + 2. As a consequence, the radius of o M is
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precisely r + 1. The boundary vertices of B,11(c) are sources for o2, thus ¢ M is a source
module with center c. U

In order to see that any o-orbit contains only finitely many flow modules, we need a
new invariant. A path which connects two (not necessarily different) source leaves will be
called a source path. Note that the length |7| of a source path 7 is an even natural number

(as before, we call £|x| the radius of ).

Lemma 2. Let M be indecomposable and regular with radius r(M) such that T'(M)
contains source leaves. Let w(M) be the maximal radius of a source path of M. Then
w(M) < (M) and o" M=V s o source module.

Proof. If M is a sink or a source module, then 2r(M) is the diameter of M, thus the
maximal length of the paths in T'(M) and therefore 2w (M) < 2r(M), thus w(M) < r(M).
If M is a flow module with diameter d, then 2r(M) = d — 1 is the maximal length of a
path which connects two sources, thus again 2w(M) < 2r(M).

Now assume that M is indecomposable and regular, with a source leaf x in its support.
Then oM is again indecomposable and regular, with a source leaf in its support (namely
the neighbors of = which are not vertices of T'(M) are source leaves in T(cM)). By
induction, all the modules ¢*M with i > 0 are indecomposable and regular with source
leaves in the support.

Now T'(M) has a source path of maximal length 2w(M), thus T'(cM) has a source
path of length 2w(M) + 2. Therefore w(cM) > w(M) + 1. Using induction, we see that

w(o'M) > w(M) + i

for all 7 > 0.
Let t = r(M) — w(M) + 1 and assume that ¢'M is not a source module. Then,
according to (6), none of the modules M, oM, ..., o' M is a source module. Thus all these

modules are sink or flow modules, and therefore
(M) >r(cM)>r(c?M) > - >r(c" M),

according to (1), (2) and (4).
Altogether, we see that

r(M)

v

T(O'T(M)_M(M)JrlM)
w(o_r(M)—w(M)—HM)
wM)+ (r(M) —w(M)+1)=r(M)+1,

AVANAY,

a contradiction. ]

Corollary 1. The shift orbit of a regular indecomposable module contains source
modules and sink modules.

Proof. Consider the shift orbit O of the regular indecomposable module M.
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First, assume that O contains a flow module M’. Then T(M’) has a source leaf, thus
Lemma 2 asserts that the O contains a source module. By duality, O also contains a sink
module.

Second, assume that the O contains a sink module M’. Corollary 1 asserts that one
of the modules 0*M’ with i > 0 has to be a flow module or a source module. But we know
already that the existence of a flow module in O implies that there is also a source module
in O. Thus we see that O contains a source module.

By duality, the existence of a sink module in O implies the existence of a source
module in O. U

We see: Let O be the shift orbit of a regular indecomposable module. Let M be a
sink module in @. According to corollary 1, there is some i > 0 such that o' M is a flow
or a source module. Choose ¢ minimal with this property and let My = o*M. Then M is
an incomplete sink module. We let M; = o' M, for all i € Z.

Then all the module M; with ¢ < 0 are sink modules (by the dual assertion of (6)).

Let b > 0 be minimal such that M, is a source module. Then the modules My ;
with @ > 1 are source module (by (6)). On the other hand, all the modules M; with
1 < ¢ < b have to be flow modules.

Corollary 2. If M is a module with radius r, then the o-orbit of M contains at most
r flow modules.

Proof. We can assume that the o-orbit O of M contains at least one flow module
M. According to corollary 1, the o-orbit of M contains source and sink module. Thus
the orbit O contains a source module M, such that M; = oMj is a flow module. We
apply Lemma 2 to M; and see that there is some 1 < b < r(M;) such that the modules
My, ..., My are all the flow modules in the o-orbit of M.

The assertions (1) to (6) show that r(M;) < r(M). According to the Lemma 2, there
is some 0 < i < (M) such that oM, is a flow module, but o**1M; is a source module.
O

Proof of Theorem 1. Consider a o-orbit O of regular indecomposable modules. As
we have seen, O contains both a sink module M and a source module, say ¢°M for some
s € Z. According to (6), s must be a positive integer. Thus there is some 0 < j < s
such that My = ¢/ M is a sink module, whereas oM, is not a sink module. Thus M, is
incomplete. Let p be the center of My and let r be its radius.

We write M; = o' My for all i € Z. According to the dual assertion of (6), the modules
M; with i < 0 all are sink modules with center p and radius r + i. According to (1), (2)
and (4), the modules M; with ¢ > 0 are flow or source modules. It follows that M is the
only incomplete sink module in O.

Since the number of flow modules in O is finite, there is a smallest number b > 0 such
that Mpyq is a source module. Then the modules M; with 1 < ¢ < b are flow modules.
According to (6), the modules M; with ¢ > b+ 1 are source modules. This shows that
b > 0 is the number of flow modules in O.

