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Abstract: Let k be a field and ¢ a non-zero element of k. In Part I, we have exhibited a 6-
dimensional k-algebra A=A(q) and we have shown that if ¢ has infinite multiplicative order, then
A has a 3-dimensional local module which is semi-Gorenstein-projective, but not torsionless, thus
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local A-modules for this particular algebra A. If ¢ has infinite multiplicative order, we will
encounter a whole family of 3-dimensional local modules which are semi-Gorenstein-projective,

but not torsionless.
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1. Introduction.

(1.1) We refer to our previous paper [RZ1] as Part I. As in Part I, let &k be a field, and
q a non-zero element of k. We consider again the k-algebra A = A(q) generated by z,y, z
with relations

22, Y3, 2%, yz, xy + qur, 2 — Zx, 2y — 2.
The algebra A is a 6-dimensional local algebra with basis 1,x,y, z, yx, zx. Its socle is
socA = rad’ A = Ayx @ Azz. If not otherwise stated, all the modules considered will be
left A-modules.

We follow the terminology used in Part I. In particular, we denote by UM the cokernel
of a minimal left add(A)-approximation of M. In addition, we introduce the following def-
initions. We say that a module M is extensionless if Ext'(M, A) = 0. An indecomposable
semi-Gorenstein-projective module will be said to be pivotal provided it is not torsion-
less. An indecomposable oco-torsionfree module will be said to be pivotal provided it is not
extensionless. Thus, a module M is semi-Gorenstein-projective if and only if Q!M is ex-
tensionless for all t > 0; a torsionless module M is reflexive if and only if UM is torsionless
(see Part I (2.4)); a module M is oco-torsionfree if and only if ' M is reflexive for all ¢ > 0;
and M is Gorenstein-projective if and only if M is both semi-Gorenstein-projective and
oo-torsionfree.

(1.2) We are interested in the semi-Gorenstein-projective and the oo-torsionfree mod-
ules and will exhibit those which are 3-dimensional. We recall that a finite length module
is said to be local provided its top is simple. Thus, a local module is indecomposable; and if
R is a left artinian ring, then a left R-module M is local if and only if M is a quotient of an
indecomposable projective module. A consequence of our study is the following assertion



Proposition. Let M be a non-zero module of dimension at most 3. If M is semi-
Gorenstein-projective, then all the modules QM with t > 0 are 3-dimensional and local. If
M is oo-torsionfree, then all the modules O'M with t > 0 are 3-dimensional and local. In
particular, if M is Gorenstein-projective, then all the modules QM and UM with ¢ > 0
are 3-dimensional and local.

(1.3) The text restricts the attention to the 3-dimensional local modules. We recall
that if A is a finite-dimensional algeba, an A-module M is said to have Loewy length at
most ¢ provided rad® M = 0. The starting point of our investigation are two observations.
The first one:

Proposition 1. A module of dimension at most 3 has Loewy length at most 2.

The second observation is:

Proposition 2. An indecomposable 3-dimensional torsionless module is local.

The proof of Proposition 1 will be given in (2.6), the proof of Proposition 2 in (2.7).

(1.4) The 3-dimensional local modules. We identify (a,b,c) € k?\ {0} with
ax +by+ cz and denote by (a:b:c) the 1-dimensional subspace of k3 generated by (a, b, ¢).
The left ideal

U(a,b,c) =Ula:b:c) = A(a, b, c) + soc A

has dimension 3, and we obtain the left A-module
M(a,b,c) = M(a:b:c) = AA/U(a,b,c).

Clearly, M (a,b,c) is a 3-dimensional local module and the modules M (a,b,c), M(a’, b, )
are isomorphic if and only if (a:b:c) = (a’:b :). Let us add that the definition of
M(a, b, c) implies that QM (a,b,c) ~ U(a,b,c), this will be used throughout the text.

Conversely, any 3-dimensional local module is isomorphic to a module of the form
M(a,b,c). In order to see this, one should look at the factor algebra A of A modulo
soc A = rad? A, thus A is the k-algebra generated by z,v,z with relations all monomials
of length 2. The A-modules of Loewy length at most 2 are just the modules annihi-
lated by all monomials of length 2, thus the A-modules. It is clear that the modules
M (a,b,c) = A/(a:b:c) are representatives of the 3-dimensional local A-modules. Accord-
ing to Proposition 1, all the 3-dimensional A-modules are A-modules, thus the modules
M (a, b, c) are representatives of the 3-dimensional local A-modules.

(1.5) The following theorem characterizes the modules of dimension at most 3 which
have some relevant properties. We write o(q) for the multiplicative order of q.

Theorem. An indecomposable module M of dimension at most 3 is

e torsionless if and only if M is simple or isomorphic to A(x —y), to Az, to a module
M(1,b,c) with b # —q, to M(0,1,0) or to M(0,0,1);

o extensionless if and only if M is isomorphic to a module M (1,b,c) with b # —1;

o reflexive if and only if M is isomorphic to a module M (1,b,c) withb # —q* fori =1,2;

e Gorenstein-projective if and only if M is isomorphic to a module M(1,b,c) with b #
—q" fori € Z;



o semi-Gorenstein-projective if and only if M is isomorphic to a module M(1,b,c) with
b# —q' fori<O0;

e co-torsionfree if and only if M is isomorphic to a module M(1,b,c) with b # —q* for
1> 1;

e pivotal semi-Gorenstein-projective if and only if o(q) = oo and M is isomorphic to a
module M (1, —q,c);

e pivotal oco-torsionfree if and only if o(q) = oo and M is isomorphic to a module
M(1,-1,c¢).

For the proof of the Theorem, see (7.9).

Looking at the Theorem, the reader will be aware that in the context considered
here, the relevant modules of dimension at most 3 are of the form M(1,b,c) with b, c € k.
Nearly all the modules mentioned in Theorem are of this kind, the only exceptions are four
isomorphism classes of torsionless modules, namely the 2-dimensional left ideals A(x — y)
and Az, as well as the 3-dimensional modules M (0,1,0) and M(0,0,1).

(1.6) As we have seen in (1.4), the set of isomorphism classes of the 3-dimensional local
modules can be identified in a natural way with the projective plane P? = P(rad A/ rad? A),
with the element (a:b:c) € P? corresponding to the module M (a, b, c).

We use homogeneous coordinates in order to highlight elements and subsets of P? (or
the corresponding modules):

(0:0:1)

(1:0:0) (0:1:0)

Let H be the affine subspace of P? given by the points (1:b:¢c) with b,c € k. As we
have mentioned already, Theorem (1.5) shows that it is this subset H which is of special
interest. We will see in section 7 that H is a union of U-components, and that the set of
3-dimensional Gorenstein-projective modules is always a (proper) subset of H. A module
M in H is torsionless if and only if it does not belong to the line T'= {(1:(—q):¢) | ¢ € k},
and is extensionless if and only if it does not belong to the line £ = {(1:(—1):¢) | c € k}
(see (6.1) and (5.1), respectively):

7%

e

(for q;& 1) N (for q =1)

In case the multiplicative order o(q) of q is infinite, H is the set of the 3-dimensional
modules which are semi-Gorenstein-projective or co-torsionfree; the line E consists of the
pivotal semi-Gorenstein-projective modules in H; the line T of the pivotal co-torsionfree
modules in H.



Let us emphasize: There are 3-dimensional pivotal semi-Gorenstein-projective modules
if and only if there are 3-dimensional pivotal oco-torsionfree modules if and only if the
multiplicative order of q is infinite.

Note that a 3-dimensional local module M belongs to H if and only if soc M =
Ker(y) = Ker(z) = yM @ zM, see A.4 in the appendix.

(1.7) The algebra A = A(q) with o(q) = oo was exhibited in Part I in order to
present a module M which is not reflexive, such that both M and its A-dual M* are
semi-Gorenstein-projective: namely the module M = M(1, —q,0). Now we see:

Let o(q) = oo and assume that M is a module of dimension at most 3. Then both M
and M* are semi-Gorenstein-projective, whereas M is not reflexive, if and only if M is
isomorphic to a module of the form M(1,—q,c) with ¢ € k. In this case M is not even
torsionless and all the modules M (1, —q,c)* with ¢ € k are isomorphic, see (9.5). Thus,
we encounter a 1-parameter family of pairwise non-isomorphic semi-Gorenstein-projective
left modules M such that their A-dual modules M* are isomorphic and semi-Gorenstein-
projective.

Also, we see that for all ¢ # 0, the modules M(1,—1,c) are pairwise non-isomorphic
oo-torsionfree modules with a fixred module QM (1,—1,¢) = M(0,0,1), see (4.1). Thus, we
encounter non-isomorphic co-torsionfree modules with isomorphic first syzygy module (of
course, in this situation, the syzygy module cannot be oco-torsionfree).

(1.8) The modules M(1,b,0) with b € k have been studied already in Part I (there,
they have been denoted by M(—b)). Theorem (1.5) shows that these modules are quite
typical for the behavior of the modules M(1,b,¢). Namely: The module M(1,b,c) is
Gorenstein-projective (or semi-Gorenstein-projective, or oo-torsionfree, or torsionless, or
extensionless) if and only if M(1,b,0) has this property.

(1.9) Outline of the paper. Section 2 provides some preliminary results. Here, the
main target is to show that any module of length at most 3 has Loewy length at most
2. In section 3 we collect some formulae which show that certain products of elements
in A are zero. Sections 4 to 7 deal with the 3-dimensional local left A-modules, section
8 with the 3-dimensional local right A-modules. Section 9 discusses the A-duality. The
final section 10 provides an outline of the general frame for this investigation: the study
of semi-Gorenstein-projective and oo-torsionfree modules over local algebras with radical
cube zero. There is an appendix which provides a diagrammatic description of the 3-
dimensional indecomposable left A-modules.

