Cluster-Concealed Algebras

Claus Michael Ringel (Bielefeld/Germany)

Nanjing, November 2010

Cluster-tilted algebras.

Let k be an algebraically closed field.

Let B be a tilted algebra (the endomorphism ring of a tilting A-module T, where A is a finite-dimensional hereditary algebra)

 $C = B^c = B \ltimes I$, the trivial extension with the B-B-bimodule $I = \operatorname{Ext}_B^2(DB, B)$, with $D = \operatorname{Hom}(-, k)$ the k-duality.

 B^c is called a *cluster tilted* algebras. (Buan-Marsh-Reiten, Zhu, Assem-Brüstle-Schiffler.)

Note: B is a subalgebra as well as a factor algebra of B^c ,

The C-modules N with IN = 0 are just the B-modules.

Dimension vectors.

R finite-dimensional k-algebra

 $K_0(R)$ its Grothendieck group of finitely generated R-modules modulo exact sequences:

 $K_0(R)$ is a free abelian group with basis the simple R-modules, using this basis, identify $K_0(R)$ with \mathbb{Z}^n , n the number of (isomorphism classes of) simple R-modules.

For an R-module N, let $\dim N$ be its element in $K_0(R)$, the coefficients of $\dim N$ are the Jordan-Hölder multiplicities of N.

The simple R-modules which are composition factors of N form the support of N.

Question.

Given a finite-dimensional algebra R, one may ask:

Are the indecomposable R-modules determined by their dimension vectors?

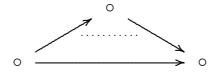
This means: If N, N' are indecomposable R-modules with $\dim N = \dim N'$, does it follow that N and N' are isomorphic?

This can be true only for algebras with finitely many isomorphism classes of indecomposable modules.

True: for R hereditary and representation-finite.

Not true: for the connected serial self-injective algebra with 2 indecomposable projective modules, both of length 2, both have dimension vector (1,1).

Not true for the algebra given by the following quiver with one zero relation:



Theorem 1. (Geng-Peng, R.)

Let C be a representation-finite cluster-tilted algebra. If N, N' are indecomposable C-modules with $\dim N = \dim N'$, then N and N' are isomorphic.

See Geng-Peng also for the link to cluster algebras:

Theorem 1 settles a conjecture of Fomin and Zelevinsky concerning cluster variables.

Note: If $C = B^c$ is representation-finite, and B = End(AT), then B is a concealed algebra

Concealed means: B = End(AT), with A finite-dimensional hereditary algebra and T a preprojective tilting A-module.

If B is concealed, B^c is said to be cluster-concealed.

Representation-finite cluster-tilted algebras are cluster-concealed algebras, but there are also many cluster-concealed algebras which are tame or wild.

Kac Theorem: The dimension vectors of the indecomposable A-modules are the positive roots of the (Kac-Moody) root system $\Phi_A \subset K_0(A)$.

Note that $q_A(x) \leq 1$ for any $x \in \Phi_A$, with q_A Euler form on $K_0(A)$

Since $B^c = B \ltimes I$, identify $K_0(B^c)$ and $K_0(B)$, and consider q_B the Euler form of B on $K_0(B) = K_0(B^c)$.

T multiplicity-free tilting A-module with $B = \operatorname{End}(T)$, let $G = \operatorname{Hom}_A(T, -) \colon \operatorname{mod} A \to \operatorname{mod} B$ be the tilting functor.

Let T_1, \ldots, T_n be indecomposable direct summands. Then $\dim T_1, \ldots, \dim T_n$ is a basis of $K_0(A)$, whereas $\dim G(T_1), \ldots, \dim G(T_n)$ is a basis of $K_0(B)$,

 $g: K_0(A) \to K_0(B)$ the linear bijection with $g(\operatorname{\mathbf{dim}} T_i) = \operatorname{\mathbf{dim}} G(T_i)$. Let $\Phi_B = g(\Phi_A)$.

If $x \in \Phi_A$, then x or -x belongs to \mathbb{N} , but Φ_B may have elements with some coefficients positive, some negative.

For any element $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$, let abs $x = (|x_1|, \dots, |x_n|)$.

Theorem 2. Let B be a concealed algebra and $C = B^c$ the corresponding cluster-concealed algebra,

- (a) The dimension vectors of the indecomposable C-modules are precisely the vectors abs x with $x \in \Phi_B$.
- (b) If Z is an indecomposable C-module, then $q_B(\dim N) \leq 1$ if and only if Z is a B-module; if N is not a B-module, then $q_B(\dim N)$ is an odd integer (greater than 2).
- (c) If N is an indecomposable C-module which is not a B-module, then $\operatorname{End}(N) = k$.

Remarks.

- 1. The quadratic form q_B depends on the choice of B (and not only on B^c).
- 2. Invariants such as quadratic forms or root systems have often been used for classifying indecomposable modules.

Usually, one guesses all these objects,

- then one shows that they are pairwise non-isomorphic
- and that all the indecomposable modules have been obtained;
- finally, one tries to describe the structure of the module category.