10



According to (2) and (4), the modules M; with 1 < i < b (the flow modules in O)
all have radius r — 1. According to (3), (5) and (6), the modules Mp114; with ¢ > 0 (the
source modules in O) have radius r + i. Also, according to (6), all these source modules
have the same center, say c¢,. In case b = 0, we know from (3) that cg = ¢,. In case b > 0,
we use (2), (4) and (5) in order to see that the centers of the modules My, My, ..., Myiq
are of the form cg, {co,c1},...,{ci—1,¢},...,{cb—1, b}, cp, where (cg,c1,...,cp) is a path.
U

Thus, any regular o-orbit looks as follows:

sink modules flow modules source modules

| |
| |
| |
| |
module: -+ M_o M_; M, ! My - M; - M, :Mb+1 Myio Myis---
| |
radius: -+ ™2 rH A S s S s SR M 2
| |
| I
center: -+ Cp Co Co :{60,61} o {ei—n,e) ot {Cb—lacb}: Cp Cp Cp

Let us stress that there may be no flow modules in O, this is the case b = 0. In this case,
co = ¢ and the center path is a path of length 0.

Given an indecomposable regular module M, we define its index (M) as the integer
t such that 7'M is an incomplete sink module. Thus (M) = t means that M = o' M,
for some incomplete sink module (namely for My = o~ *M).

There is the following Corollary to Theorem 1.

Corollary. Let M be a sink module with center p, such that o®T*M is a source module
with center q. If d(p,q) = b, then «(M) = 0.

4. Diameter paths and boundary vertices.

We are going to look in which way diameter paths of M and of ¢ M are related. Given
an indecomposable module M, we denote by (M) the number of diameter paths for M.

The diameter paths may be quite different in case both M and oM are incomplete.
Otherwise, the diameter paths of M and of o M are very similar — this concerns the cases
where M and oM both are sink modules, or both are flow modules, or both are source
modules, thus, the cases (1), (4) and (6).

Proposition 1. Let M be a representation of (T'(n),2).

(a) Assume that M and oM both are sink modules. Let (aq, ..., aq) be a path in T'(n).
Then (ag, . ..,aq) is a diameter path for M if and only if (a1,...,aq4—1) is a diameter path
for oM. Thus

V(M) = (n—1)*y(oM).

(b) Assume that M and oM both are flow modules. Let (aq, .. .,aq) be a path in T'(n)
with ag (and also ag) being sinks for Q. Then (ag,...,aq4—1) is a diameter path for M if
and only if (a1,...,aq) is a diameter path for oM. Thus

V(M) =~(oM).

11



(c) Assume that M and oM both are source modules. Let (ag,...,aq) be a path in
T(n). Then (ai,...,aq—1) is a diameter path for M if and only if (ag, . . .,aq) is a diameter
path for M. Thus

Y(eM) = (n—1)*y(M).

Proof. This follows directly from the considerations in section 3. O

Example of a sink module M and a source module M' = oM with arbitrarily large
radius r such that no edge of T'(n) belongs both to a diameter of M and a diameter of M'.

We need n > 4. For r =1, let M be any 3-dimensional sink module. Then ¢ M is an
(n — 1)-dimensional source module.

Now assume that r > 2. Let ag be a sink of (T'(n),Q2) and (ag,as,...,aq) a path of
length d = 2r. Since n > 4, there is a path (b, ...,bq) such that b, = a, is the only
common vertex of these paths. Let M be the thin indecomposable module with support
the full subquiver with vertices a;, bj, where 1 < j < d —1 and all the neighbors of a; and
aqg—1. Then M is a sink module with center ¢ = a,, = b,. The diameter paths of M are
the paths of the form (ag, ay,...,ay_,ay), where a’; = a; for 1 < j < d —1 (the number
of diameter paths is (n — 1)?). The diameter paths of M’ = oM are all the paths of the
form (bg,...,by) with b = b; for 1 < j < d — 1 (the number of diameter paths of M’ is
again (n — 1)2, but there is no natural correspondence between the diameter paths of M
and of M").

For example, for n = 4 and r = 2, the support of M and M’ looks as follows:

with ¢ a sink with ¢ a source

Let us add some comments concerning the number of boundary vertices of sink mod-
ules. If M be an indecomposable module, let 5(M) be the number of boundary vertices
of T(M). Note that any ball of radius 7 has precisely 3, = n(n —1)"~! boundary vertices.
Thus, if M is a sink module (or a source) module with radius r > 0, then

2< B(M) < By
If M is a source module, then for allt >0
B(e'M) = (n—1)'B(M).
This shows that the number of boundary vertices growths exponentially when we apply o.
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5. Examples, in particular proof of Theorem 2.