2. Some left ideals and some right ideals of A.

(2.1) Lemma. The left ideal A(a,b,c) is 2-dimensional if and only if a +b =0 and
ac = 0. We have soc A(1,—1,0) = Ayz and soc A(0,0,1) = Azz.

Proof. An easy calculation shows that soc A(1,—1,0) = Ayz and soc A(0,0,1) = Azz.
Thus, the left ideals A(0,0,1) and A(1,—1,0) are 2-dimensional.

Now, let L = A(a,b,c) be any left ideal. If a # 0, then yx € L since y(a, b, c) = ayz.

First, assume that a + b # 0. Then z(a,b,c) = (a + b)zx shows that zz € L. We know
already that for a # 0, also yz € L. If a = 0, then b # 0. Thus z(a,b,c) = —gbyx + czx
shows that also in this case yr € L. Thus L cannot be 2-dimensional.
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Next, assume that ac # 0. Since a # 0, we know that yx € L. Since ¢ # 0, we use
x(a,b,c) = —gbyx + czx in order to see that zz € L. Again, L cannot be 2-dimensional. [J]

(2.2) Let L be a 2-dimensional left ideal, different from socA. Then either L C
U(1,—1,0) and then soc L = Ayx and L is isomorphic to A(x —y) or else L C U(0,0,1)
and then soc L = Azx and L is isomorphic to Az.

Proof: There is an element (a,b,c) + w € L, with (a,b,c¢) # 0 and w € socA. Since
rad A((a, b, c)+w) = rad A(a, b, ¢), also L' = A(a, b, ¢) is 2-dimensional and L C L'4soc A =
U(a,b,c). According to (2,1), (a:b:c) is equal to (1:(—1):0) or to (0:0:1). Of course, L
and L’ are isomorphic as (left) modules. O

(2.3) Lemma. There is no 3-dimensional torsionless module with simple socle.

Proof. Assume that U is a 3-dimensional torsionless module with simple socle. Then U
is a submodule of A. It is a proper submodule, thus of Loewy length at most 2. Therefore,
U is the sum of two 2-dimensional left ideals L # L’ with soc L = soc L. Now we use (2.2).
If L, L’ have socle equal to Ayx, then U = L+ L' = U(1,—1,0). If L, L’ have socle equal
to Azx, then also U = L+ L' = U(0,0,1). In both cases soc A C U, a contradiction. [

(2.4) Any 3-dimensional left ideal contains soc A.

(2.5) The 3-dimensional left ideals are the subspaces U(a, b, c). They have the following
structure: U(1,—1,0) = A(1,—1,0) @ Azz; U(0,0,1) = A(0,0,1) ® Ayx; and if a+ b # 0
or ac # 0, then U(a,b,c) = A(a, b, c) is a local module (in particular, indecomposable).

Proof. The left ideals U(a, b, ¢) are 3-dimensional. Conversely, let U be a 3-dimensional
left ideal of A. Since soc A is contained in U, there is an element (a,b,c) # 0 with
(a,b,c) € U, thus U = U(a,b,c).

If a+b=0and ac=0, then (a:b:c) is equal to (1:(—1):0) or to (0:0:1). By (2.1),
we have U(1,—1,0) = A(1,—1,0) & Azz and U(0,0,1) = A(0,0,1) & Ayx. If a +b # 0 or
ac # 0, then U(a,b,c) = A(a, b, c¢) is a local module, thus indecomposable. 0z

(2.6) Proposition. Any module of dimension at most 3 has Loewy length at most 2.

Proof. Let M be a module of dimension at most 3. If M is not local, then clearly
M has Loewy length at most 2. If dim M < 2, then again M has Loewy length at most
2. Thus, we can assume that M is 3-dimensional and local and therefore a factor module
of A, say M = A/U. According to (2.4), soc A C U, thus M is annihilated by soc A, and
therefore M has Loewy length at most 2. U

(2.7) Lemma. Any indecomposable torsionless module M of dimension at most 3 is
local and isomorphic to a left ideal of A. If dim M = 3, then M is of the form U(a,b,c).

Proof. Let M be indecomposable and torsionless. If dim M < 2, then M is of course
local and isomorphic to a left ideal. Thus we can assume that dim M = 3.

Since M is torsionless, there is a set of non-zero maps u;: M — A (say with index
set 1) such that (,.; K; = 0, where K; is the kernel of u;.

If K; = 0 for some 4, then already u; is an embedding (thus M is isomorphic to a left
ideal). In particular, if the socle of M is simple, then we must have K; = 0 for some i.
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Thus, we can assume that the socle of M is not simple. Therefore M has to be a local
module and we have a surjective map 7m: AA — M.

It remains to look at the case where dim K; = 1 or 2 for all . Since the only 2-
dimensional submodule of M is its radical, we have (,.;, K; = 0, where I’ is the set of
indices i with dim K; = 1. But then K; N K; = 0 for some i # j in I’. This shows that we
can assume that I = {1,2} and that K;, K5 are different 1-dimensional submodules of M.

Now u; provides an isomorphism from M/K; onto a (2-dimensional) left ideal of A.
Since M/K; is indecomposable, (2.2) shows that M /K, is isomorphic to A(1,—1,0) or to
A(0,0,1). Let K/ = Ker(u;m) for i = 1,2.

If M/K; ~ A(1,—-1,0), then K/ is equal to A(z+qy)+ Az, since A(0,0, 1) is annihilated
by = + qy and by z. Similarly, if M/K; ~ A(0,0,1), then K is equal to A(z + qy) + Az.
Thus one of M/K; has to be isomorphic to A(1,—1,0), the other one to A(0,0,1) and
Ker(r) = Ki N K, = U(0,0,1). It follows that M ~ AA/Ker(w) = AA/U(0,0,1). But
AA/U(0,0,1) is isomorphic to the left ideal A(1,—-1,1) = U(1,—-1,1).

We have shown that M is isomorphic to a left ideal, thus of the form U(a,b,c), see
(2.5). Since we assume that M is indecomposable, (2.5) asserts that M is local. O

We need to know also the right ideals (a, b, ¢)A. Note that U(a, b, ¢) is always a twosided
ideal and it will be pertinent to denote U(a,b,c) by U’(a,b, ¢), if we consider it as a right
ideal (thus as a right module).

(2.8) The right ideals (a,b,c)A. If a # 0 or bc # 0, then (a,b,c)A = U(a, b, c) is 3-
dimensional. The right ideals (0,1,0)A and (0,0, 1)A are 2-dimensional with soc (0,1,0)A =
yzA and soc (0,0,1)A = zzA.

Proof: Let V = (a,b,c)A. First, let a # 0. Then zzx belongs to V, since (a, b, ¢)z = azx.

Also yz € V, since (a, b, c)y = —qayx + czx. Second, assume that a = 0 and bc # 0. Then
(0,b, ¢)y = czx shows that zz € V, and (0,b, c)x = byzx + czx shows that also yx € V. O

(2.9) If a 3-dimensional indecomposable right module N is torsionless, then it is iso-
morphic to a right ideal, thus to U’'(a,b,c) for some (a,b,c) # 0.

Proof. Let N be a 3-dimensional indecomposable torsionless right module. As in (2.7)
one shows that N is isomorphic to a right ideal, using (2.8) instead of (2.2). It remains to

see that all 3-dimensional right ideals are of the form U’(a, b, c). Here, one has to copy the
proof of (2.5).

3. The transformations w and «’.

If (a:b:c) is different from (1:(—1):0) and (0:0:1), then (2.5) shows that U(a, b, c) is
a 3-dimensional local module, thus of the form M (a’:b":¢’). In order to describe in which
way (a’:b':c") depends on (a:b:c), we will need the transformations w and w’. We start
with some equalities in A.

(3.1) Formulae. Let a,b,c € k. Then

(1) (az+qby — J45c2)(ax+by+cz) =0 if a+b#0
(2) z(ax—ay+c ) =

(3) (am+by+cz)(am+q Lhy — ) if a#0
(4) (by+cz)z—0



Proof of the equality (1):

(az+gby — ;%5cz2) (ax + by +c2)

= abzy + acxz + qabyxr — Spaczx — JSpbezy
b

= ab(xy—{—qy:t)%—(l—a%rb—a—%)aczx = 0.

The proof of the remaining equalities is similar. U

(3.2) In case a+ b # 0, let w(a, b, c) = (a, gb, —aLerc). In case @’ # 0, let W'(a, b, ) =
(a',q_lb', _a’—|—g/_ b’ C/).

Proposition. The transformation w provides a bijection from the set {(a,b,c) € k3 |
a(a+ b) # 0} onto the set {(a’,b',c") € k3 | a/(a’ + q~ V') # 0}, with inverse w'.

Proof. Let a(a 4+ b) # 0. Then (a’,V,c) = w(a,b,c) is defined and o’ = a # 0, and
a +q % =a+ql¢h=0a+0b#0. Thus w maps {(a,b,c) € k3 | a(a + b) # 0} into
{(a,b,c) € k3| ala+q~1b) # 0. Similarly, w’ maps {(a’,V',c) € k3 | a/(a’ + ¢~ *b") # 0 into
{(a,b,c) € k3| a(a+ b) # 0. It is easy to check that w'w(a,b,c) = (a,b,c) for a(a + b) # 0
and that ww'(a’, ¥, ') = (a’,b, ) for a’(a’ + q~1b') # 0. O

4. The isomorphism class of U(a,b,c) ~ QM(a,b,c).

(4.1) Proposition. Let (a,b,c) # 0. Then

M(w(a,b,c)) if a#0, a+b#0, (1)

M(0,0,1) if a#0, a+b=0, ¢ %0, (2)

QM (a,b,c) ~ < Az —y) ® Azx if a#0,a+b=0, c=0, (3)
M(0,1,0) if a=0,b#0, (4)

Az & Ayzx if a=0,b=0. (5)

Proof: If @ = 0 and b = 0, then U(a,b,c) = U(0,0,1). If a+b = 0 and ¢ = 0,
then Ul(a,b,c) = U(1,—1,0). According to (2.3), U(0,0,1) = Az ® Ayz and U(1,—1,0) =
A(x —y) @ Azz, This shows (5) and (3). In this way, we have considered all triples (a, b, ¢)
with a +b =0 and ac = 0.

