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Abstract: Let R be a ring. An R-module M is called a Prüfer module

provided there exists a locally nilpotent, surjective endomorphism of M

with kernel of finite length. We want to outline the relevance, but also the

ubiquity of Prüfer modules. The main assertion will be that any Prüfer

module which is not of finite type gives rise to a generic module, thus to

infinite families of indecomposable modules with fixed endo-length (here

we are in the setting of the second Brauer-Thrall conjecture). In addition,

we will report on a construction procedure which yields a wealth of Prüfer

modules. Unfortunately, we do not know which modules obtained in this

way are of finite type.

This is the written account of a lecture given at 4th International Conference on
Representation Theory (ICRT-IV), Lhasa, July 16–20, 2007. Section 1 recalls the definition
of a Prüfer module as introduced in [R6] and provides some examples, in section 2 we show
that the degeneration theory of modules concerns certain Prüfer modules of finite type,
whereas section 4 provides a construction of Prüfer modules using pairs of monomorphisms
U0 → U1; these two sections 2 and 4 are reports on some of the results of [R6]. In the last
section 6 we discuss the question how to search for pairs of monomorphisms U0 → U1. This
is an announcement of results of the forthcoming paper [R9], where “take-off categories”
are introduced. The central part is section 3. There, we show that the existence of a Prüfer
module which is not of finite type implies the existence of a generic module, thus of infinite
families of indecomposable modules with fixed (and arbitrarily large) endolength. This has
not yet appeared in print (but see [R8]) and has been announced under the title: Prüfer
modules which are not of finite type. Also section 5 is new, here we show that given a tame
hereditary algebra, a finite length module N can generate a non-finite-type module M only
in case N has a preprojective direct summand which is sincere. This gives an indication
why it seems to be reasonable to look for module embeddings in take-off categories.

1. Prüfer modules.

(1.1) Let R be any ring. We deal with (left) R-modules. An R-module M is called a
Prüfer module provided there exists an endomorphism φ of M with the following properties:
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φ is locally nilpotent, surjective, and the kernel W of φ is non-zero and of finite length.
The module W is called the basis of M . Let W [n] be the kernel of φn, then M =

⋃
n W [n],

thus we also may write M = W [∞].

(1.2) The classical example. Let R = Z and p a prime number. Let S = Z[p−1]
the subring of Q generated by p−1. Then

S/R = lim
→

Z/Zpn

is the Prüfer group for the prime p. These Prüfer groups are all the indecomposable Z-
modules which are Prüfer modules.

(1.3) More generally, let R be a Dedekind ring. Then any indecomposable R-module
of finite length is of the from W [n], where W is the basis of a Prüfer module and n ∈ N.
In particular, this applies to R = Z, but also say to the polynomial ring R = k[T ] in one
variable with coefficients in the field k. Note that a k[T ]-module is just a pair (V, f), where
V is a k-space and f is a linear operator on V . If char k = 0, then the pair (k[T ], d

d t
) is a

Prüfer module.

As Atiyah [A] has shown, a corresponding assertion holds for the coherent sheaves
over an elliptic curve: any indecomposable coherent sheaf of finite length is of the from
W [n], where W is the basis of a Prüfer module and n ∈ N.

(1.4) Example. Consider the Kronecker algebra Λ = kQ, this is the path algebra of
the quiver Q

◦ ◦...................................................................
...................................................................

The embedding functor

mod k[T ] ................................................ ............ mod kΛ (V, f) 7→ V V
...................................................................
...................................................................

1

f

preserves Prüfer modules. Using this functor, we obtain all indecomposable Prüfer modules
for the Kronecker algebra with one exception, the remaining one is of the form

V V
...................................................................
...................................................................

f

1

where (V, f) is the indecomposable Prüfer k[T ]-module such that f has 0 as eigenvalue.

(1.5) We also should mention a famous theorem of Crawley-Boevey [CB1]: Let Λ be
a finite-dimensional k-algebra and k an algebraically closed field. If Λ is tame, and d ∈ N,
then almost all indecomposable Λ-modules of length d are of the from W [n], where W [∞]
is an indecomposable Prüfer module.