In our case the procedure is completely reversed: the module category is known from the beginning, but one is lacking sufficient information concerning the modules themselves. The missing A-modules. Recall the principles of tilting theory:

$$\mathcal{F} = \mathcal{F}(T) = \{ M \in \operatorname{ind} A \mid \operatorname{Hom}(T, M) = 0 \},$$

$$\mathcal{G} = \mathcal{G}(T) = \{ M \in \operatorname{ind} A \mid \operatorname{Ext}^{1}(T, M) = 0 \},$$

$$\mathcal{X} = \mathcal{X}(T) = \{ M \in \operatorname{ind} B \mid T \otimes_{B} M = 0 \},$$

$$\mathcal{Y} = \mathcal{Y}(T) = \{ M \in \operatorname{ind} B \mid \operatorname{Tor}_{1}(T, M) = 0 \}.$$

The pair $(\mathcal{F}, \mathcal{G})$ is a torsion pair in mod A. The pair $(\mathcal{Y}, \mathcal{X})$ is a torsion pair in mod B which is even split.

The functor $G = \operatorname{Hom}(T, -)$ gives an equivalence $\mathcal{G}(T) \to \mathcal{Y}(T)$ the functor $F = \operatorname{Ext}^1(T, -)$ gives an equivalence $\mathcal{F}(T) \to \mathcal{X}(T)$.

We are concerned with

$$\mathcal{M}=\mathcal{M}(T)=\{M\in\operatorname{ind} A\mid \operatorname{Hom}(T,M)\neq 0,\ \operatorname{Ext}^1(T,M)\neq 0\},$$
 as well as with

$$\mathcal{N} = \mathcal{N}(B) = \{ N \in \text{ind } B^c \mid IN \neq 0 \},$$

 \mathcal{M} are the A-modules which are not send to B-modules, \mathcal{N} are the B^c -modules which are not B-modules.

The mixed modules of a torion pair.

In both cases, we deal with the mixed modules of torsion pairs:

 \mathcal{M} are the mixed modules for the torion pair $(\mathcal{F}, \mathcal{G})$ in mod A, \mathcal{N} are the mixed modules for the torion pair $(\mathcal{Y}, \mathcal{X})$ in mod C.

There is a general procedure for recovering the mixed modules of a torsion pair.

Let $(\mathcal{F}, \mathcal{G})$ be a torsion pair in the abelian category \mathcal{A} . For $A \in \mathcal{A}$, let tA be its torsion subobject.

Proposition (Kiev school, \sim 1972). There is a functor

$$\eta \colon \mathcal{A} \to \operatorname{Mat} \operatorname{Ext}^1(\mathcal{F}, \mathcal{G})$$

which is full, dense and with kernel the ideal generated by all maps $\mathcal{F} \to \mathcal{G}$,

namely for $A \in \mathcal{A}$, let $\eta(A) = (A/tA, tA, \epsilon_A)$, with ϵ_A the equivalence class of the exact sequence $0 \to tA \to A \to A/tA \to 0$.

What is $\operatorname{Mat} \operatorname{Ext}^1(\mathcal{F}, \mathcal{G})$?

The matrix category of a bimodule.

 \mathcal{A} , \mathcal{B} additive categories $E = {}_{\mathcal{A}}E_{\mathcal{B}}$ an \mathcal{A} - \mathcal{B} -bimodule (= a bilinear functor $\mathcal{A}^{op} \times \mathcal{B} \to \text{mod } k$)

Mat E is the category of E-matrices (introduced by Drozd 1972):

Objects are the triples (A, B, m), with A object of \mathcal{A} , B object of \mathcal{B} and $m \in E(A, B)$.

Morphisms $(A, B, m) \to (A', B', m')$ are pairs (α, β) of a morphism $\alpha \colon A \to A'$ in \mathcal{A} and a morphism $\beta \colon B \to B'$ in \mathcal{B} , such that $m\beta = \alpha m'$.

For a bimodule $_{\mathcal{A}}E_{\mathcal{B}}$, introduce a quadratic form r_E on the direct sum of $K(\mathcal{A}, \oplus)$ and $K(\mathcal{B}, \oplus)$,

X object in \mathcal{A} , and Y object in \mathcal{B} , let

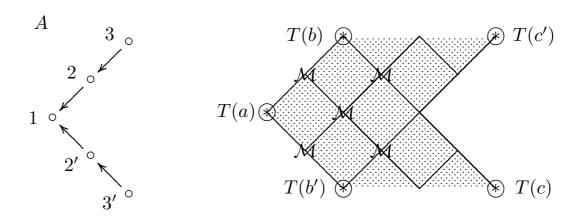
$$r_E((X,Y)) = \dim \operatorname{End}_{\mathcal{A}}(X) + \dim \operatorname{End}_{\mathcal{B}}(Y) - \dim E(X,Y),$$

and extend this to a quadratic form on $K(\mathcal{A}, \oplus) \oplus K(\mathcal{B}, \oplus)$.

Recall the usual graphical presentation of such quadratic forms, using two kinds of edges, solid ones and dotted ones.