Thus, let a + b # 0 or ac # 0. By (2.5), U(a,b,c) = A(a,b,c) is local and we look at
the surjective map ¢: nA — U(a, b, ¢) which sends 1 to (a,b,c).

Let a + b # 0. According to formula (1) of (3.1), A(a, b, ) is annihilated by w(a, b, c)
thus M (w(a,b,c))) = AA/A(w(a, b, c)) maps onto A(a, b, ¢). Since the modules M (w(a, b, c)
and A(a, b, c) both have dimension 3, we see that U(a,b,c) = A(a,b,c) is isomorphic t
M(w(a,b,c)). This yields (1) and (4) (namely, if a = 0, and b # 0, we have w(0, b, ¢)
(0, gb,0)).

Finally, we show (2). For ¢ # 0, the module U(1,—1,¢) is isomorphic to M (0,0, 1).
Now we use in the same way formula (2) of (3.1).

QO —

O
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The following picture outlines the position of the partition of P? which is used in the

Proposition.
o)

@

(4.2) Corollary. The syzygy functor Q provides a bijection from the set of isomor-
phism classes of modules M (a,b,c) with a(a + b) # 0 onto the set of isomorphism classes
of modules M (a’, V', c') with a’(a’ + ¢~ ') # 0 and we have QM (a,b,c) = M(w(a,b,c)) for
ala+b) # 0.

Proof. This follows directly from Propositions (3.2) and (4.1). O
5. The extensionless modules M/(a,b, c).

(5.1) Proposition. The module M(a,b,c) is extensionless if and only if a(a+b) # 0.
For the proof, we need some preparations.

(5.2) Lemma. The following conditions are equivalent:
(i) The module M (a,b,c) is extensionless.
(ii) The inclusion map ¢: U(a,b,c) — A is a left add(A)-approximation.
(iii) U(a,b,c) = A(a,b,c) and the inclusion map v: A(a,b,c) — AN is a left add(A)-
approrimation.
(iv) The subspace U(a, b, c) is indecomposable both as a left module and as a right module,
and the image of every homomorphism AU (a,b,c) — A is contained in U(a,b,c).

Proof. The equivalence of (i) and (ii) follows from Part I, Lemma 2.1.

(i) = (ili): We assume (ii). If U(a,b,c) = Uy & Uy with Uy, Us both non-zero,
then a minimal left add(A)-approximation U(a, b, c) — A’ is the direct sum of minimal left
add(A)-approximations U; — A®* and Us — A2, thus t = t; + t5 > 2. This shows that
U(a,b,c) is indecomposable. According to (2.5), this means that U(a,b,c) = A(a,b,c).

(iii) = (iv). Since A(a, b, ¢) is a local module, it is indecomposable. Thus U (a, b, c) =
A(a, b, c) implies that U(a, b, c) considered as a left module is indecomposable. Given any
homomorphism ¢: U(a,b,c) — A, (iii) provides A\ € A with ¢(a,b,¢c) = (a,b,c)\ €
(a,b,c)A C U(a,b,c). Now assume that (a,b,c)A is a proper subset of U(a,b,c). Let w €
soc A. Since Aw is simple, there is a homomorphism ¢: A(a,b,c) — A with ¢(a,b,c) = w
and (iii) asserts that w = ¢(a,b,c) = (a,b,c)A for some A € A. This shows that soc A C
(a,b,c)A and therefore U(a,b,c) = (a,b,c)A. In particular, U(a,b,c) is indecomposable
also as a right A-module.

(iv) = (ii). Let ¢: U(a,b,c) — aAA be a homomorphism. Since U (a, b, ¢) is indecom-
posable as a left module, we have U(a,b,c) = A(a, b, c). Since U(a, b, ¢) is indecomposable
as a right module, we have U(a, b, c) = (a,b, c)A. According to (iv), ¢(a,b,c) € U(a,b,c) =
(a,b,c)A, thus ¢(a,b,c) = (a,b,c)\ = ryi(a,b,c) for some X\ € A, where ry: AA — AA is
the right multiplication by A. Since the left module U(a,b,c) = A(a,b,c) is generated by
(a,b,c), the equality ¢(a,b,c) = ryi(a,b,c) implies that ¢ = rye. O

8



(5.3) Lemma. Let R be a ring and X a left R-module. If ¢: gR — X is an R-module
homomorphism and w € R annihilates X, then Rw C Ker ¢.

Corollary. Let L be a left ideal of R and X an R-module annihilated by wy, ..., wy €
R. The image of any map R/L — X is a factor module of R/(L + Rwy + - - - Rwy).

Proof. Let ¢: R/L — X be a homomorphism. Let m: R — R/L be the canonical
projection. By construction, L is contained in Ker(¢m). By the lemma, also the left ideals
Ruw; are contained in Ker(¢m). Thus L + Rwy + - - - + Rwy C Ker(¢m). O

(5.4) Proof of Proposition (5.1). According to (5.2), M (a,b,c) is extensionless if and
only if condition (iv) is satisfied. We look at all the elements (a:b:c) € P?, using the
partition of P? into the subsets (1) to (5) as in (4.1).

The cases (3) and (5): Both U(1,—1,0) and U(0,0,1) are decomposable as left mod-
ules, see (2.5). Case (4): According to (4.1), U(0,1,¢) ~ M(0,1,0). Obviously, M(0,1,0)
has Az as a factor module, thus there is a homomorphism U(0, 1,¢) — A A with image Az
and Az € U(0,1,c). The case (2) is similar: (4.1) shows that U(1,—1,¢) ~ M(0,0,1), and
M(0,0,1) maps onto Az; thus there is a homomorphism U(1, —1,¢) — y A with image Az
and Az Z U(1,—1,¢). This shows that none of the modules M(a, b, ¢) with a(a+b) =0 is
extensionless.

It remains to consider the case (1). Thus, assume that a(a + b) # 0. Let (1,',¢') =
w(1,b,¢), thus ¥ = ¢b. We want to show that the conditions (iv) of (5.2) are satisfied.
According to (2.5) and (2.8), U(a, b, ¢) is indecomposable both as a left module and as a
right module, It remains to show that the image of every homomorphism AU (a,b,c) — xA
is contained in U(a, b, ¢).

(a) The only left ideal isomorphic to U(1,b,c) is U(1,b,c) itself. Proof. The 3-
dimensional left ideals are of the form U(a”,b”,c”), for some (a”,b"”,c") # 0, see (2.5).
Assume that U(1,b,¢) ~ U(a”,b",¢”). We have U(a”,b",c") ~ QM (a”,b",c") and by
(4.1) we must be in case (1), namely o’ # 0 and a” 4+ b” # 0. In particular, we may
assume that @/ =1 and (4.1)(1) asserts that QM (1,b"”,¢") = M(w(1,b”,¢")). The isomor-
phy M(w(1,b,¢)) ~ M(w(1,b”,¢")) implies that the triples w(1,b,¢) and w(1,b”, ") yield
the same element in P2, and since the first coordinate of both triples is equal to 1, we have
w(l,b,¢) = w(1,b”,¢"). Since 1 +b # 0 and 1 4+ b” # 0, we use (3.2) in oder to conclude
that (1,b,¢) = (1,0",").

(b) The left ideal Az is not a factor module of U(1,b,c). The proof uses Corollary
(5.3) for the left ideal L = U(1,V’,¢) and the module X = Az which is annihilated
by y and z. Namely, on the one hand, we have U(1,b,¢c) ~ QM (1,b,¢) ~ M(w(1,b,¢c)) =
M1,v,c)=A/UQ,V,c) = A/L. On the other hand, rad A = A(x+b'y+c'z)+Ay+Az C
U(1,0,c¢")+ Ay + Az C rad A shows that L + Ay + Az = rad A. Therefore, (5.3) asserts
that the image of any homomorphism U(1,b,¢) — Az is a factor module of A/rad A, thus
simple or zero.

(c) The left ideal A(x —1y) is not a factor module of U(1,b,c). Again, we use Corollary
(5.3) for L =U(1,V,c') and now for X = A(z — y). Note that A(x — y) is annihilated by
x — qy and z. We recall from (b) that U(1,b,¢) ~ A/L. And we have rad A = A(z + b’y +
dz) + Az — qy) + Az, since b/ = gb # —q. Therefore, we also have U(1,b',¢') + A(x —
qy) + Az =rad A, and (5.3) asserts that the image of any homomorphism U(1,b,¢) — Az
is simple or zero.



Any homomorphism ¢: U(1,b,¢) — A A maps into U(1,b,c). Proof. According to (b)
and (c), the image I of ¢ is not of dimension 2. If the image I is of dimension 3, then
(a) shows that I is equal to U(1,b,c). Of course, if I is of dimension at most 1, then

I CsocA CU(1,b,c). O
(5.5) Corollary. If M(a,b,c) is extensionless, then QM (a,b,c) ~ M(w(a,b,c)).
Proof. This follows directly from (5.1) and the case (1) of (4.1). 0.

6. The torsionless modules M(a,b,c).

(6.1) Proposition. The module M (a,b,c) is torsionless if and only if either a(a +
q 1b) # 0 or else a =0 and bc = 0 (so that (a:b:c) is equal to (0:1:0) or to (0:0:1)).

In order to prove (6.1), we consider the possible cases separately. First, we consider
the modules M (a, b, c) with a # 0. In section 5 we have seen that M (1,b,c) is extension-
less if and only if b # —1, and then QM (1,b,¢) ~ M(w(1,b,¢)). There is the following
corresponding assertion concerning the torsionless modules (see also (7.1)).

(6.2) The module M(1,b,c) is torsionless if and only if b # —q, and in this case
OM(1,b,¢) ~ M(w'(1,b,¢)).