(1.6) Warning. The Prüfer modules as defined above do not have to be indecomposa-
ble: for example the countable direct sum W (N) of copies of W with the shift endomorphism
(w1, w2, . . . ) 7→ (w2, w3, . . . ) is a Prüfer module: the trivial Prüfer module with basis W .
Less trivial examples will be seen in the next section.
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(1.7) Lemma. Let M be a Prüfer module with basis W . If the endomorphism ring of
W is a division ring, then either M = W (N) or else M is indecomposable.

Proof: This is an immediate consequence of the process of simplification [R1].

A module M is of finite type provided it is the direct sum of finitely generated modules
and such that there are only finitely many isomorphism classes of indecomposable direct
summands. Our main concern will be Prüfer modules which are not of finite type. But first
we consider some Prüfer modules of finite type.

2. Degenerations of modules

In this and the next section we consider artin algebras (these are rings which are
module finite over the center, the center being artinian).

(2.1) In order to motivate the notion of a degeneration, let us consider first the case
of Λ being a finite-dimensional k-algebra where k is an algebraically closed field.

Assume that Λ is generated as a k-algebra by a1, a2, . . . , at subject to relations ρi. For
d ∈ N, we consider the variety

M(d) = {(A1, . . . , At) ∈ M(d×d, k)t | ρi(A1, . . . , At) = 0 for all i},

of d-dimensional Λ-modules: its elements are the d-dim Λ-modules with underlying vector
space kd (thus, up to isomorphism, all d-dim Λ-modules). The group GL(d, k) operates
on M(d) by simultaneous conjugation. Elements of M(d) belong to the same orbit if and
only if they are isomorphic.

Theorem (Zwara). Let X, Y be d-dimensional Λ-modules. Then Y is in the orbit
closure of X if and only if there exists a finitely generated Λ-module U and an exact
sequence

0 → U → X ⊕ U → Y → 0.

such a sequence should be called a Riedtmann-Zwara sequence.

(2.2) Now let Λ be an arbitrary artin algebra and X, Y Λ-modules of finite length.
We call Y a degeneration of X provided there exists a finitely generated Λ-module U and
an exact sequence

0 → U → X ⊕ U → Y → 0

Proposition (Zwara). Y is a degeneration of X if and only if there is a Prüfer
module M with basis Y such that Y [t + 1] ≃ Y [t] ⊕ X for some t, or, equivalently, for
almost all t.

Proof: See [Z] and [R6]

Note that an isomorphism Y [t + 1] ≃ Y [t] ⊕ X yields directly a Riedtmann-Zwara
sequence as well as a co-Riedtmann-Zwara sequence, using the canonical exact sequences

0 → Y [t] → Y [t + 1] → Y → 0 ,

0 → Y → Y [t + 1] → Y [t] → 0
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and replacing the middle term by Y [t] ⊕ X .

(2.3) Note that the Prüfer modules Y [∞] obtained in (2.2) satisfy Y [∞] ≃ Y [t]⊕X(N)

for some t. In particular, these are modules of finite type.

3. Prüfer modules and the second Brauer-Thrall conjecture

(3.1) Let Λ be an artin algebra. The Krull-Remak-Schmidt Theorem asserts that any
finitely generated Λ-module can be written as a direct sum of indecomposable modules,
and such a decomposition is unique up to isomorphism.

The artin algebra Λ is called representation-infinite provided there are infinitely many
isomorphism classes of indecomposable Λ-modules, otherwise representation-finite.

(3.2) The first Brauer-Thrall conjecture was solved by Roiter in 1968:

Theorem (Roiter [Ro]): If Λ is a representation-infinite artin algebra, then there are
indecomposable modules of arbitrarily large finite length.

(3.3) The second Brauer-Thrall conjecture has been solved only for finite dimensional
k-algebras, where k is an algebraically closed (or at least perfect) field:

Theorem (Bautista [Ba], Bongartz [Bo]): If Λ is a representation-infinite k-algebra,
where k is an infinite perfect field, then there are infinitely many natural numbers d such
that there are infinitely many indecomposable Λ-modules of length d.