Let (p|71,- .., 7r|q) be a path, say with arrows 7; between a(i—1) and a(7). We assume
that the path starts at the sink p = a(0) in case r is even (see the left picture), and at the
source p = a(0) in case r is odd (see the right picture):

NEION G p=a(0) _ a(2 G
Y N/ 0 NN\ N NN YN
p=a(0) a(2) a(r—2) a(r)=q a(1) a(r—2) a(r)=q

In all cases, the vertex a(r) is a sink.

The module P,(p) exists (since for r even, p is a sink, whereas for r odd, p is a source).
Also, the module Py(q) exists (since ¢ = a(r) is a sink) and it is a submodule of P,(p).

I. Case b = r. We start with the path 7 = (p|y1,...,7|¢) and obtain the mod-
ule P,(p) and its submodule Py(q). We define My = P,(p)/Py(q). This is obviously an
incomplete sink module and we let M; = o*M,.

First, let us consider ¢ = 1. We apply o to the exact sequence

0— Po(q) = Pr(p) = My — 0
and obtain an exact sequence
(*) 0— Pr_1(p) = oMy — Io(q) — 0,

since 0 P.(p) = P._1(p). The support of P._;(p) are the vertices a of T'(n) with distance
d(p,a) < r — 1. In particular, the vertices a(i) with 0 < i < r belong to this support.
On the other hand, the support of Iy(g) is just the vertex q. The arrow =, is the only
connection between the support of P._1(p) and the support of Iy(q). In particular, we
have dim Ext'(Io(q), P,—1(p)) = 1. This shows that oM is the unique indecomposable
extension of P._1(p) by Iy(q); it is given by replacing in the direct sum P,_1(p) @ Io(q)
the zero map at the arrow +, by the identity map

1
(Pr—1<p))a(r—1) =k k= (IO(q))a(r)'
Next, we apply 0! to (x) with 1 <i—1 <7 — 1 and we obtain the exact sequence
0— Pr_i(p) == o'My — I;_1(q) — 0.

The arrow 7y,_;11 is the only connection between the support of P,._;(p) and the support
of I;_1(q). In particular, we have dim Ext'(I;_1(q), Pr_s(p)) = 1.

support of P._;(p) support of I;_1(q)
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and oMy is the unique indecomposable extension of P,._;(p) by I;_1(q); it is given by
replacing in the direct sum P._;(p) @ I;_1(q) the zero map at the arrow 7,_;11 by the
identity map.

Finally, we apply o to the exact sequence

0= Polp) = M, L I, _1(q) > 0
and obtain the exact sequence

0— Mysr 25 I(q) — Io(p) — 0,

in some sense dual to the exact sequence we started with. Of course, we see in this way
that M, is an incomplete source module.

Let us add how the modules M_; and M, 1., with ¢ > 0 look.
First, we consider the modules M_; with ¢ > 0. They are given by a projective
presentation of the form

0— Pi(q) = Pryi(p) = M_; = 0;

since dim Hom(P;(q), Pr+i(p)) = dim Hom(FPy(q), P (p)) = Pr(p)q = 1, the module M_; is
uniquely defined in this way. Clearly, the support of M_; is contained in the support of
P,1;(p), and this is the ball B,;(p) with center p and radius r + 4. If

By (p)

Any path in B,; starting at p, ending in a leaf and not using y; belongs to the support of
M_;. Since n > 3, we obtain in this way diameter paths for M_; of length 2(r + ¢). This
shows that M_; is a sink module.

Dually, the module M, 14; with ¢ > 0 has an injective copresentation of the form

0— Mr+1—|—i — IT—H(Q) — Ii(p) — 07

thus its support is contained in the support of I,.1;(¢q) and this is again is a ball with radius
r + i, but now with center q.

b )

BT+i(Q>
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Clearly, M, 14, is a source module.

For b=r =4, and —1 < i < 6, the modules M; have the following shapes:

(B @0

M,y M, 3 M Mg

Note that for i even, the vertex p (drawn as a bullet or a small circle) is a sink for T'(M;)
and ¢ (drawn as a small square) is a source, whereas for i odd, p is a source and ¢ a sink.

II. Case b < r, with (n,b,r) # (3,0,1).

Let b < r and (n,b,r) # (3,0,1). Here is the recipe for My. Let (p|y1,---,7l|q)
be a path of length b and (q|dp41,...,0.|7), (¢|0y,1,...,0,|2") paths of length »—b with

St # B

Y1 b
&———O -+ O
p q
51/)4_1 O——o -~ o—/’
Op42 rx

Let
My = P.(p)/(Po(z) @ Po(x")).

As we will see, this is the incomplete sink module we are looking for. (The module M,
can be defined also in case (n,b,7) = (3,0, 1), but then M is a flow module.)

We claim that My is a module with center p and diameter 2r and that M, = o®T1 M
has center ¢ and diameter 2r. This then implies that the modules My, ..., M, have to be
flow modules and that Mj is the incomplete sink module, Mp,; the incomplete source
module in the o-orbit (see the Corollary at the end of section 3).

