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Abstract. We are going to determine all the self-injective cluster-
tilted algebras. All are of finite representation type and special biserial.
There are two different classes. The first class are the self-injective serial
(or Nakayama) algebras with n>3 simple modules and Loewy length n—1.
The second class of algebras has an even number 2m of simple modules; m
indecomposable projective modules have length 3, the remaining m have
length m+1.

Let k£ be a field. The algebras we will deal with are finite-dimensional associative
k-algebras with 1. Given such an algebra A, the modules considered will usually be (finite-
dimensional) left A-modules. The k-duality will be denoted by D = Hom(—, k).

The class of cluster-tilted algebras has been introduced by Buan, Marsh and Reiten
[BMR], at least in case k is algebraically closed. The cluster-tilted algebras are the en-
domorphism rings of the cluster-tilting objects in a cluster category. According to Zhu
[Z] and Assem, Briistle and Schiffler [ABS], they also can be defined as the semi-direct
extensions of B by the B-B-bimodule Ext%(D(Bg), gB), where B is a tilted algebra. The
aim of this note is to single out those cluster-tilted algebras which are self-injective.

The occurence of self-injective algebras in the context of tilting hereditary algebras
may on first sight come as a surprise, but it is not! Already the smallest example of a
cluster-tilted algebra which is not hereditary is self-injective: it is a serial algebra with
3 simple modules and radical square zero, the Dynkin type of the corresponding cluster
category is As. If one wants to see other self-injective cluster-tilted algebras, one does not
find any further example when looking at the Dynkin types A, with n > 4. As we will
show, one finds such examples by dealing with the Dynkin types D,, (and A3 fits into this
scheme, since D3 = A3). It may be reasonable to stress here that cluster-tilted algebras
have quite different properties than tilted algebras: in particular, they are Gorenstein
algebras of Gorenstein dimension at most 1, as Keller and Reiten [KR| have shown. Note
that the global dimension of a Gorenstein algebra of Gorenstein dimension at most 1 is 0,
1 or infinite (whereas the proper tilted algebras have global dimension 2).

It is rather easy to see that self-injective cluster-tilted algebras have to be of finite
representation type and we will see that all are obtained from special biserial k-algebras by
scalar extension. There are two different classes. The first class are serial (or Nakayama)
algebras with n > 3 simple modules such that all indecomposable projective modules are of
length n—1. For the second class of algebras, there are two kinds of indecomposable projec-
tive modules: half of them are serial of length 3, for the other half, the heart rad P/ soc P
of any indecomposable projective module P is the direct sum of a serial module and a
simple module. Here is the precise description:

Theorem. A finite-dimensional basic connected k-algebra A is a non-simple self-
injective cluster-tilted algebra if and only if A = A’ @ D where D is a division k-algebra
and A’ is either



(i) the path algebra of a cyclic quiver with n > 3 vertices modulo the ideal generated by
the paths of length n — 1, or else

(ii) for m > 3 the path algebra of a quiver with n = 2m wvertices labeled 1,2,...,m and
1,2 ....om!, with arrows o;: i — i+1, B;:i—1d', B.:i — m+i—1 and relations

5i+104i, Oém+i—1ﬂ§, 52@' = Om+i—1 " OG4100,

with 1 <14 <m (and calculations modulo m).

Let us stress that in all cases the Dynkin type of the corresponding cluster category is D,,
with n > 3 (where D3 = A3).

1. Criterion.

Let H be a connected hereditary finite-dimensional k-algebra. Let n be the number of
isomorphism classes of simple H-modules. We denote by C(H) the corresponding cluster
category; by definition, this is the orbit category of the derived category D’(mod H) with
respect to the functor F' = 7, '[1], where [1] is the shift functor and 7, is the Auslander-
Reiten translation functor in the derived category. We denote by 7. the Auslander-Reiten
translation functor in the cluster category; both 74 and 7. are invertible. The Auslander-
Reiten translation in mod H itself will be denoted by 7.

Let T be a multiplicity-free tilting H-module with endomorphism ring B = B(T).
We may consider T as an object in the cluster category, and we denote by A = A(T) its
endomorphism ring in the cluster category. The algebra B is a tilted algebra and A is the
semi-direct extensions of B by Ext%(D(Bg), pB). Note that all cluster-tilted algebras A
are obtained in this way, see [Z] and [ABS] (but also [R2]).

The question which we consider here is: when is A(T) self-injective?

Lemma. The cluster-tilted algebra A(T) is self-injective if and only if 72T is isomor-
phic to T

Proof: Write T' = @;_, T; with T; indecomposable. The category mod A is the factor
category of C(H) modulo the ideal generated by the objects 7.7;; in this factor category,
the objects T; are the indecomposable projective ones, the objects 72T; the indecomposable
injective ones. In order for A to be self-injective we just need that any indecomposable
injective A-module is projective, but this means that any 727; is isomorphic to some T},
so that 72T is isomorphic to T

2. Some tilting modules, tilted algebras and the corresponding cluster-
tilted algebras.

First, let us consider path algebras k@) with @) of type D,,, n > 3, and exhibit tilting
modules T" such that the corresponding cluster-tilted algebra A(T") is self-injective.