It has been conjectured by Brauer-Thrall that the assertion holds for any infinite field.
For finite fields, or, more generally, for an arbitrary artin algebra λ, one may conjecture the
following: if Λ is representation-infinite, then there are infinitely many natural numbers
d such that there are infinitely many indecomposable Λ-modules of endo-length d. (The
endo-length of a module M is the length of M when M is considered as a module over its
endomorphism ring).

(3.3) Let λ be an artin algebra. A Λ-module M is said to be generic provided M is
indecomposable, of infinite length, but of finite endo-length.

Theorem (Crawley-Boevey [CB2]): Let Λ be a finite-dimensional k-algebra (k a field).
Let M be a generic Λ-module. Then there are infinitely many natural numbers d such that
there are infinitely many indecomposable Λ-modules of endo-length d.

(3.4) Prüfer modules yield generic modules.

Theorem. Let M be a Prüfer module. The following conditions are equivalent:
(i) M is not of finite type.
(ii) There is an infinite index I set such that the product module M I has a generic direct

summand.
(iii) For every infinite index I set, the product module M I has a generic direct summand.

Proof: The implications (iii) =⇒ (ii) is trivial. Also (ii) =⇒ (i) is obvious: If M is
of finite type, then all product modules M I are of finite type. We only have to show (i)
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=⇒ (iii). (It is sufficient to consider I = N in (iii), since any infinite index set I can be
written as the disjoint union of N and some other index set I ′, and then M I = MN ⊕M I′

,
however, there is no problem to work in general.)

Now assume that I is an infinite index set and that M I has no indecomposable direct
summand which is endo-finite and of infinite length. Since M is a Prüfer module, there
is a surjective, locally nilpotent endomorphism φ with kernel W = W [1] non-zero and of
finite length. Let W [n] be the kernel of φn. Thus

M [1] ⊂ M [2] ⊂ · · · ⊂
⋃

n

M [n] = M

is a filtration of M with finite length modules M [n]. We obtain a corresponding chain of
inclusions

M [1]I ⊂ M [2]I ⊂ · · · ⊂
⋃

n

M [n]I = M ′.

It has been shown in [R3] (see also [K]) that M ′ is isomorphic to a direct sum of copies
of M and itself a direct summand of M I ; there is an endo-finite submodule E of M I such
that

M I = M ′ ⊕ E.

Any endo-finite module E can be written as a direct sum of copies of finitely many
indecomposable endo-finite modules, say E1, . . . , Et. By assumption, all these modules Ei

are of finite length. A well-known lemma of Auslander asserts that any indecomposable
direct summand of M I of finite length is a direct summand of M itself, thus the modules
E1, . . . , Et occur as direct summands of M .

Since M is artinian as a module over its endomorphism ring, M is Σ-algebraic compact,
thus it is a direct sum of indecomposable modules with local endomorphism ring. Write
M = A ⊕ B, where A is a direct sum of copies of the various Ei and B has no direct
summand of the form Ei, for any i. We want to show that B is of finite length. This then
shows that M is of finite type.

The modules A, B are also filtered, with An = A∩M [n], Bn = B∩M [n] (it is obvious
that A =

⋃
n An, B =

⋃
n Bn). For any n there is some n′ with M [n] ⊆ An′⊕Bn′ . (Namely,

let x ∈ M [n], write x = a + b with a ∈ A, b ∈ B. Then there is some n′ with a, b ∈ Mn′ ,
thus a ∈ An′ , b ∈ Bn′ .)

We write A′ =
⋃

i AI
i and B′ =

⋃
i BI

i . Then

M ′ = A′ ⊕ B′

(the inclusion ⊇ is obvious, the other follows from M [n]I ⊆ (An′ ⊕ Bn′)I = AI
n′ ⊕ BI

n′ ⊆
A′ ⊕ B′.). We see that

(AI/A′) ⊕ (BI/B′) = M I/M ′ = E,

thus AI/A′ = EA and BI/B′ = EB with E = EA ⊕ EB. In particular, EA and EB are
direct sums of copies of E1, . . . , Et. Since the direct sum of the inclusion maps

A′ → AI and B′ → BI
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is a split monomorphism, the maps themselves are split monomorphisms, thus

AI ≃ A′ ⊕ EA and BI ≃ B′ ⊕ EB.