Proof. Let b # —q. Then w’'(1,b,¢) = (1,¢ b, ') for some ¢’. According to (5.1) and
(5.5), M(1,q71b,c) is extensionless and QM (1, b, ') ~ M(1,b,c), since w(1,q b, c') =
ww'(1,b,¢) = (1,b,¢). This shows that M(1,b,c) is torsionless and that UM (1,b,¢) =~
M(W'(1,b,¢)).

Conversely, we consider M (1, —gq, c) and assume, for the contrary, that M (1, —gq,c) is
torsionless. According to (2.7), this means that M(1,—gq,c) is isomorphic to a left ideal
U(a', 0, ) =QM(a', V', ). According to (4.1), we must be in the case a’ +b" # 0 and o’ #
0. We can assume that @’ = 1, thus 1 + b # 0. We have QM (1,¥',¢') ~ M(w(1,b',c")) =
M(1,qb', ") for some ¢”’. Since M(1,—q,c) =~ QM (1,0 ,¢) ~ M(1,qb',c"), we see that
(1,—q,c) = (1,qV', "), thus ¥ = —1. But this is a contradiction to 1 + b # 0. O

(6.3) For M = M(0,1,0) and M(0,0,1), there is no monomorphism M — A which
is an add(A)-approximation.

Proof. Let M be equal to M (0, 1,0) or to M(0,0,1). Assume that there is a monomor-
phism w: M — A A which is an add(A)-approximation. The image u(M) is a 3-dimensional
left ideal, thus of the form U(a,b,c) for some (a,b,c) # 0, see (2.7). The implication (ii)
—> (iv) in (5.2) asserts that any homomorphism U(a,b,c) — x A maps into U(a, b, c).

Obviously, both modules M (0, 1,0) and M (0,0, 1) have a factor module isomorphic to
Az, thus there is a surjective homomorphism U (a, b, ¢) — Az, and therefore Az C U(a, b, c).
But Az is an indecomposable module of length 2, and U(a,b,c) ~ M is a local module of
length 3 with socle of length 2. A local module of length 3 with socle of length 2 has no
indecomposable submodule of length 2, thus we obtain a contradiction. 0

(6.4) Proposition. The modules M(0,b,c) with bc # 0 are not torsionless.

Proof. Let M = M (0,b,c) with bc # 0 and assume that M is torsionless. According
to (2.7), this means that M ~ U(d’, V', ') ~ QM (a’, ¥, ") for some triple (a’,¥’, ), and
(2.5) asserts that a’ +b" # 0 or a’¢ # 0. Now we use (4.1) and have to distinguish
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the three cases (1), (2) and (4). Case (1) means that o’ + b # 0 and o’ # 0, then
QM (o', V, ) ~ M(w(a’, b, ")) and the first component of w(a’, ¥, ') is a’, thus non-zero.
But then M (w(a’,¥’, ")) cannot be isomorphic to M (0,b,c). Case (4) means that a’ =0
and b’ # 0. Then QM (a/, V', ') ~ M (0, 1,0), thus not isomorphic to M (0, b, ¢) with bc # 0.
Finally, there is the case (2) with a’ +b" = 0 and a’¢’ # 0. Then QM (a’, ', ") ~ M (0,0, 1),
again not isomorphic to M (0, b, c) with bc # 0. In all cases, we get a contradiction. O

(6.5) Proposition. If M is equal to M(0,1,0) or M(0,0,1), then M is torsionless
and the module UM has Loewy length 3. Since UM 1is indecomposable and non-projective,
it 1s not torsionless.

Proof. The modules M of the form M(0,1,0) and M(0,0,1) are torsionless, since
(4.1), (4) and (2) assert that M (0,1,0) ~ QM (0, 1,0) and that M (0,0,1) ~ QM(1,—-1,1).
According to (5.2), in both cases there is no inclusion map M — A which is an add(A)-
approximation. Thus, a minimal left add(A)-approximation of M is an injective map
M — A! with t > 2. This shows that UM has dimension 6¢ — 3 and its top has dimension
t. According to Part I (3.2), UM is indecomposable and not projective. The Loewy length
of UM has to be 3. [Namely, an indecomposable module with Loewy length at most 2 and
top of dimension ¢ > 2 has dimension at most 4t — 1, since it is a proper factor module of
A'. But 6t — 3 < 4t —1 implies t < 1, a contradiction.] An indecomposable non-projective
module of Loewy length 3 cannot be torsionless. U

(6.6) We finish this section by reformulating the results concerning the modules of the
form M (0,b,c) in terms of U-components. Here, we will exhibit the structure of all the
U-components containing modules of the form M (0, b, ¢). We have to distinguish between
the modules M (0,1,0) and M(0,0,1) and the modules M (0, b, c) with bc # 0, thus lying
on the dashed line A" = {(0:b:¢) | bc # 0}:

e (0:0:1)

e (0:1:0)

The modules in A’ are singletons (that is, components of type A1) in the U-quiver.
And, there are the following two U-components of the form As:

——————— u ¢<--————-n

¢ =<
M(O, 0, 1) UM(O, 0, 1) M(O, 1, 0) UM(O, 1, 0)

(If M is an indecomposable module, then we represent [M] in the U-quiver usually just
by a circle o. We use a bullet e in case we know that M is torsionless and extensionless,
a black square m in case we know that M is extensionless, but not torsionless; and a black
lozenge ¢ in case we know that M is torsionless, but not extensionless.)

7. The modules M(1,b,c) and proof of Theorem (1.5).

We consider now the affine subspace H of P? given by the points (1:b:¢) with b,c € k
and the corresponding modules M (1,b,c). We recall that o(q) denotes the multiplicative
order of q.
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(7.1) We have seen in (4.2) that € provides a bijection from the set of modules
M(1,b,¢) with b # —1 onto the set of modules M(1,V',¢') with b’ # —q. The sections 5
and 6 strengthen this bijection as follows:

If b # —1, then the exact sequence
0— M(1,V,c) = AN — M(1,b,¢) -0

with (1,0 ,¢) = w(1,b,¢) is an U-sequences (here, (1,0',c") is an arbitrary triple with
b # —q, and (1,b,¢c) = W' (1,b',c")). We obtain in this way all the U-sequences involving
modules of the form M(1,b,c).

(7.2) Reformulation. The neighborhood of M (1,b,¢) in the U-quiver looks like:

Mo(Lb) | MLbe M@l b.e) b {-1.—q)
M@l ~q.0) M1 -q.0) b= gt 1

M(1,—-1,¢) M(w’(l,.;l,c)) b=—-1+#—q

and M (1,b,c) is a singleton in the U-quiver if ¢ =1 and b = —1.

(7.3) The module M(1,b,c) is semi-Gorenstein-projective if and only if b # —q* for
all t <0. The module M(1,b,c) is co-torsionfree if and only if b # —q* for all t > 1.

Proof: M(1,b,c) is semi-Gorenstein-projective if and only if w®(1,b,¢) ¢ E for all
s > 0. Since w®(1,b,¢) = (1,¢°b,cs) for some c¢; € k, we see that M(1,b,c) is semi-
Gorenstein-projective if and only if 1 + ¢® # 0 for all s > 0, thus if and only if ¢7° # —b
for all s > 0. Write t = —s.

Similarly, M(1,b,c) is co-torsionfree if and only if w=*(1,b,¢) ¢ T for all s > 0, thus
if and only if 1 + ¢ 1¢q=%b # 0 for all s > 0, if and only if —b # ¢*! for all s > 0. Write
t=s+1. U

Corollary. The module M(1,b,c) is Gorenstein-projective if and only if b # —q* for
allt € Z.

(7.4) Any module M(1,0,c) with ¢ € k is Gorenstein-projective with Q-period 1 or 2.

Proof. According to (6.2), the modules M(1,0,c) are extensionless and torsionless.
Since w(1,0,¢) = (1,0, —c), we see that M(1,0,0) has Q-period 1, and M (1,0,c) with
¢ # 0 has Q-period 2 in case the characteristic of k£ is different from 2, otherwise its
)-period is also 1. OJ

(7.5) Proposition. If o(q) = oo, then any module of the form M(1,b,c) is semi-
Gorenstein-projective or oco-torsionfree (whereas the modules of the form M(0,b,c) are
never semi-Gorenstein-projective nor oo-torsionfree).

Proof. The first assertion follows immediately from (7.3), the additional assertion in
the bracket is a consequence of (5.1), (6.4) and (6.5). O
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(7.6) Proposition. If M(1,b,c) belongs to an U-component of the form A, then
o(g) = n.

Proof. We consider an U-component of type A,,, say containing a module M which
is not torsionless. Since M belongs to T', we have M = M (1, —gq,c) and the component
consists of the modules M, QM, ..., Q""'M. In particular, w" (1, —q,c) belongs to
E. Now Q" 1M = M(w"*(1,—q,c)) = M(1,—q", ') for some ¢/. Since Q"' M is not
extensionless, (1, —¢™, ) belongs to E, thus —¢™ = —1. This shows that ¢" = 1. Finally,
for 1 <t < n, we have ¢ # 1, since otherwise w!~1(1, —¢q, ¢) would belong to E. O

Corollary. If o(q) = oo, then all the U-components in H are cycles or of type Z, or
—N, or N. Thus, any module in H is semi-Gorenstein-projective or co-torsionfree.

For o(q) = oo, there are the following U-components of the form —N and N:

with arbitrary elements co,d; € k and c;41 = —%qtct for t > 1, whereas diy1 =
—(1 — ¢ YHd; for t > 0. Of course, (1,—q,c1) € T and (1,—1,dy) € E, thus the mod-
ule M (1, —q, 1) is pivotal semi-Gorenstein-projective, whereas M (1, —1,dy) is pivotal co-

torsionfree.