In order to see that M is a (sink) module with center p and diameter 2r, we have to
exhibit a diameter path of the support B, (p) of P.(p) which does not start or end in = or
z'. Then this is a diameter path for My, has center p and length 2r. In case n > 4, or
b > 1, we take a diameter path of B,.(p) which does not involve v;. If b =0 and r > 2, let
z, 2" be leaves of B,.(p) with d(z,z) = 2 and d(z’,2’) = 2. Then the path of P.(p) which
connects z with 2z’ goes through p, thus is a diameter path of Mj.

Now let us consider the modules M; = o°My with 1 < i < b+ 1. The defining exact
sequence

0 — Py(z) ® Py(z") — Pr(p) = My — 0

yields an exact sequence
(*) 0— Pr—l(p) — M; — Io(.fC) ©® [0(.’L'/) — 0.
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If we apply o to this exact sequence (*), we obtain a corresponding exact sequence
0= Pr_p_1(p) = Mys1 — Iy(z) ® Ly(z") — 0

(here we use that b < r). This shows that the support of Mp4q is the union of the ball
B, _p-1(p) and the balls By(x) and By (z').

First of all, let us construct a path of length 2r in the support of Mjy,1. We choose
a path in By(z) from the center ' to a boundary vertex, say w, not using the arrow ¢,..
Similarly, we choose a path in By(x’) from the center x to a boundary vertex, say w’, not
using the arrow §/.. Combining these two paths with the given path from z via ¢ to 2’
(using the arrows §; and §;) we obtain a path of length 2b + 2(r — b) = 2r with center q.

On the other hand, we claim that T'(Mpy1) C B,(¢). Namely, if u belongs to By(z),
then d(u,q) < d(u,z) + d(xz,q) < b+ (r —b) = r. Similarly, for u € By(a’), we have
d(u,q) < r. Finally, if u € B,_p_1, then d(u,q) < d(u,p) +d(p,q) < (r—b—1)+b=r—1.
This completes the proof. Actually, the last calculations show that any boundary vertex
of T(Mp+1) is a boundary vertex of By(z) or of By(z’) (thus, in particular, a source).

It seems to be of interest to look at the module Mj, ;1 in more detail. We distinguish
two cases, the case r > 2b and the case r < 2b.

First, let us assume that r > 2b, thus b < r — b. In this case, the extension of the
module P,_;_1(p) by the module I,(z) is furnished by the arrow 6,_; (and similarly, the
extension of the module P,_;_1(p) by the module I;(2’) is furnished by the arrow §/._,).
In particular, the three balls B, _y_1(p), By(x) and By(z) are pairwise disjoint.

On the other hand, if » < 2b, thus r — b < b, the extension of P._;_1(p) by both
modules I,(z) and I(z’) is furnished by the arrow «,_;. In this case, the vertex ¢ belongs
both to By(x) and By(x').

In general, the modules M; with 1 < i < r are quite easy to visualize. We apply o*~!

to the exact sequence (x) and obtain the exact sequence:
0— Pr—i<p) — MZ — IZ'_1<.’B) D [i_l(CEl) — 0.

First, assume that ¢ < r — b. Then the extension of P,_;(p) by I;—1(x) or by I;,_1(z’)
is given by 0,_;41 or d,_, , respectively:

support of I;_1(z)

support of P._;(p)
support of I; _q(x')

Second, assume that ¢ > r — b. Then the extensions of P,._;(p) by I;_1(x) as well as
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by I;—1 (') are given by v, _;41:

support of I;_1(x)

support of P._;(p)

support of I;_1(x')

We also want to describe the module M, ;. The exact sequence
0— Py(p) > M, = I,_1(x)®dI,_1(z') =0
yields the exact sequence
0— M1 — I.(z)® L.(2") = Iy(p) — 0.

This shows that M, ; is a maximal submodule of I,.(z) @ I,.(z') with factor the simple
module Iy(p).

ITI. Case b = 0,7 = 1. This concerns the remaining case (n,b,r) = (3,0,1), but
works for all n > 3.

We start with a source p and take an indecomposable module M with dim M, = 2
and dim M, = 1 for all the neighbors = of p, whereas M, = 0 for all other vertices a of
T(n) (for n = 3, this concerns the representations of a quiver of type Dy, thus there is
a unique such module; for n > 4, there are many such modules). Since T'(M) is the full
subquiver of T'(n) given by p and its neighbors, the module M is a sink module with radius
1. Since dim M, =1 < 2 = dim M,,, for the neighbors x of p, we see that M is incomplete.
The vertices of the support of M are again p (now a source) and its neighbors x (now
sinks), and dim(o M), = 2,dim(c M), = 1. We see that M; = oM is an incomplete source
module with center ¢ = p and radius 1. The center path for the shift orbit of M is the
path from p to ¢ = p of length b = 0. O

This completes the proof of Theorem 2. O
Further examples. The examples constructed until now were individual modules.
The same techniques allow to exhibit also families of modules. Let us construct a 1-

parameter family of incomplete sink modules My with a fixed dimension vector and equal
radius and center path.
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We start with a subquiver of T'(n) of the following kind:

’de/

- O——>1
q

' e

.T/

(with x, 2" being sources). Let A be the set of the following four representations of (7'(n), §2)

Pyi1(u), Poy1(u'), Io(z), Io(z').