Consider the last isomorphism. If Ei is a direct summand of EB, then it is a direct summand
of B (Auslander Lemma), impossible. This shows that EB = 0. But then B′ = BI implies
that B = Bn for some n, thus B ⊆ M [n]. This shows that B is of finite length.

May-be one should record: Assume that M I/M ′ is the direct sum of copies of inde-
composable modules E1, . . . , Et of finite length, then M is the direct sum of a finite length
module B and of copies of the modules Ei.

(3.5) As we have mentioned, the second Brauer-Thrall conjecture claims the following:
if Λ is a representation-infinite algebra, then there are infinitely many natural numbers d
such that there are infinitely many indecomposable Λ-modules of endo-length d.

Note that this is an assertion which concerns only modules of finite length. But it
seems that it may be reasonable to look for a solution using modules of infinite length. As
we have seen, it will be sufficient to show that a representation-infinite algebra has a Prüfer
module which is not of finite tye, since this implies the existence of a generic module and
thus the existence of infinitely many indecomposable Λ-modules of endo-length d.

4. The ladder construction of Prüfer modules

We return to rings and modules in general.

(4.1) This construction was exhibited in [R6], let us recall here the essential steps:
We start with a proper inclusion U0 ⊂ U1 (say with cokernel W ) and a map v0 : U0 → U1,
and we form the pushout of w0 and v0

0

0

0

0U0 U1

U1 U2

W

W............................................................................. ............

............................................................................. ............

............................................................................. ............

............................................................................. ............

............................................................................. ............

............................................................................. ............

............................................................................. ............

............................................................................. ............

..................................

.....
..
.....
.....
..

..................................

.....
..
.....
.....
..

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

....

w0

w1

v0 v1

we obtain a module U2, as well as a monomorphism w1 : U1 ⊂ U2 (again with cokernel W )
and a map v1 : U1 → U2.

Using induction, we obtain in this way modules Ui, monomorphisms wi : Ui ⊂ Ui+1

(all with cokernel W ) as well as maps vi : Ui → Ui+1 such that vi+1wi = wi+1vi for all
i ≥ 0. This means that we obtain the following ladder of commutative squares:

U0
w0−−−−→ U1

w1−−−−→ U2
w2−−−−→ U3

w3−−−−→ · · ·

v0

y v1

y v2

y v3

y

U1
w1−−−−→ U2

w2−−−−→ U3
w3−−−−→ U4

w4−−−−→ · · ·
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We form the inductive limit U∞ =
⋃

i Ui (along the maps wi). Since all the squares
commute, the maps vi induce a map U∞ → U∞ which we denote by v∞:

U0
w0−−−−→ U1

w1−−−−→ U2
w2−−−−→ U3

w3−−−−→ · · ·
⋃

i Ui = U∞

v0

y v1

y v2

y v3

y
yv∞

U1
w1−−−−→ U2

w2−−−−→ U3
w3−−−−→ U4

w4−−−−→ · · ·
⋃

i Ui = U∞

We also may consider the factor modules U∞/U0 and U∞/U1. The map v∞ : U∞ → U∞

maps U0 into U1, thus it induces a map

v : U∞/U0 −→ U∞/U1.

and this map v is an isomorphism. Namely, there are the commutative diagrams with
exact rows:

0 −−−−→ Ui−1
wi−1

−−−−→ Ui −−−−→ W −−−−→ 0
yvi−1

yvi

∥∥∥

0 −−−−→ Ui
wi−−−−→ Ui+1 −−−−→ W −−−−→ 0

which means that the cokernel Ui/Ui−1 = W of wi−1 is mapped under the restriction vi

of v isomorphically onto the cokernel Ui+1/Ui = W of wi. Thus, we see that the map v is
a map from a filtered module with factors Ui/Ui−1 (where i ≥ 1) to a filtered module with
factors Ui+1/Ui (again with i ≥ 1), and the maps vi are just those induced on the factors.
Since all the maps vi are isomorphisms, also v itself is an isomorphism.

It follows: The composition of maps

U∞/U0
p

−−−−→ U∞/U1
v−1

−−−−→ U∞/U0

(p the projection map) is an epimorphism φ with kernel U1/U0. It is easy to see that φ is
locally nilpotent.