(7.7) The case that ¢ has finite multiplicative order. Now let o(q) = n < occ.
Then the modules M(1,—q*,¢) with 0 < t < n and ¢ € k belong to U-components of the
form A,,. These U-components look as follows:

¢ <---------- 0 < --- R iaiats 0 < -—--------- |
M(17_17Cn) M(la_q 7CTL—1) M(17_q2762> M(la_(bcl)
with an arbitrary element ¢; € k and ¢;41 = —ﬁct for 1 <t < n (of course, (1,—1,¢,) €

E and (1,—q,c1) € T).
Corollary (7.3) asserts that the remaining modules M (1,b,¢) (those with —b ¢ ¢%) are
Gorenstein-projective.

(7.9) Proof of Theorem (1.5).

Torsionless modules: According to (2.7), an indecomposable torsionless module is
isomorphic to a left ideal. Of course, k is torsionless. According to (2.2), a 2-dimensional in-
decomposable left ideal is isomorphic to A(z—y) or Az. According to (2.3), a 3-dimensional
indecomposable torsionless module has to be local, thus it is of the form M(a,b,c), and
(6.1) says that a(a + ¢~ 1b) # 0 or else M (a, b, c) is equal to M(0,1,0) or to M(0,0,1).

Extensionless modules: We show: An indecomposable module M of dimension at
most 3 with simple socle is not extensionless.

Of course, Ext'(k,A) # 0, since otherwise we would have Ext'(X,A) = 0 for all
modules X.
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Let I be an indecomposable module of length 2. A projective cover of I as an A-
module provides an exact sequence 0 — k> — A — I — 0. We apply Homy(—, J), where
J =rad A. We obtain the exact sequence

0 — Homg (1, J) — Homy(A, J) — Homg(k?, J) — Ext(I,J) — 0.

Now, dim Hom+(I, J) > dim Hom(k, J) = 2, dimHom(A, J) = dimJ = 5, and finally
dim Homy(k?,J) = 4, thus dim ExtIK(I, J) > 1. This shows that there exists a non-split

exact sequence €: 0 — J — E — I — 0 with some A-module E. The inclusion map
t: J — A yields an induced exact sequence ¢ : 0 — A — E’ — I — 0. Assume that ¢
splits. Then we obtain a map v: E — A such that vu = . Now F is an A-module, thus
of Loewy length at most 2. Therefore v: E — A maps into rad A = J, thus v = v’ for
some v': B — J. But w'u = vu = ¢ implies that v’ is the identity map of E, thus e
splits, a contradiction. The exact sequence € shows that Ext} (I, A) # 0. Thus I is not
extensionless.

A similar proof shows that Ext!(V, A) # 0 for any 3-dimensional module V' with simple
socle. Again, we use that V is an A-module (see (1.3) Proposition 1), thus we start with

an exact sequence 0 — k% — A V —0.

This completes the proof that an indecomposable module M of dimension at most 3
with simple socle is not extensionless. The remaining indecomposable modules of dimen-
sion at most 3 are the modules of the form M(1,b,¢). According to (5.1) M(1,b,c) is
extensionless if and only if b # —1.

Reflexive modules: We recall from Part I that a module M is reflexive if and only if
both M and UM are torsionless. We show: A module M with simple socle is not reflexive.
Assume that M has simple socle and is torsionless. Since M has simple socle, there is an
embedding M — A A, say with cokernel (). The elements yx and zx cannot both belong to
u(M), since the socle of u(M) is simple. If yx & u(M), then yz@Q # 0, otherwise zx@Q # 0.
Let f: M — AA' be a minimal left add(A)-approximation; its cokernel is UM. There is
uw': AA* — A with v/f = u. The map u' has to be surjective, since otherwise u’ would
vanish on the socle of yA’. This implies that the map UM — @ induced by u is also
surjective. Since UM is indecomposable, non-projective and not annihilated by rad? A,
UM cannot be torsionless.

Let us assume that M is reflexive and dim M < 3. It follows that M has to be a
torsionless module with dim M = 3. Since also UM has to be torsionless, (6.5) shows that
the cases M(0,1,0) and M (0,0,1) are not possible, thus M is of the form M(1,b,c) with
b # —q. Using (6.2) and (6.1), we see that we also must have b # —g?. Conversely, the
same references show that all the modules M (1,b, c¢) with b # —¢* for i = 1,2 are reflexive.

Semi-Gorenstein-projective and oco-torsionfree modules. The semi-Gorenstein-
projective modules are extensionless, the oo-torsionfree modules are reflexive. The pre-
vious considerations therefore show that we only have to consider the modules of the
form M(1,b,¢). (7.3) provides the conditions on b so that M (1,b,c) is semi-Gorenstein-
projective, co-torsionfree, or Gorenstein-projective.

If M(1,b,c) is pivotal semi-Gorenstein-projective, then M (1,b,¢) is not torsionless,
thus b = —q. If M(1, —q, ¢) is semi-Gorenstein-projective, then —q # —q~* for all s > 0,
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thus ¢°t! # 1 for all s > 0. This means that o(q) = oo. Of course, there is also the
converse: if o(q) = oo, then M(1, —q, ¢) is pivotal semi-Gorenstein-projective.

A similar argument shows that M (1,0, ¢) is pivotal co-torsionfree if and only if o(q) =
oo and b= —1. 0

Remark. It seems worthwhile to note that the set of modules M(1,b,c) with b,c € k
s a union of U-components.

8. Right modules.

Recall that we write U’(a, b, ¢) instead of U(a, b, ¢), if we consider U(a, b, c) as a right
ideal. Let M'(a,b,c) = Ap/U’(a, b, c), this is a right module (of course, the sets M (a,b, c)
and M'(a,b, c) are the same, but we use the notation M'(a,b,c) if we want to stress that
we deal with a right module).

(8.1) Proposition. Let (a,b,c) # 0. Then

MW (abe) i a0, (L
) N M/(O, 0’ 1) Zf a = O, be # 0, (2)
QM (a,b,C)_ yAEBzxA Zf CL:O, C:O, (3)
sAoyrd  if a=0,b=0. @

Proof. We have QM’(a,b,c) = U'(a,b,c)p. According to (2.8), U'(a,b,c)p = (a,b,c)A
if a # 0 or bc # 0, and U'(0,1,0) = yA ® zzA, U’(0,0,1) = zA ® yxA.

Consider the map m: Ay — U’(a, b, ¢) defined by w(1) = (a, b, ¢). We assume that a # 0
or be # 0, thus 7 is surjective. If a # 0, the formula (3.1) (3) asserts that w’(a, b, ¢) is in the
kernel of 7, thus 7 yields an epimorphism M’(w'(a,b,c)) = Ap/w'(a,b,c)A — U'(a,b,c).
Since this is a map between 3-dimensional modules, it has to be an isomorphism.

If a = 0 and bc # 0, we use formula (3.1) (4) in order to get similarly an isomorphism
M'(0,0,1) = Ap/(0,0,1)A — U'(0,b,¢). O

(8.2) If a 3-dimensional indecomposable right module N is torsionless and no embed-
ding N — Ap is a left add(Ap)-approzimation, then ON has Loewy length 3 and is not
torsionless.

Proof. Let ¢: N — A be a minimal left add(Ax)-approximation of N. Since N is
torsionless, ¢ is a monomorphism. By assumption, we must have ¢ > 2. It follows that the
cokernel ON of ¢ is an indecomposable right A-module of length 6t — 3 with top of length
t. But an indecomposable right A-module of Loewy length at most 2 with top of length
t > 2 is a right A-module of length at most 4¢ — 1. Thus 6t — 3 < 4t — 1, therefore 2t < 2,
thus t < 1, a contradiction. This shows that ON has Loewy length equal to 3. Of course,
ON is not projective. Since an indecomposable non-projective torsionless right A-module
has Loewy length at most 2, we see that ON cannot be torsionless. 0

(8.3) The right modules M’'(0,b,c). The only right module of the form M'(0,b,c)
which is torsionless is M'(0,0,1). The right module UM'(0,0,1) has Loewy length 3 and
thus it is not torsionless. No right module of the form M’(0,b,c) is extensionless.

Proof. Let N = M'(0,b,¢).
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(a) If N is torsionless, then b = 0 (thus (0:b:¢) = (0:0:1)). Namely, According to
(2.9), M'(0,b,c) arises as a right ideal and (8.1) shows that this happens only for b = 0.

(b) No embedding M’'(0,0,1) — Ap is a left add(Ap)-approzimation. Proof. Let
¢: M'(0,0,1) — Ap be an embedding. According to (2.9), the image of ¢ is of the form
U’(0,b,c) with be # 0. Now M'(0,0,1) has a factor module isomorphic to (0,0, 1)A, thus
there is f: M’(0,0,1) — A with image (0,0,1)A. If ¢ is a left add(A,)-approximation,
then there exists f' : Ay — Ax with f = f’¢. The homomorphism f’ is the left multipli-
cation by some element A in A. If X belongs to rad A, then the image of f’¢ is contained in
rad? A = soc A. If \ is invertible, then the image of f’¢ is 3-dimensional. In both cases, we
get a contradiction, since the image of f is (0,0, 1)A, thus 2-dimensional and not contained
in soc A.

(c) It follows from (8.2) that UM’(0,0,1) has Loewy length 3 and is not torsionless.

(d) A right module of the form M’(0,b,c) is never extensionless: either QM’'(0, b, c)
is decomposable, or else QM'(0,b,¢) = M’(0,0,1) and according to (b), no embedding
M’(0,0,1) — Ap is a left add(Aa)-approximation. O

Reformulation. The right modules M'(0,1,¢c) are singletons in the U-quiver. The
right module M'(0,0,1) belongs to an U-component of the form As:

<
M'(0,0,1) UM’(0,0,1)

(8.4) The right modules M'(1,b,c¢) with ¢ # 0.

Proposition. Let ¢ # 0. The right module M'(1,b,¢c) is torsionless if and only if
b# —1, and then GM'(1,b,c) = M'(w(1,b,¢)). Let ¢ # 0. The right module M'(1,b,c)
is extensionless if and only if b’ # —q, and then QM'(1,V,¢) = M'(W'(1,V, ).