2.1. Case D3 = As. Let @Q be the linearly oriented quiver of type As, and H = kQ
its path algebra. Let T be the unique multiplicity-free tilting H-module such that its
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endomorphism ring is not hereditary: 7" is the direct sum of the indecomposable projective-
injective module and the two simple modules which are projective or injective. It is easy
to see (and a well-known example in the literature) that the algebra A(T") is serial with 3
simple modules and the Loewy length of any indecomposable projective module is 2. Here
are the Auslander-Reiten quivers of C(H) and of mod A. Note that in both cases the left
hand boundary has to be identified with the right hand side using a twist in order to form
a Mobius strip. The summands T; are marked by a star .

|
For the rerr\{aining cases, let () be the D,,-quiver where Y > 4 with subspace orientation
(this means that the branching vertex is the unique sink). Let a,b be two sources which
are neighbors of the sink, and ¢ the remaining source:
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2.2. The case D, with n > 4, using two short arms. If n = 2m is even, let

T (69:1—01 T_ziP(a)> @ (@:)1 ¢‘2i‘1P(b)>,

whereas if n = 2m + 1 is odd, let

T = (@ZOT_%P(CL)) ® (@Z_Olf—%—lp(b)).

It is easy to see that both B(T') and A(T') are serial algebras and that all the indecom-
posable projective A(T)-modules have Loewy length n — 1. Thus, the quiver of A(T) is a
cycle with n vertices, and all the paths of length n — 1 are zero relations. If we label all
the arrows by «, then the relations for A(T) can be written just in the form o”~! = 0. It
is not difficult to see that these relations generate the ideal of relations.

Note that the A3 case may be considered as part of this sequence of serial algebras.
For a better intuition, we are going to exhibit the cases n =7 and n = 8.

Here is the case n = 7. In this case, the upper part, given by the two short arms,
provides a Mobius strip. In general, the lower part given by the long arm is always a
cylinder, whereas for n odd, the short arm part of the Auslander-Reiten quiver yields a
Mobius strip.



And here is the case n = 8. Here, the left hand boundary has to be identified with
the right hand side without any twist. In general, for n even, the Auslander-Reiten quiver
of C(H) is just ZD,,/T".
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The cluster-tilted algebra A = A(T') obtained from a hereditary algebra of type D,
by dealing with a tilting module which uses two short arms, is a serial algebra. The only
difference between the cases n even or odd concerns the Nakayama permutation: In the
even case, it has two orbits, in the odd case only one.

2.3. The case D,,, with m > 3, using the long arm and one short arm. Let

T_ (@Z;l T_ziP(a)> ® (@j:ol T‘Qi_lP(C)>,

this is a tilting module and the algebra A(T) can be presented by quiver and relation
as described in (ii) of Theorem. (This can be verified directly, but the calculation can
be shortened by using the multiplicative basis theorem [BGRS] for representation finite
k-algebras A with A/rad A being a product of copies of k).

Here we present the case Do, with m = 4.
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The quiver of A has the following shape (again, the right hand side has to be identified
with the left hand side):
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with relations
af = Pa =0, a™ =52

The shape of the indecomposable projective A-modules is as follows:
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The first indecomposable projective modules are those corresponding to the modules in
the short arm, the last ones are those corresponding to the modules in the long arm.
For arbitrary m, the indecomposable projective modules P corresponding to the direct
summands of 7" in a short arm are of length m + 1 and the heart rad P/ soc P is the direct
sum of a serial module of length m —2 and a simple module, whereas those indecomposable
projective modules P corresponding to vertices in the long arm are of length 3 (and of
course serial).

In this way, we have obtained certain self-injective cluster-tilted k-algebras A such
that A/rad A is a product of copies of k. If D is a division k-algebra, then the tensor
algebra A ®j D is still self-injective, but also a cluster-tilted algebra.

In general, let H be a finite-dimensional hereditary k-algebra with quiver ) being a
tree and such that the valuation of all edges of the quiver is (1,1) (this means that for
any pair of simple H-modules S, T, the bimodule Ext}, (T, S) is of length at most 1 when
considered as a left End(7")-module as well as when considered as a right End(S)-module).
If D is the endomorphism ring of a simple H-module, then it follows that H = H' ® D
where H' = k@, the path algebra of @), thus H is obtained from H’ by scalar extension.
According to [R1], also all the tilting H-modules T" are obtained from tilting H’-modules
T’ by scalar extension: T'=T' ®;, D. It follows, that the corresponding tilted algebras, as
well as the cluster-tilted algebras are obtained by scalar extension.