Proposition. The module U∞/U0 is a Prüfer module with respect to the endomor-
phism φ = v−1 ◦ p, its basis is W = U1/U0.

This shows that starting with a proper inclusion U0 ⊂ U1 and a map v0 : U0 → U1,
the ladder construction yields a Prüfer module U∞/U0 with bases U1/U0.
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(4.2) In case also v0 is injective, we obtain a second Prüfer module. Namely, there is
the following chessboard:

U0
w0−−−−→ U1

w1−−−−→ U2
w2−−−−→ U3

w3−−−−→ · · ·

v0

y v1

y v2

y v3

y

U1
w1−−−−→ U2

w2−−−−→ U3
w3−−−−→ · · ·

v1

y v2

y v3

y

U2
w2−−−−→ U3

w3−−−−→ · · ·

v2

y v3

y

U4
w3−−−−→ · · ·

v3

y

· · ·

We see both horizontally as well as vertically ladders: the horizontal ladders yield U∞ and
its endomorphism v∞; the vertical ladders yield U ′

∞ with an endomorphism w∞.

(4.3) Examples. First, let us show that the ordinary Prüfer groups (as considered
in abelian group theory) are obtained in this way. Let R = Z be the ring of integers.
Module homomorphisms Z → Z are given by the multiplication with some integer n, thus
we denote such a map just by n. Let U0 = U1 = Z and w0 = 2, v0 = n. If n is odd, then
the Prüfer module U∞/U0 is just the Prüfer group for the prime 2 (and U∞(2, n) = Z[ 12 ] is
the subring of Q generated by 1

2). Note that if n is even, then the Prüfer module U∞/U0

is an elementary abelian 2-group.

Second, let R = K(2) be the Kronecker algebra over some field k. Let U0 be simple
projective, U1 indecomposable projective of length 3 and w0 : U0 → U1 a non-zero map with
cokernel H (one of the indecomposable modules of length 2). For any map v0 : U0 → U1, we
obtain a Prüfer module M = U∞/U0. In case v0 /∈ kw0, this module M is indecomposable
(and it is the Prüfer module H[∞] as considered in [R2]), otherwise M it is a direct sum
of copies of H.

(4.4) Lemma. The modules U∞ as well as U∞/U0 are generated by U1.

Proof: We only have to consider U∞ =
⊕

i Ui. The pushout construction shows that
for i ≥ 2, the module Ui is a factor module of Ui−1⊕Ui−1, thus by induction Ui is generated
by U1.

(4.5) A self-extension 0 → W → W [2] → W → 0 is called a ladder extension provided
there is a commutative diagram with exact rows

0 −−−−→ U0
w0−−−−→ U1

q
−−−−→ W −−−−→ 0

α

y
y

∥∥∥

0 −−−−→ W −−−−→ W [2] −−−−→ W −−−−→ 0
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such that α = qv0 for some v0 : U0 → U1. In this case,the given self-extension is the W [2]
part of the Prüfer module W [∞] which is obtained from the maps w0, v0 using the ladder
construction.

One should note that not every self-extension of a module is a ladder extension (for
example, if S is a simple R-module, where R is artinian, then no non-trivial self-extension
of S is a ladder extension). On the other hand, for R hereditary, every self-extension is a
ladder extension [R6].

(4.5) Assume that Λ is a finite-dimensional hereditary k-algebra. (For example, Λ
may be the path algebra kQ of a finite quiver Q without oriented cycles.)

Recall that the Euler characteristic

∑
i≥0

(−1)i dimExti(M, M ′)

yields a quadratic form q on the Grothendieck group K0(Λ) and q is positive definite if
and only if Λ is representation-finite. (In the quiver case, this means that Q is the disjoint
union of quivers of Dynkin type An, Dn, E6, E7, E8.)

We see: Any Λ-module M with End(M) a division ring and q([M ]) ≤ 0 is the basis of
an indecomposable Prüfer module. The Prüfer module is unique if and only if q([M ]) = 0.

5. The search for pairs of embeddings

Let Λ be a representation-infinite artin algebra. The aim is to find pairs of embeddings
w0, v0 : U0 → U1 such that the corresponding Prüfer module U∞/U0 is not of finite type.