Remark. If b # —1 and ¢ # 0, then w(1,b,¢) = (1,V,¢) with ¥’ # —q and some
d #0. If v # —q, then W' (1,0/,¢) = (1,b,¢) with b # —1 and some ¢ # 0. Thus, the
proposition provides U-sequences

0— M'(1,b,¢) = Ay — M'(1,V,¢) = 0

with b # —1 and b’ # —q (and both ¢, ¢’ being non-zero). Any triple (1,b,¢) with b # —1
and ¢ # 0 occurs on the left and given (1,b,¢), then we have (1,0,¢") = w(1,b,c) on the
right. Any triple (1,b',¢") with b # —q and ¢ # 0 occurs on the right and given (1,¥,¢'),
then we have (1,b,c) = w'(1,V', ) on the left.

Proof of Proposition. We follow closely the proof of (5.1) and (6.1). We always assume
that ¢ # 0. As in (5.2) one sees that M’(1,b,c) is extensionless if and only if the image of
every homomorphism U’(1,b,¢) — A, is contained in U'(1, b, c).

(a) The module M'(1,—gq,c) is not extensionless. Proof. According to (8.1), we have
U'(1l,—q,c)=QM'(1,—q,c') ~ M'(W'(1,—q,c)) = M'(1,—1,0) for all ¢ € k. Thus, there
is a homomorphism U’(1, —¢,0) — A with image U’(1, —¢,0) and this image U’(1, —¢, 0)
is not contained in U’(1, —gq, c).

(b) If b # —q, then the module M'(1,b,c) is extensionless. For the proof, we need
three assertions (bl), (b2) (b3). Note that (8.1) asserts that U’(1,b,¢) ~ QM'(1,b,c) ~
M'(W'(1,b,¢)) = M'(1,q71b,¢"), where w'(1,b,¢) = (1,¢71b, ).
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(bl) The only right ideal isomorphic to U'(1,b,c) is U'(1,b,c) itself. Proof. Let V be
a right ideal of Ay which is isomorphic to U'(1,b,¢), say V = U’(a”,b"”, ") for some triple
(a”,b",c"). By (8.1), we have U(a”,b",c") ~ QM'(a”,b", ") = M'(a”,qb",d), where
W'(a”,b", ") = (a”,q ", d) for some d. We must have a” # 0, since M(a”,q 1b",d) ~
U'(1,b,¢) ~ M'(1,q71b,c'). Thus, we may assume that a” = 1 and then M'(1,¢7 10", d) ~
M'(1,q71b, ') implies that (1,¢710",d) = (1,q7 b, ). In particular, we have b’ = b # —q.
The equality w'(1,b0”,c") = W/'(1,b,¢) yields (1,b”,¢") = (1,b,¢), see Proposition (3.2).
Therefore V = U(1,b",¢") = U(1,b,c).

(b2) The right ideal zA is not a factor module of U'(1,b,c). Proof. The right ideal
zA is annihilated by  — y and z, thus Corollary (5.3) asserts that the image I of any
homomorphism M’(1,,¢") — zA is a factor module of A/((1,b,c)A+ (x —y)A+2zA). Now
(x+ by +c2)A+ (x —y)A + zA = rad A, since b # —1, thus [ is simple or zero.

(b3) The right ideal yA is not a factor module of U'(1, b, ¢). Proof. The right ideal yA is
annihilated by y and z, thus Corollary (5.3) asserts that the image I of any homomorphism
M'(1,V,¢) — yA is a factor module of A/((1,b,c)A + yA + zA). Now (z + by + cz)A +
yA + zA = rad A, since b # —1, thus [ is simple or zero.

The assertions (bl), (b2) and (b3) show: if ¢ is any homomorphism U’(1,b,¢) — A
and its image I is of dimension at least 2, then [ is contained in U’(1,b,c). Of course, if
I is 1-dimensional, then I is contained in soc Ay and soc Ay C U’(1,b,c¢). Thus, we have
obtained a proof of (b). In addition, (8.1) asserts that QM'(1,b,¢) ~ M'(w'(1,b,¢)).

(c) If b # —1, then M'(1,b,¢) is torsionless and GM'(1,b,¢c) = M'(w(1,b,¢)). Proof.
Let w(1,b,¢) = (1,0',¢"). Then b = gb # —¢q, and W'(1,V,¢) = W'w(l,b,¢) = (1,b,¢)
by Proposition (3.2). According to (8.1), we have QM'(1,b',¢) ~ M'(W'(1,V,c)) =
M'(1,b,c). This shows that M'(1, b, ¢) is torsionless. According to (b), the module M’ (w(1, b, c))
is extensionless, thus UM'(1,b,¢) = M'(1,0',¢) = M'(w(1,b,¢)).

(d) The modules M'(1,—1,¢) are not torsionless. Proof. Assume, for the contrary, that
M'(1,—1, ¢) is torsionless, thus isomorphic to U’(a’, b, ¢’) for some (a’, ¥, ¢’). According to
(8.1), we must have a’ # 0, thus we can assume that o’ =1, and (1,—1,¢) = w'(1,V/, ) =
(1,q7 ', —(1 4+ ¢ 1¥')c’). Tt follows that b’ = —q and therefore ¢ = —(1 + ¢~ ')’ =0, a
contradiction.

This completes the proof of (8.4). O

Reformulation. The neighborhood of M'(1,b,c) with ¢ # 0 in the U-quiver looks as
follows:

ML b)) M(Lbe)  Mw(1be) b {-1,—q}
Mot~ 0) ML -q0 b g1

- >0 -

M(1,-1¢) M(/(1,-1¢) b=-1#-4

and M'(1,b,c¢) is a singleton in the U-quiver if ¢ =1 and b = —1.

Note that we want to use a fixed index set P? both for the (left) modules M(a:b:c)
and the right modules M'(a:b:c), Since we have drawn the dashed arrows in the U-quiver
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of the left A-modules from right to left, we now have drawn the dashed arrows in the
OU-quiver of the right A-modules from left to right.

As in section 7, we see that the U-components of the modules M’(1,b,¢) with ¢ # 0
are cycles, or of type Z,N or —N in case o(q) = oo, and cycles or of type Z or A,, in case
o(q) =n < oo.

For o(q) = oo, the right modules M'(1,—1,¢) with ¢ # 0 are pivotal semi-Gorenstein-
projective, and the right modules M'(1,—q,c) with ¢ # 0 are pivotal co-torsionfree.

(8.5) The right modules M'(1,b,0).

The right modules M’(1,b,0) have been considered already in Part I: these are just
the right ideals m,A, where m, = x — ay. Namely, we have

M'(1,b,0) = (z + gby)A = m_guA

for all b € k. (Proof: We have M'(1,b,0) = Ap/U’(1,0,0) = Ap/(z + by)A ~ (z + qby)A,
where we use that (z+qby)(z+by) = 0 and that both right ideals (x+by)A and (z+qby)A
are 3-dimensional, see (2.8).)

Let us recall the results presented in Part I using the present notation:

If b ¢ —q”%, then M'(1,b,0) is Gorenstein-projective and its U-component looks as
follows:

M'(1,¢°0,0)  M’(1,qb,0) M’'(1,6,0)  M'(1,¢7'b,0) M'(1,47%b,0)
In particular, if o(q) = n, then these U-components are cycles with n vertices, whereas for
o(q) = 00, one obtains U-components of type Z.
For o(q) = oo, there are three remaining U-components:
OM'(1,-1,0)  OM'(1,—q1,0)
|

-~ ~
~

-~ ~<
~ -
~ ~

e > ¢ T I I >0 ——-n -
M'(1,—¢%,0) M'(1,—q,0) M'(1,-1,0) M’'(1,—q¢~1,0) M'(1,—q2,0)

These U-components are of type N, Ay and —N, respectively.
For 2 < n = 0(q) < oo, there are two remaining U-components, one is of type Ag, the
other of type A,,:

OM'(1,-1,0) OM'(1,—q¢1,0)

® ———————— >0 ———- T e D> @ - > ¢
M'(1,-1,0) M'(l,—qn_l,O) M’(l,—qn_Q,O) M’(l,—qQ,O) M'(1,—q,0)
In case ¢ = 1, there is only one additional -component (of type As), namely

GM'(1,—-1,0)

18



(8.6) Similar to Theorem (1.5), here is the summary which characterizes the right
modules of dimension at most 3 with relevant properties.

Theorem. An indecomposable right module N of dimension at most 3 is

e torsionless if and only if N is simple or isomorphic to yA, to zA, to a module M'(1,b, c)
with b # —1, to M'(1,—1,0) or to M’(0,0,1).

e cxtensionless if and only if N is isomorphic to a module M'(1,b,c) with b # —q;

o reflexive if and only if M is isomorphic to a module M’'(1,b,c) with b # —q* for
i=—1,0;

e Gorenstein-projective if and only if N is isomorphic to a module M'(1,b,c) with b #
—q' fori €7;

e semi-Gorenstein-projective if and only if N is isomorphic to a module M'(1,b,c) with
b# —q' fori >0 orto a module M'(1,—1,c) with ¢ # 0;

e co-torsionfree if and only if N is isomorphic to a module M'(1,b,c) with b # —q* for
1 <0y

e pivotal semi-Gorenstein-projective if and only if o(q) = oo and N is isomorphic to a
module M'(1,—1,¢) with ¢ # 0;

e pivotal oco-torsionfree if and only if o(q) = oo and N is isomorphic to a module
M'(1,—q,c).

Whereas the set of modules M (1,b,¢) with b,¢ € k is a union of U-components, the
right modules behave differently: as we have seen already in Part I, 7.2, the U-component
containing the right module M (1, —1,0) consists of M (1, —1,0) and the 9-dimensional right
module UM (1,—1,0).