These are pairwise orthogonal bricks: one only has to verify that the first two mod-
ules are orthogonal bricks, however Py, 1(u) = 0"t Py(u), Ppy1(u') = 07"t Py ('), and
Py(u), Py(u’) are of course orthogonal bricks. Let us denote by £(.A) the extension closure
of £. As one knows from [R1], £(A) is an exact abelian subcategory with simple objects
the modules A, and that this subcategory is equivalent to the representations of the Ext-
quiver A(A) of A: the vertices of A(A) are of the form [A], where A is an object in A,
and there are t arrows [A] — [A’] provided dim Ext'(A, A’) = t. In our case, A(A) is the

following bipartite quiver
Ppy1(u) og——0 Io(z)

By (u)ox——=0Io(2')

thus an affine quiver of type Aogs.

Let £'(A) be the class of indecomposable objects in £(A) which correspond to sincere
representations of the quiver A(A), thus they are the indecomposable representations M
of (T'(n),2) with an exact sequence of the form

(+) 0= Poy1(u)® ® Popr (W) — M — Io(z)' @ Ip(a')! =0

with positive integers s, s, ¢, t'.

We claim that M is a sink module with center p (and radius b + 2) and that o®*1M
is a source module with center ¢ (and the same radius b+ 2). Since d(p, q) = b, it follows
that M is an incomplete sink module with center path (p|y1,...,7V|q) (see the Corollary
at the end of section 3).

Thus, let us analyze the diameter paths of M. It is obvious that T (M) C By12(p).
Since s > 1, there is a path from the boundary of Byy;(u) to its center u which does not
use . Similarly, since s’ > 1, there is a path from the boundary of By (u’) to its center
v’ which does not use #’. Combining these two paths with the arrows 8 and ', we obtain
a path of length 2b + 4, thus a diameter path and its center is p. This shows that M is a
sink module with center p and radius b + 2.

If we apply o®*! to (), we obtain the exact sequence

/7

0— Po(u)s ) P()(”LL/)S/ — 0'b+1M — Ib+1<.’L‘)t éh Ib+1<.’L‘/)t — 0.
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Thus, by duality we see that ¢?T1M is a source module with center ¢ and radius b + 2.
Let us add that the flow modules in the o-orbit of M are the modules ¢*M with
1 < < b, they are middle terms of exact sequences of the following form:

0— Pb_|_1_7;(u)8 ©® Pb_|_1_7;(ul)sl — O’iM — IZ(CL’)t S¥ Ii(x')t/ —0

and the extension is furnished by the arrow v41—;.

6. The T-orbits.

As we have mentioned in (2.6), the Auslander-Reiten translation 7 in mod(7'(n), ) is
nothing else than o2. Thus, Theorem 1 provides information on the 7-orbits of the regular
indecomposable modules and on the shape of the components of the Auslander-Reiten
quiver.

One should be aware that the very lucid behavior of the shift orbits looks more com-
plicated when we deal with the T-orbits. We use again the labeling M; of the modules in a
shift orbit, with M, the incomplete sink module and M; = o*M,. As we have mentioned
in the introduction, the modules of the form M; with ¢ even will be called even modules,
those with ¢ odd will be called odd modules.

We obtain in this way two 7-orbits (but remember: in different categories — one 7-
orbit consists of representations of (7'(n),(2), the other of representations of (1'(n),c2)).
Also, we have to stress that the labeling “even” and “odd” refers to our interest in sink
modules. In a similar way, one may focus the attention to the unique incomplete source
module in a given o-orbit. Alternatively, we may concentrate on the invariant b which
may be even or odd. It turns out that there are four different kinds of 7-orbits of regu-
lar indecomposable module. Here are these T-orbits (below any module, we mention its
radius).

The even modules, with b even:

sink modules flow modules source modules

| |
I |
M_, My E My - M, i My o My 4
| |
| |

r42 r r—1 e r—1

r+1 r+3

The even modules with b odd:

sink modules flow modules source modules

| |

M_o My i My -+ My, iMb+1 My 3
| |
| |

r42 r r—1 e r—1 T r42
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The odd modules with b even:

sink modules flow modules source modules

| |
| |
M_3 M_4 i My - My, iMb+1 Mpy3
I I
| |

r+3 r+1 r—1 s r—1 T r+2

The odd modules with b odd:

sink modules flow modules source modules

| |
| |
M_3 M_4 i M, - M, i My My
I I
| |

r+3 r+1 r—1 o r—1 r+1 r+3

As we have seen in section 3, looking at a shift orbit, the change of the radius of
the corresponding modules is given by a simple and uniform rule, in contrast to the four
different rules which occur for 7-orbits.