3. Self-injective cluster-tilted algebras are representation-finite.

We return to the general situation discussed in section 1. Thus, H is a connected
hereditary finite-dimensional k-algebra with n simple H-modules and C(H) is the corre-
sponding cluster category. Let T' = €D, T; be a multiplicity-free tilting H-module with
indecomposable direct summands T;.

Assume that T and 72T are isomorphic. Now T has only finitely many indecomposable
direct summands (namely n); this means that any object T; has to be 7.-periodic. If H
is wild, then C(H) has no 7.-periodic objects at all. Thus H cannot be wild. If H is
tame, then the 7.-periodic objects in C(H) are actually 7y-periodic modules. But it is
well-known that the number of 7g-periodic indecomposable direct summands of a tilting
H-module is at most n — 2. (A stable tube of rank r can have only r — 1 indecomposable
direct summands which are pairwise Ext-orthogonal, and the sum of these numbers r — 1
over all the tubes is n—2, see [DR].) This shows that any self-injective cluster-tilted algebra
A has to be representation-finite.



Note that the 1.-orbit of any summand T; has to have an even number of elements,
and then half of these elements are direct summands of T. Namely, if the 7.-orbit of T;
would have odd cardinality, then all the objects in this 7.-orbit would be direct summands
of T, but neighboring elements of a 7.-orbit have non-trivial extensions.

4. The various Dynkin types.

We have to consider now the various cases A,, By, ..., Fy,Gs in detail. Let A be
the quiver of H (we consider it as a valued quiver (see [DR]), if we deal with one of the
cases By, C,, Fy and G3). Let a be a vertex of A. Denote by P(a) the indecomposable
projective H-module corresponding to the vertex a. We are looking for natural num-
bers t such that Hompy (P(a), 75, P(a)) # 0. If 7;;°P(a) is not injective, then we see that
Exty (75" ' P(a), P(a)) # 0. Now, if ¢ is odd, then —t — 1 is even: We conclude that in this
case neither P(a) nor any other element of the 7.-orbit of P(a) can be a direct summand
of T. In order to decide whether Homg (P(a), 75" P(a)) is zero or not, one just has to
calculate the hammock function starting at P(a), see [G] or [RV].

Let us assume now that 7" has an indecomposable direct summand 7; which is in the
Tg-orbit of P(a).

(1) The vertex a is a boundary vertex of A. Assume to the contrary that a is an
interior vertex. We have Hompy (P(a),7"'P(a)) # 0. If A is different from Az, then
771 P(a) is not injective, thus we get a contradiction. If A is of type A3, then the 7.-orbit
of a has length 3, thus is of odd length, again a contradiction.

(2) The edge between a and its (unique) neighbor has valuation (1,1). Here again
we see that otherwise Hompy (P(a),7"1P(a)) # 0, and in this case 771 P(a) cannot be
injective. This immediately excludes Gs. Also, together with (1) it excludes B,, and C,,:
Namely, all the indecomposable summands of T" would have to belong to a single 7g-orbit
— but since the simple H-modules do have two different kinds of endomorphism rings, the
same is true for any tilting H-module ([R1], alternatively, we also could argue that the
orbit in question does not have enough elements).

Assume that A is of type D,, or E,, and that a = a1, as, ..., a, is the minimal path
from a to the branching vertex a,. If necessary, we write p = p(a).

(3) The number p is even. (We have Hompy (P(a), 7 PP(a)) # 0, and 7-PP(a) is not
injective.)

(4) If A = E,,, then p > 2. (Again, Homyg(P(a), 7 3P(a)) # 0, and 773P(a) is not
injective.)

The assertions (1), (3) and (4) exclude immediately the cases Fg, Es, and they show
that in case Er all the indecomposable direct summands of T" have to belong to the 7.-orbit
which contains the module P(a) with p(a) = 4. But any 7.-orbit of C(H) with H of type E7
is of length 10, thus only 5 indecomposable direct summands of T" can belong to this orbit.
Thus also E; is excluded. Similarly, we see that in case H is of type D,, and a(p) > 2,
then n = a(p) + 2 has to be even.

In order to exclude the case Fy, we only have to notice that Homg (P (a), 77 3P(a)) # 0
for any of the two boundary vertices.



Consider now the cases A,,. The two Ty-orbits of H yield a single 7.-orbit containing
n+3 elements. These are the only possible summands of T', thus we must have %(n—i—i’)) =n,
therefore n = 3.

Besides Aj also the cases D,, remain. Assume we are in case D,, and p(a) > 2. The
Te-orbit of P(a) contains precisely n elements, this shows that n has to be even. For n > 5,
there are two Tpg-orbits a with a(p) = 2; for n = 4, there are three such Ty-orbits. In
case n is odd, the two 7g-orbits with a(p) = 2 combine to form part of a single 7.-orbit
with 2n elements. In case n is even, the 7y-orbits with a(p) = 2 are contained in two (or,
for n = 4, three) separate 7.-orbits, each having n elements. All these 7.-orbits actually
occur, as we have shown in section 2.
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