(5.1) For dealing with Prüfer modules obtained using the ladder construction, it seems
to be of interest to relate the finite type properties of U∞ and U∞/U0.

Lemma. U∞/U0 is of finite type iff U∞ is of finite type.

Proof. First, assume that U∞ is of finite tye, say U∞ =
⊕

i∈I Mi with all Mi inde-
composable of finite length, and with only finitely many isomorphism classes of modules
involved. Now U0 ⊆

⊕
i∈I′ Mi = M ′ with I ′ a finite subset of I. Then

U∞/U0 = M ′/U0 ⊕
⊕

i∈I\I′

Mi,

is a direct sum of indecomposable modules of finite length (one has to decompose M ′/U0)
and only finitely many isomorphism classes are involved.

The converse follows from Roiter’s extension argument, see for example [R5].

(5.2) Proposition. Assume that Λ is tame hereditary (or tame concealed). Let M, N
be a Λ-modules such that N is of finite length and generates M . If M is not of finite type,
then N has a direct summand which is sincere and preprojective.

Note that we cannot claim that N has an indecomposable direct summand which is
sincere and preprojective. A typical example will be N = ΛΛ, this module generates all
the Λ-modules, but usually has no indecomposable sincere direct summand.
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Proof of Proposition. Let k be the center of Λ, this is a field and Λ is a finite-
dimensional k-algebra. We will assume that Λ is hereditary (the case when Λ is concealed
requires only few modifications). Let N = P ⊕R⊕Q with P preprojective, R regular and
Q preinjective. Assume P is not sincere, thus there is a simple Λ-module S which does not
occur as a composition factor of P .

We can order the indecomposable preprojective modules P1, P2, . . . and the inde-
composable preinjective modules . . . , Q2, Q1 such that Hom(Pi, Pj) = 0 for i > j and
Hom(Qi, Qj) = 0 for i < j. There is an index n such that all the modules Pi with i > n
are sincere.

Note that there is a bound b such that dimk Hom(R, Qi) ≤ b for all i. Namely, Q(i) =
τ tI(y) for some t ≥ 0 and some vertex y in the quiver of Λ. Since R is regular, it is τ -
periodic with period at most 6, thus dimk Hom(R, Qi) is bounded by the maximum of the
numbers dimk Hom(R, τ tI(y) with 0 ≤ t ≤ 5 and y a vertex of the quiver.

This implies the following: If Qi is generated by R, then there is a surjective map
Rb → Qi, and therefore the multiplicity [Qi : S] of S as a composition factor of Qi is
bounded by b[R : S]. There are only finitely many Qi with [Qi : S] ≤ b[R : S], thus there
is some m such that [Qi : S] > b[R : S] for all i > m. But this implies that a module Qi

with i > m cannot be generated by P ⊕ R (the trace of R in Qi is a submodule with at
most b[R : S] composition factors S and the trace of P in Qi does not provide any such
composition factor).

We can assume in addition that m is chosen in such a way that all the indecomposable
direct summands of Q are of the form Qi with i ≤ m. Then we see that the modules a
module Qi with i > m cannot be generated by N = P ⊕ R ⊕ Q.

Now let M be a (not necessarily finitely generated) module which is generated by
N . We want to show that M is of finite type. According to [R2], we can write M =
M1 ⊕M2 ⊕M3 where M1 is a direct sum of modules of the form Pi with 1 ≤ i ≤ n, where
M3 is a direct sum of modules of the form Qi with 1 ≤ i ≤ m, and where M2 has no
direct summand of the form Pi with 1 ≤ i ≤ n, or Qi with 1 ≤ i ≤ m. With M also M2

is generated by N , and we want to see that M2 is of finite type (then also M is of finite
type).

Thus we see that we can assume that M = M2, this means that we consider a module
generated by N which has no direct summand of the form Pi with 1 ≤ i ≤ n, or Qi with
1 ≤ i ≤ m. First of all, M cannot have any indecomposable preprojective direct summand
M ′. Namely, Hom(R ⊕ Q, M ′) = 0, thus M ′ would be generated by P , but P is not
sincere, whereas M ′ is sincere. Second, we note that M cannot have any indecomposable
preinjective direct summand. Namely, it would be generated by N , but an indecomposable
preinjective module Qi which is generated by N satisfies i ≤ m.