Proposition 2. Let X be a T-orbit. We assume that the sink modules in X have
center p, the source modules in X have center q and that b = d(p, q).

(a) If b= 2s is even, then X contains precisely s flow modules.

(b) If b = 2s+ 1 is odd, then the number of flow modules in X is s or s+ 1. Let X be
a sink module in X and that TX is not a sink module. Then 1(X) =0 in case the number
of flow modules in X is s, otherwise 1(X) = —1. O

Of course, always we know: If X is a sink module and 7X is not a sink module, then
1(X) is equal to —1 or 0.

Proposition 3. Let X be a T7-orbit. We assume that the sink modules in X have
center p, the source modules in X have center q and that b = d(p,q). We assume that
b = 2s is even. Let X be a sink module in X such that 7X is not a sink module, thus
L(X) is equal to 0 or —1. If (X) = 0, then r(X) < r(r5TIX). If «(X) = —1, then
r(X) > r(r*TX).

Proof. Let Xy be the incomplete sink module in the o-orbit of X. and ry the radius
of Xg. By Theorem 1, the radius of X_; is ro + 1, the flow modules X;,..., Xo5 have
radius g — 1, the module X941 has radius ryp and the module Xo,, 5 has radius rg+1. For
t(X) = 0, we have 7571 X = Xy 4o, thus 7(X) = 79 < 79 + 1 = r(7*T1X). Similarly, for
L(X)=—1,we have X = X | and 751X = Xy 1, thus 7(X) =19+ 1 > 19 = r(Xasy1).
O

7. Auslander-Reiten components (Proof of Theorem 3 and Theorem 4).

It is well-known that the category mod(7T'(n),2) has Auslander-Reiten sequences and
that regular components are of the form ZA ., thus the indecomposable regular modules
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are quasi-serial (see [R]); we denote by ql(X) the quasi-length of X. We say that a regular
component C of mod(7'(n), ) is even or odd, provided the quasi-simple modules in C are
even or odd, respectively.

Given an indecomposable regular module X, we define

_ 1
I(X) = 169 ZF W(F)

where we sum over all quasi-composition factors F' of X and we call 7(X) the average index
of X. We will see that 7(X) = «(X).

Lemma 3. Let X be indecomposable and regular with 7(X) < 0. Then X is a sink
module and B(X) = B(X'), where X' is the quasi-top of X.

Proof. We assume that the quasi-composition factors F' of X are
M, Miya, ..., Miyoq-1),

where [ is the quasi-length of X (and where M, is an incomplete sink module and M; =
0" Mp). We assume that 7(X) < 0, thus i = «(M;) < 0, thus M; is a sink module, say with
center p. Note that M; is the quasi-top of X, thus X’ = M;. It is sufficient to show that
B(X) = B(M;) (because this implies that X is a sink module). Thus, we have to show
that T'(F') C B(M;) for all quasi-composition factors F' of X.

First, let us assume that we deal with an even component. Since M; is a sink module,
i = —2t for some ¢t > 0. Since 7(X) < 0, the number of sink factors is greater than the
number of remaining factors, thus i + 2(l — 1) < 2¢. Thus, the quasi-length [ of X is at
most 2t + 1 and the quasi-composition factors of X are

M o4, M o112, M _2414,....

Let r be the radius of My. Then by Theorem 1, the radius of M _o, with0 < s < tisr+2s <
r + 2t; in particular: the radius of M; is r 4+ 2¢t. Thus, for 0 < s <t, T(M_25) C Bry2t(p).
In general, if T'(M) C B, (p), then T(TM) C By42(p). Thus, since T'(My) C B,(p) we see
by induction that for 1 < s <t we have T'(Mas) C B,12s(p) € Bria:(p) = B(M;). This
shows that T'(F") C B(M;) for all factors F.

Second, assume that the component is odd. Since M; is a sink module, i = —2¢t — 1
for some ¢ > 0. Since 7(X) < 0, the number of sink factors is greater or equal the number
of remaining factors, therefore i + 2(I — 1) < 2t + 1. Thus, the quasi-length [ of M is at
most 2t 4+ 2 and the quasi-composition factors of M are

M oy 1, M 9411, M 2443, .. ..

Again, let r be the radius of My. Then by Theorem 1, the radius of M_o, 1 with 0 < s <t
is 7 +2s+1 <r+2t+1; in particular: B(M;) = By42:41(p). Again using Theorem 1, we
know that T'(M;) C B, (p). It follows that T'(Mas+1) € Brias(p) € Briorr1(p) = B(M;).
This shows that T'(F') C B(M;) for all factors F'. O
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We have found in this way many sink modules in a given regular component. Here is
a visualization:

even component odd component

All the modules on the left of the dashes line are sink modules with center p.