9. The A-dual of M (1,b,¢) and M'(1,b,c).
We need the following (of course well-known) Lemma.

(9.1) Lemma. Let R be a ring and w € R. If any left-module homomorphism
Rw — gR maps w into wR, then Hom(Rw, rR) ~ wR as right R-modules.

Proof. Let u: Rw — gR be the inclusion map. We have Hom(Rw, rR) = uR, since
for any homomorphism f: Rw — grR, there is A € R with f(w) = w, thus f = u)\. Now
I ={r € R|wr=0}is aright ideal and Rr/I ~ wR as right modules (an isomorphism
is given by the map Rr — wR defined by 1 — w). Since I = {r € R | ur = 0}, we have
in the same way Rr/I ~ uR, and therefore wR ~ Rr/I ~ uR = Hom(Rw, rR). O

(9.2) Lemma. If (1,b,¢) is different from (1,—1,0), then M'(1,b,¢) ~ Tr M(1,b,¢)
and M(1,b,¢) ~ Tr M'(1,b,c).

Proof. We have U’(1,b,¢) = (1,b,¢)A, and since (1,b,¢) # (1,—1,0), we also have
U(1,b,c) = A(1,b,¢). By definition, M(1,b,¢) = AA/U(1,b,c), thus M(1,b,¢c) is the
cokernel of the right multiplication 71 4 0y: AA — AA and Tr M(1,b,¢) is the cokernel of
the left multiplication (14 ): Ax — Ax, thus isomorphic to Ap/(1,b,¢c)A = Apr/U'(1,b,¢).
]

(9.3) Proposition. Ifb ¢ {—q, —q¢*}, then M(1,b,c) is reflexive and
M(1,b,c)* = M'((w)?(1,b,¢)).
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Ifb¢ {—1,—q 1}, then M'(1,b,c) is reflexive and M'(1,b,¢c)* = M(w?(1,b,c)).

Proof. According to (7.1), we have the following two U-sequences:

0— M(1,b,¢) = AA — M(w'(1,b,¢)) — 0,
0 — M(W'(1,b,¢)) = AA — M((w)?*(1,b,¢)) — 0

(the first one, since w’(1,b,¢) = (1,¥,¢') with b = ¢='b # —1; the second one, since
(W)3(1,b,¢) = (1,0",c") with b = ¢=2b # —1) This implies that M(1,b,c) is reflex-
ive and that X = U2M(1,b,c) = M((w')?(1,b,c)) is a module with Ext’(X,A) = 0
for i = 1,2. According to Part I, Lemma 2.5, we have Tr X = (02X)*. On the one
hand, 92X = UM(1,b,c) = M(1,b,c). On the other hand, (9.2) shows that Tr X =
Tr M ((w')%(1,b,¢)) = M'((w")?(1,b,¢)), since (w')%(1,b,c) = (1,q2b,c") for some ¢’ and
q~2b # —1. This yields the first assertion. The second can be shown in the same way, or
just by applying the A-duality to M (1,b,¢)* = M’'((w")?(1,b,¢)). O

(9.4) Proposition. For all b,c € k,
M(1,b,¢)* = M'((w)?(1,b,¢)).

In particular, for all b, ¢ € k, the right module M (1, b, ¢)* is again 3-dimensional and local.

Whereas (w')? is a bijection from {(1,b,¢) | b ¢ {—q,—q¢*}} onto {(1,b,¢) | b ¢
{—1,—q7'}}, we should stress that (w')?(1, —q,¢) = (1,—¢~ %, 0) and that (w')?(1, —¢% ¢) =
(1,—1,0) for all ¢ € k. Thus, (9.3) combines the first assertion of (9.2) with the correspond-
ing assertion for the remaining cases, namely:

M(1,—q,¢)* =M'(1,—¢~1,0) and M(1,—¢* c)* = M'(1,-1,0),

for all c € k.

Proof of Proposition. According to (9.2), we only have to consider the cases where
b= —qorb=—¢°.

Case 1. Let b = —q. As we have seen in (6.2), the module M (1, —¢, ¢) is not torsionless.
Now obviously, there is a surjective homomorphism M (1, —q,c) — A(1,—1,0) with kernel
zM (1, —q,c). It follows that zM (1, —gq, c) is contained in the kernel of every homomorphism
M(1,—q,¢) — aA and therefore M(1,—q,c)* = (A(1,—1,0))*. Now, (A(1,—1,0))* ~
(1,-1,00)0A =U’'(1,—-1,0), as shown in Part I, 6.5. On the other hand, according to (8.1),
we have U’(1,—-1,0) = QM'(1,-1,0) = M'(w'(1,-1,0)) and w’'(1,—1,0) = (1,—¢1,0).

Case 2: b = —¢? and o(q) = 2. The assumption o(q) = 2 means that ¢ = —1 # 1, in
particular, the characteristic of k is different from 2, and we have b = —1. Since ¢ = —1
and the characteristic of k is different from 2, (4.1) asserts that

A(1,1,-2¢) =U(1,1,—2¢) = QM (1,1, —2¢) = M (w(1,1,—2¢)) = M(1,—1,¢).
On the other hand, we have
(1,1,-2c)A =U'(1,1,-2¢) = QM'(1,1,-2¢) = M'(w'(1,1,-2¢)) = M'(1,-1,0).
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We claim that any homomorphism A(1,1,—2¢) — A A maps (1,1, —2c¢) into (1,1, —2¢)A.
Namely, let ¢: A(1,1,—2¢) — A A be a homomorphism. Now A(1, 1, —2c¢) is 3-dimensional,
thus equal to U(1,1,—2¢), and AA/U(1,1,—2¢) ~ M(1,1,—2¢). According to (5.1), the
module M (1,1, —2c¢) is extensionless, since 1 + 1 # 0. The implication (i) to (iv) in (5.2)
shows that ¢(1,1,—2¢) € (1,1, —2¢)A.

Since any homomorphism A(1,1, —2¢) — A A maps (1,1, —2¢) into (1,1, —2¢)A, Lemma
(9.0) implies that the right modules (A(1,1,—2¢))* and (1,1, —2c¢)A are isomorphic, thus
M(1,-1,¢)* ~ M'(1,—1,0).

Case 3. b= —q? and o(q) > 3. There is the U-sequence
€: 0— M(1,—¢*, ) = AN — M(1,—¢* ¢c) =0
for some ¢’ (here we use that ¢> # 1). The A-dual of € is the exact sequence
0— M(1,—¢* c)* = Ay — M(1,—¢* )* — 0.

Since ¢? # 1, proposition (9.3) asserts that M(1,—¢3,¢)* = M'(1,—q,c") for some c”.
Altogether we see that

M(1, —qg,c)* ~ Q(M(1, —q3,c’)*) =QM'(1,—q,c") ~ M'(1,-1,0),

where the final isomorphism is due to (8.1). O

(9.5) The algebra A = A(q) with o(q) = oo was exhibited in Part I in order to present
a module M which is not torsionless, such that M and M* both are semi-Gorenstein-
projective: namely the module M = M (1, —q,0) with M* = M’(1,—q,0). Now we see: all
the modules M (1, —q, c) with ¢ € k are modules which are semi-Gorenstein-projective and
not torsionless, and that the A-duals M(1,—q,c)* ~ M'(1,—q~1,0) are semi-Gorenstein-
projective. We should stress that this concerns a 1-parameter family M (1, —q, ¢) (with ¢ €
k) of semi-Gorenstein-projective left modules, and the single semi-Gorenstein-projective
right module M (1, —¢~1,0).

(9.6) Proposition. Let b,c € k.

MEALbe) i b {-1,— ',
U(0,0,1) if b=—1, c£0,
M'(1,b,¢)* ={ U(1,—¢,0) + U(0,0,1) if b=—1, c=0,
M(0,0,1) i b=—q !, c£0, g#£1,
U(1,-1,0) if b=—-q¢ ' c¢c=0, q#1.

Whereas we saw in (9.4) that all the right modules M (1,b, ¢)* are 3-dimensional and lo-
cal, not all the modules M’(1, b, ¢)* are 3-dimensional and local: the module M’(1,—1,0)* =
U(1,—¢q,0) + U(0,0,1) has dimension 4, whereas the modules M'(1,—1,¢)* = U(0,0,1)
for ¢ # 0 and, in case q # 1, the module M'(1,—¢~!,0)* = U(1,—1,0) are decomposable.

Proof. According to (9.3), we only have to deal with the cases with b € {—1,—¢'}.
If ¢ = 0, then we can refer to Part I. For b = —1, the end of 7.1 in Part I shows that

21



M'(1,-1,0)* ~ M(1,—¢% 0)* ~U(1,—¢q,0) + U(0,0,1). For b = —¢~! # —1, the end of
6.7 in Part I asserts that M’(1,—q¢~1,0)* ~ (M(1,—q,0)** ~ QM (1,-1,0) ~ U(1,—1,0).
Now, we assume that ¢ # 0. As in the proof of (9.4), we consider again 3 cases.

Case 1. b = —1. The module M'(1,—1,¢) with ¢ # 0 is not torsionless, see (8.4).
Since the factor module M’(1,—1,¢)/M’(1,—1,¢)z is isomorphic to (0,0,1)A, it follows
that M’(1,—1,¢)* ~ ((0,0,1)A)* and an easy calculation yields ((0,0,1)A)* ~ U(0,0,1).
Namely, the inclusion map u: zA — A, satisfies yu = 0 and zu = 0, thus a basis of
(zA)* is given by u, zu and the map f: zA — A with f(z) = yx, so that (zA)* ~
AN/ (Ay+Az) @k ~U(0,0,1).