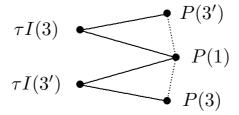
Example. A path algebra of a quiver Q of type \mathbb{A}_5 , with its Auslander-Reiten quiver, and a tilting module with marks *

 \mathcal{G} = the modules T(a), T(b), T(b') and the indecomposable injective modules, \mathcal{F} = the two modules $\tau I(3)$ and $\tau I(3')$.



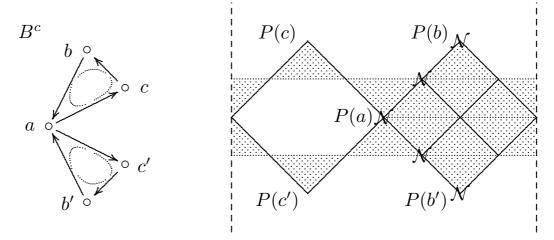
 \mathcal{M} are the mixed modules.

Recall that mod A is described by Mat E with $E = \operatorname{Ext}^1(\mathcal{F}, \mathcal{G})$. Here is the essential part of r_E :



(we have deleted the isolated vertices).

Here is the algebra B^c , with its Auslander-Reiten quiver and the positions of the five mixed modules in \mathcal{N} .



Here we deal with the category $\operatorname{Mat} E'$ with $E' = \operatorname{Ext}^1(\mathcal{Y}, \mathcal{X})$.

The bijection.

 $\textbf{Proposition.} \ \textit{Let} \ \textit{T} \ \textit{be a preprojective tilting module}.$

There is a bijection

$$\iota \colon \operatorname{ind} A \to \operatorname{ind} B^c$$
,

such that for $M \in \operatorname{ind} A$, the restriction of $\iota(M)$ to B is $G(M) \oplus F(M)$.

(Recall:
$$G = \text{Hom}(T, -)$$
, and $F = \text{Ext}^1(T, -)$)

Remark. For any A-module M, we have

$$G(M) = G(tM)$$
 and $F(M) = F(M/tM)$.

Thus we could write $\iota(M) = G(tM) \oplus F(M/tM)$.

This shows:

we deal with the middle terms of the exact sequences

$$0 \to tM \to M \to M/tM \to 0,$$

$$0 \to F(M/tM) \to \iota(M) \to G(tM) \to 0.$$

The relation between the bimodules E and E'.

Recall that $\mathcal{F} \simeq \mathcal{X}$ and $\mathcal{G} \simeq \mathcal{Y}$.

We try to compare the bimodule $E' = \operatorname{Ext}^1(\mathcal{Y}, \mathcal{X})$ (or better, its dual) with an \mathcal{F} - \mathcal{G} -bimodule.

Using tilting theory as well as the basic Auslander-Reiten formula

$$\operatorname{Ext}^1(F,G) \simeq D\operatorname{Hom}(G,\tau F)$$

(for modules over a hereditary algebra), it turns out:

E and E' are dual bimodules.

Theorem (de la Peña - Simson, 1992). Let E be a bimodule.

Assume that the category Mat E is directed.

Then r_E is weakly positive,

and the indecomposable objects in Mat E correspond bijectively to the positive roots of r_E (via coordinate vectors).

Application:

Recall that the bimodules E, E' are dual to each other, thus r_E and $r_{E'}$ have the same root system.

Mat E is (essentially) a factor category of the preprojective A-modules, thus directed.

Similarly, Mat E' is (essentially) a factor category of a connecting component of B_{∞} -modules, thus also directed.

Recall: $B^c = B \ltimes I$, with $I = \operatorname{Ext}_B^2(DB, B)$, and this has the Galois covering

$$B_{\infty} = \begin{bmatrix} \ddots & \ddots & & & & \\ & B & I & & & \\ & & B & I & & \\ & & & B & \ddots \\ & & & & \ddots \end{bmatrix}$$

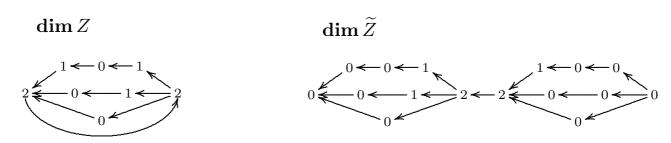
Separation Property.

If T is a preprojective tilting module, and M is indecomposable, then the supports of F(M) and G(M) are disjoint.

Example. Consider the canonical algebra B of type \mathbb{E}_7 and the corresponding cluster-tilted algebra B^c :



Here is a typical indecomposable B^c -module Z as well as the corresponding B_{∞} -module \widetilde{Z}



This explains why we have to use the absolute value abs x. The left part of \widetilde{Z} belongs to \mathcal{X} , the right to \mathcal{Y} .

Recall the separation property:

Let T be a preprojective tilting module, and M an indecomposable A-module. Then the B-modules $G(M) = \operatorname{Hom}_A(T, M)$ and $F(M) = \operatorname{Ext}^1(T, M)$ have disjoint supports.

This is the reason for the appearance of absolute values in Theorem 2.

If T has an indecomposable regular direct summand, the separation property no longer holds.

Thus, one cannot expect that a generalization of the main theorem for arbitrary cluster-tilted algebras will use the vectors abs x with $x \in \Phi_B$.