Here is the dual assertion of Lemma 3. If M is indecomposable and regular, with a
quasi-composition factor F. If the o-orbit of F' contains b flow modules, we write b(X) = b
(note that this does not depend on the choice of F).

Lemma 3*. Let X be indecomposable and reqular with 1(X) > b(X) 4+ 1. Then X is
a source module and B(X) = B(X"), where X" is the quasi-socle of X. O

Here are the pictures dual to the previous ones; the modules on the right of the dashes
line are source modules with a fixed center, say gq.

even component odd component

Now we apply Proposition 2 in order to see that the a module X with 1 <7(X) < b(X)
have to be flow modules.

Proposition 4. For any indecomposable regular module X, we have 1(X) = 1(X).

Proof. Let X be a 7-orbit. In order to show that 7 =+ on X, it is sufficient to to show
that 7(X) = «(X) for some X in X. Let p be the center of the sink modules in X and ¢
the center of the source modules in X'. Let b = d(p, q).

First, assume that b = 2s+1 is odd. Then X contains either s or s+ 1 flow modules. If
X belongs to X and 7(X) = 0, then X is a sink module, and the modules 7X, ..., 7°X are
the flow modules in X. Thus X has precisely s flow modules and according to Proposition
2, X has index 0. Thus 7(X) =0 = ¢X.

If X belongs to X and 7(X) = —1, then X is a sink module, and the modules
7X,..., 711X are the flow modules in X. Thus X has precisely s + 1 flow modules
and again using Proposition 2, we see that X has index —1. Thus 7(X) = —1 = .X.
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Second, assume that b = 2s is even, thus X contains precisely s flow modules. We
denote by M; quasi-composition factors of the modules in X', with ¢(M;) = i. Let [ be the
quasi-length of the modules in X. Assume that X belongs to X with 7(X) = 0. Then X is
a sink module, the modules 7X, ..., 7°X are the flow modules in X, and 7571 X is a source
module. The quasi-top of X is M_;, the quasi-socle of 771X is My, 14;41. According to
Lemma 3, B(X) = B(M_;), thus r(M) = rq + | According to Lemma 3*, B(rM*t1) =
B(Myy11141), thus 7(7M**1) = rg + 1 + 1. This shows that r(M) < r(rM**1). Thus,

Proposition 3 asserts that ¢(X) = 0. A similar calculation shows that for 7(X) = —1, we
have +(X) = —1.

Thus, in all cases we have found a module X € X with 7(X) = «(X) and therefore
(X)) = o(X') for all X' € X. O

The distribution of the sink modules, flow modules and source modules in the regular
Auslander-Reiten components is as follows:

ql
sink source 3
modules modules 9
............................................................................... 1
g —0 1 b bil  bt2 index

Of course, Proposition 4 implies (and actually is equivalent to) the assertion of Theorem
3.

Let us look now at Theorem 4. Actually, it remains to deal with the last assertion of
Theorem 4. Clearly, it is sufficient to show this for one module in the 7-orbit of Y, thus we
may assume that ¢(Y) < 0. Let M be the quasi-top of Y. According to Lemma 3, we have
B(Y) = B(M), thus r(Y) = r(M). Recall that nY =Y’ where0 - X - Y®Y' - Z =0
is an Auslander-Reiten sequence with |Y| < |Y’|. Then 7= M is the quasi-top both of Y’
and Z. Therefore B(nY) = B(Y') = B(t~ M) and we know that r(7= M) = r(M) + 2,
thus r(nY) = r(Y') = r(M) + 2 = r(Y) + 2. Concerning the centers, the equalities
B(nY)=B(t"M) and B(Y) = B(M) yield C(nY) =C(t— M) =C(M) =C(Y). O

We have seen: If M, M’ belong to the same Auslander-Reiten component, then
p(M) =p(M'), q(M)=q(M'), 7ro(M)—ql(M)=ro(M")—ql(M).

Thus, if C is a regular component, and M belongs to C, we may define

p(C) = p(M),
q(C) = q(M),
b(C) = d(p(M), q(M)),
r(C) = ro(M) — ql(M)



The radius (M) of a module M in C is
T(C) + Rb(C) (L(M)7 ql(M))7

where Ry, : 7Z x N; — Ny is the following function

it i <0,
Rp(i, 1) =< 1—1 for 1<i<hb,
141 b < 1.

At the end of the paper, we exhibit the function Ry(,1) for some special values of b.

8. A warning, two questions and several remarks.

The Warning. Let M be an indecomposable regular module. Its center path m (M)
may not be contained in the support T'(M) of M (but it is always contained in the ball
B(M)). Here is a typical example: Let m = (¢ = ag,a1,...,ap, = q) be a path with ¢
a source. Then Py(p) is a submodule of P,(q) and ¢ is not contained in the support of
M = Py(p)/Po(q). This is the module M = M; constructed as Case I in the proof of
Theorem 2, see section 4. There, we have seen that 7(M) is the given path 7.