Case 2. b = —q¢~! and o(q) = 2. Thus, the characteristic of k is different from 2,

q = —1 and b = 1. The module M'(1,1,c) is torsionless: namely, by (8.1) we have
M'(1, ) ~ QM’(I —1,-%), since w'(1,-1,-5) = (1,1,¢). Now, QM’'(1,-1,-5) ~
U (1,-1,%5) = (1, - )A Since ¢ # 1, the right module M'(1, —1 —5) is extensionless

by (8. 4) thus we can use (5.2) and (9.1) in order to see that ((1, -1, 5)A)* ~ A(1, -1, 5).
By (4.1) (2), we have A(1,-1,5) =U(1,-1,§) ~ QM ((1,-1,—-%)) ~ M(0,0,1).
Case 3. b= —q~ ! and o(q) > 3. There is the U-sequence

0— M(1,—q¢ %)= Ay — M1, —q1¢) =0
for ¢ = Ac with A # 0 (here we use that ¢> # 1). The A-dual is the exact sequence
0= M(1,—q ' e)* = aAAN— M(1,—¢ %) —0.

We assume that ¢ # 1 and g # 2. Then by Proposition (9.2), we have M’'(1,—q=2,c/)* =
M(1,—1,c") for some multiple ¢/ = X'¢’ with X' # 0. It follows that M’'(1,—q~ 1, ¢)* =
QM(1,—1,¢") and ¢” = 0 if and only if ¢ = 0. By (4.1), we have QM (1, —1,¢") = M(0,0,1)
in case ¢ # 0, and QM(1,—1,0) = U(1,—1,0) in case ¢ = 0. O

(9.7) Corollary. Let N be a right A-module of dimension at most 3 which is semi-
Gorenstein-projective, but not Gorenstein-projective. Then N* is not semi-Gorenstein-
projective.

Proof. According to (8.6), N is isomorphic to a right module of the form M’(1, —¢,c)
with ¢ < —1 and ¢ € k or of the form M'(1,—1,c¢) with ¢ # 0. We apply (9.6). If i < —2,
then N* = M'(1,—¢%, ¢)* = M(1,—q""2,¢’) for some ¢/, and according to (1.5), N* is not
semi-Gorenstein-projective, since ¢ +2 < 0. If i = —1, then N* is isomorphic to M (0,0, 1)
orto U(1,—1,0). If N = M'(1,—1, ¢) with ¢ # 0, then N* is isomorphic to U(0,0,1). But
by (1.5), M(0,0,1), U(1,—1,0) and U(0,0, 1) are not semi-Gorenstein-projective. O

10. The general context.

Our detailed study of the algebra A(q) in Part I and Part II should be seen in the
frame of looking at Gorenstein-projective (or, more general, semi-Gorenstein-projective
and oco-torsionfree modules) over local algebras with radical cube zero.

(10.1) Let A be a finite-dimensional local k-algebra with radical J such that A/J = k.
Such an algebra is said to be short provided J3 = 0. In commutative ring theory, the short
local algebras have attracted a lot of interest, since some conjectures have been disproved
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by looking at modules over short algebras, see [AIS] for a corresponding account. We have
to thank D. Jorgensen for his advice concerning the present knowledge in the commutative
case.

Let us assume now that A is short, but not necessarily commutative. Let e = dim J/J?
and a = dim J? (thus 0 < a < 62). Here is a report about the relevant general re-
sults: If there exists an indecomposable module which is semi-Gorenstein-projective or
oo-torsionfree, but not projective, then either A is self-injective, so that a <1 (and e =1
in case a = 0), or else a = e — 1 > 2. Always, both modules 4J and J4 have to be
indecomposable.

Of course, if A is self-injective, then all modules are Gorenstein-projective, thus the
interesting case is the case a = e — 1 > 2. Our algebra A(q) is of this kind (with a = 2),
as is the Jorgensen-Sega algebra [JS]| (with a = 3).

Not only the shape of the algebras is very restricted, also the modules themselves
are very special: Let A be a short local algebra which is not self-injective. Let M be
indecomposable and not projective. If M is semi-Gorenstein-projective and torsionless, or
if M is oco-torsionfree (in particular, if M is Gorenstein-projective), then soc M = rad M
and dimsoc M = a - dimtop M (by definition, top M = M/soc M). Also, if M is semi-
Gorenstein-projective and torsionless, then dim Q'M = dim M for all i € N, whereas if M
is co-torsionfree, then dim U'M = dim M for all i € N.

These assertions have been shown by Christensen and Veliche in the case that A is
commutative and M is Gorenstein-projective, see [CV], and the proof can be modified in
order to work in general, see [RZ2]. There is an essential difference between the commuta-
tive and the non-commutative algebras: If A is commutative, then all local modules which
are semi-Gorenstein-projective or co-torsionfree are Gorenstein-projective, whereas this is
not true for A non-commutative.

Thus, for our algebra A(q), the non-projective indecomposable modules which are
semi-Gorenstein-projective and torsionless, or which are oo-torsionfree, are of dimension
3t with socle of dimension 2¢, where ¢t = dimtop M. For t = 1, we deal with local modules
with 2-dimensional socle: these are precisely the modules studied in the present paper.

(10.2) As we have mentioned, a 3-dimensional local A(g)-module M belongs to H if
and only if soc M = Ker(y) = Ker(z) = yM @ zM. Thus, it seems to be of interest to
study the full subcategory H of all the A(g)-modules M with soc M = Ker(y) = Ker(z) =
yM @ zM.

It will be shown in [RZ3] that all reflexive modules which are semi-Gorenstein-projective
or oo-torsionfree belong to H. On the other hand, we will exhibit a representation equiva-
lence between H and the category of finite-dimensional k(x1, z2)-modules, where k(x1, x2)
is the free algebra in two variables x1, xs.

Appendix. A diagrammatic description of the modules M (a:b:c).

(A.1) If M is a left A-module annihilated by rad® A, then it is a left A-module. Since
A is a commutative k-algebra, also D(M) = Hom(M, k) is a left A-module, thus a left
A-module. As mentioned in (1.6), we identify the set of isomorphism classes of the 3-
dimensional local modules with the projective plane P? = P(rad A/rad® A).
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Proposition. Let M be an indecomposable 3-dimensional left A-module. Then M or
D(M) is isomorphic to one of the following pairwise non-isomorphic A-modules M (a, b, c):

Case

(1)

Modules

M(0,0,1)

M (0,1,0)

M(1,0,0)

M(1,b,0)
bek*

M(1,0,c¢)
cek*

M(0,1,c¢)
cek*

M(1,b,¢)
bce k*

Position in P? Diagram

v
vy V2

v
7N
U1 (%)
v
VRN
U1 V2

v
]
/
’/ZII
Ul" (%)

with xv = —bv;

v
\
/ \\

with zv = —cvq

...................... U1 *’UQ
with yv = —cuvq

v
I
2N
/ \
L-7x 2o~
(%1 (%]

with xv = —bvy — cvg

Characterization

zM =0

yM =

M =0

xM =yM

oM = zM

yM = zM

xM, yM, zM non-zero
and pairwise different

The diagrams describe the modules M = M(a, b, c) as follows: The elements v, vy, vo
form a basis of M. Both elements vy,v, are annihilated by z,y, z. If there is drawn a
solid arrow v — v; with ¢ € {1,2} and with label a € {z,y, z}, then av = v;. If there is
a dashed arrow v - -~ v; with label a, then av = c1v1 + covy with ¢; # 0 (and we provide
the coefficients c;, co below the diagram). Finally, zv = 0 in case (1), yv = 0 in case (2),
xzv = 0 in case (3).
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The last column provides a characterization of the corresponding modules M (a, b, ¢):
For example, a local 3-dimensional A-module M is a case-(1)-module provided zM = 0,
and so on.

(A.2) Remark. If M is an indecomposable 3-dimensional A-module, then its annihi-
lator is equal to U(a,b,c) for some (a,b,c) # 0 and M considered as a A/U(a,b, c)-module
is either the unique indecomposable projective A /U (a, b, c)-module (and then a local module,
thus isomorphic to M (a,b,c)) or the unique indecomposable injective A/U(a,b, c)-module
(and then a module with simple socle, thus isomorphic to D(M (a, b, ¢))).

(A.3) Proof of the Proposition and the Remark. First, let us assume that M is local.
According to (2.6) and (1.4), we know that M ~ M (a:b:c) for some (a:b:c) € P? and
that these modules are pairwise non-isomorphic. As representatives of the elements of P2,
we choose (as usual) the triples (¢, c2,c3) with ¢; = 1 for some i and ¢; = 0 for j < 1.
Clearly, there are the seven cases (1) to (7) as listed above. It remains to choose in every
case a basis B(a,b,c) = {v,vi,v2} of M(a,b,c). Recall that M(a,b,c) = A/(a:b:c) is a
factor module of A and A has the basis {1,z,y,2}. We choose as elements of B(a,b, c)
the residue class v = 1 as well as two of the three residue classes Z,7%, 7z, namely v; = T
if @ = 0 and v; = ¥ otherwise, and then vy = 7 in case (a,b,c) = (0,0,1) and vo = Z
otherwise. (We should remark that the vertices and the arrows of the diagram are those
of the coefficient quiver I'(M (a, b, ¢), B(a, b, c)) as considered in [R], and the solid arrows
focus the attention to a spanning tree.)

Second, assume that M is not local. Since M is an indecomposable module of length 3
and Loewy length 2, it follows that M has simple socle, thus D(M) is local and therefore
of the form (1) to (7).

Finally, M and D(M) have the same annihilator, this is a 3-dimensional ideal, thus of
the form U (a, b, ¢). The 3-dimensional local algebra A/U(a, b, ¢) has a unique 3-dimensional
local module, this is the indecomposable projective A /U (a, b, ¢)-module, and dually, it has a
unique 3-dimensional module with simple socle, this is the unique indecomposable injective
A/U(a,b,c)-module. This completes the proof. O

(A.4) As we have mentioned in (1.6), of special interest is the affine subspace H of
P2 given by the points (1:b:¢) with b,c € k. A 3-dimensional local module M belongs to
H if and only if soc M = Ker(y) = Ker(z) = yM & zM.

Namely, H is the union of the sets (3), (4), (5) and (7).
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