This means that M is regular (as defined in [R2]). Also, we see that Hom(Q, M) = 0,
thus M is generated by P ⊕R. Let M ′ be the trace of R in M . Since R is a regular module
of finite length, it follows that M ′ is regular and of finite type (it is a direct sum of copies
of the regular factor modules of R). Now M/M ′ is generated by P , thus it is not sincere
and therefore of finite type. Write M/M ′ as a direct sum of indecomposable modules,
and collect these modules according to the property of being preprojective, regular or
preinjective. Thus M/M ′ = P ′ ⊕ R′ ⊕ Q′, where P ′ is a direct sum of modules of finite
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length modules which are preprojective, R′ is a direct sum of modules of finite length which
are regular, and Q′ is a direct sum of modules of finite length which are preinjective.

Now P ′ = 0, since otherwise M would have a proper factor module which is pre-
projective (and therefore a direct summand). Also, Q′ = 0, since otherwise M cannot be
regular.

This shows that M is an extension of M ′ by M/M ′ = R′. As we have seen, M ′ is a
direct sum of copies of the regular factor modules of R. whereas R′ is a direct sum of finite
length modules which are regular and do not contain the composition factor S. But this
implies that M is regular and is of finite type.

6. Take-off subcategories.

Let Λ be a representation-infinite artin algebra and mod Λ the category of finitely
generated Λ-modules.

A full subcategory C of mod Λ is said to be a take-off subcategory, provided the
following conditions are satisfied:
(1) C is closed under direct sums and under submodules.
(2) C contains infinitely many isomorphism classes of indecomposable modules.
(3) No proper subcategory of C satisfies (1) and (2).

(6.1) Theorem. Any subcategory satisfying (1) and (2) contains a take-off subcate-
gory.

In particular, this means that the module category of any representation-infinite artin
algebra has at least one take-off subcategory: take-off subcategories always do exist!

(6.2) Examples: If Λ is a connected hereditary algebra which is representation-
infinite, then the preprojective modules form a take-off subcategory.

In general, there may be several take-off subcategories: For example, if Λ has several
minimal representation-infinite factor algebras, then any such factor algebra yields a take-
off subcategory of modΛ.

Remark. Observe that the existence of take-off subcategories is in sharp contrast to
the usual characterization of “infinity” (a set is infinite iff it contains proper subsets of the
same cardinality)!

(6.3) Properties of a take-off subcategory C

Let C be a take-off subcategory of modΛ.

(1) For any d, there are only finitely many isomorphism classes of modules of length
d which belong to C.

Thus: C contains indecomposable modules of arbitrarily large finite length.

Let C be the class of all Λ-modules M such that any finitely generated submodule of
M belongs to C.

(2) There are indecomposable modules M in C of infinite length.
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(3) If M is an indecomposable modules M in C of infinite length, then any indecom-
posable module N in C embeds into M — even a countable direct sum N (N) embeds into
M .

(6.4) We have seen that modΛ contains take-off subcategories C, such a subcate-
gory C contains indecomposable modules M of arbitrarily large finite length, and thus
indecomposable modules with arbitrarily large socle.

Conjecture. Let U be an indecomposable Λ-module belonging to a take-off subcatego-
ry. If there is a simple module S such that S7 embeds into U , then there are two embeddings
w0, v0 : S → U such that the corresponding Prüfer module is not of finite type.

Remark. The bound 7 cannot be lowered, as the path algebra kQ of the Ẽ8-quiver
Q with subspace orientation shows. Note that kQ is a tame hereditary algebra, and for a
tame hereditary algebra, the preprojective modules form the unique take-off subcategory.
Now consider the indecomposable representation U with dimension vector

5 4 3 2 0

6 4 2

3

is preprojective and S6 embeds into U , where S is the simple projective kQ-module. Note
that U is not faithful, thus the Prüfer modules constructed by pairs w0, v0 : S → U are
also not faithful. But all non-faithful kQ-modules are of finite type.
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