Remark 1. The case n = 2. We have seen that for n > 3 (thus for the wild Kronecker
algebras) almost all modules in the 7-orbit of a regular graded module are sink or source
modules. In contrast, in the tame case n = 2, the sink modules are the preprojective
modules, the source modules are the preinjective modules, thus all the indecomposable
regular graded modules are flow modules. We should stress that also for n = 2, the
regular components are of the form ZA ., (and not proper quotients), so that any regular
component contains infinitely many quasi-simple modules. To repeat: The number of
quasi-simple flow modules in a regular component is finite, if n > 3, but it is infinite, if
n = 2. As in our investigation of bristles see Appendix C of [R4], we encouter a finiteness
result for wild cases which is not valid in the corresponding tame case.

Remark 2. When dealing with wild hereditary algebras, one knows that the regular
modules have exponential growth when applying 7 (or 77), see [R1,B,K1,K2|. This con-
cerns the dimension vector (and all its coefficients). In contrast, the main observation of
this paper asserts that the radius of an indecomposable regular module eventually grows
linearly when we iterate the application of 7: it increases step by step by 2. Of course,
we have seen also exponential growth (at the end of section 4): the number of boundary
vertices in the support of a sink module increases exponentially, when we apply 7. Note
that the number S(M) of boundary vertices is a lower bound for the length of M.

Remark 3. Our main motivation for these investigations is our interest in (ungraded)
Kronecker modules: to find invariants for regular Kronecker modules. The present paper
provides such invariants for the gradable modules (those which are obtained from graded
Kronecker modules by forgetting the grading, or, equivalently, for those representations of
K (n) which can be lifted to its universal covering (7'(n),{2)). Given an indecomposable
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gradable Kronecker module M with cover module M, the numerical invariants ro(M) and
b(M) are invariants of M. Actually, it is ro and the path w(M) (or better, its equivalence
class under the covering group) which are the decisive invariants of M.

Question 1. We have stressed in remark 2 that dealing with graded Kronecker
modules, the radius of an indecomposable regular module eventually increases linearly
when we iterate the application of 7. Is there a similar invariant for ungraded Kronecker
modules with this growth behaviour?

Remark 4. If C is a regular component in mod(7'(n), §2), iterated applications of T
to any module in C provide balls with a fixed center p (in particular, p is an invariant of
C). The preprojective and the preinjective component behave completely different, there
is no focus on a special vertex of T'(n).

Remark 5. In this paper, when looking at a representations M of (T'(n),2), we
actually were dealing just with the dimension vector of M, not with M itself. Indecom-
posable representations of (T'(n),2) with same dimension vectors have the same behavior

with respect to the action of o: If M, M’ are indecomposable representations of (7'(n), §2)
with dim M = dim M’, then p(M) = p(M"),q(M) = q(M') and rq(M) = ro(M’).

Remark 6. Why is the index of a module defined in such a way that it decreases along
irreducible maps? In general, we like to draw abelian categories by focusing the attention
to the direction of maps, drawing arrows from left to right. According to Baer [B] and
Kerner [K1,K2], there is a global direction of a hereditary module category, defined by the
maps from the projective modules to the injective modules (going from left to right): for
wild hereditary algebras, this global direction is opposite to the direction of the irreducible
maps (thus, opposite to 7). To repeat, dealing with regular modules of wild hereditary
algebras, the irreducible maps point in the opposite direction of the global direction of the
category. Thus, it is reasonable to draw the regular Auslander-Reiten components for a
hereditary algebra by using arrows from right to left.

Question 2. The definition of the index of an indecomposable representation of
(T'(n), 2) relies not only on mod(7'(n),2), but also on mod(7T'(n),c$2). Thus, let M be an
indecomposable regular (7'(n), 2)-module say with index ¢. Then 7M is an indecomposable
regular (7'(n), ?)-module say with index ¢ — 2. But attached to M are two modules with
index ¢ — 1, namely the (T'(n),2)-module p(M) which arises as the middle term of the
Auslander-Reiten sequence ending in M (this module is not necessarily indecomposable,
it may be the direct sum of two indecomposable modules with index i — 1), and the
(T'(n),cQ)-module o M. What is the precise relationship between (M) and o M?

Remark 7. The topic of this paper may be compared to the so-called Game of Life,
as introduced by Conway, see [Gar|, as a cellular automaton. Whereas the Game of Life
is played on the grid with set of vertices Z?, here we start with the n-regular tree T'(n).
If we want to increase the analogy, we should deal not with dimension vectors of modules
but work modulo 2, thus dealing with functions f: T'(n)g — {0, 1} with finite support.
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The function R;(i,l) on even and an odd components, for some values b.

b=0
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IO N

even component

b=1
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b=4
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b=5
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index i
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