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I. The problem: Invariant subspaces of a nilpotent operator 7 .
Let k be a field.

Let T" be a nilpotent linear operator on some vector space V.
Example 1. Take as T the (n x n) Jordan block (with eigenvalue 0)

0 1 -
0 1

it operates on V = k™.
What are the invariant subspaces U of V 7
(invariant = T-invariant, i.e. T(U) C U .)

The only possibilities for U are the subspaces
0, kxon 1 K2xom2 ..., k",

they form a chain.



In general, T' will not be a single Jordan block, but a diagonal sum of Jordan
blocks.

Example 2. The first interesting case is T = J(3) & J(1), this is the matrix

0 1
0 1
JB3)e J(1) = :
O :
. 0
It operates on V = k*. Let ej,...,es be its canonical basis.

Let U = (ez + ey, e3).
Obviously, T(U) = (e3) C U, thus U is an invariant subspace.

Claim: The triple (V,T,U) is “indecomposable”: If V =V’ o V" with
TVYCV', T(V')CV", and U=UNV')® UNV"),

then V/ =0 or V/ =0.



Nilpotent operators

A nilpotent operatoris a pair (V,T'), where V is a vector space and T: V — V
is a linear map with 7™ = for some n.

Typical example: The pair M (n) = (k™, J(n)), where J(n) is the Jordan block
J(n).

If A= (A1 > Xy >--- > )\) is a decreasing sequence of natural numbers (a
“partition”), let
M) =MA) DD M(A).

Any nilpotent operator is isomorphic to M(X) for a unique partition \.



Visualization: Dealing with a partition A = (A; > Ao > -+ > X)), we draw
the corresponding Young diagram.

Our convention: the parts correspond to the columns,

the 7-the column consists of \; boxes.

Example: A = (5,4,2)
or, say

Consider the boxes as €5 | €9 €11 T T T
base vectors for k™ es | es el YTroy
with T the shift ¥
downwards. €3 | €7 e

€2 | €6 x x
This yields ¥
J(5) ® J(4) @ J(2) €1 .




Let S(n) be the class of triples (V,T,U), where

V' is a finite-dimensional k-space V',
T a linear operator T: V — V with T" =0,
U a subspace of V with T'(U) C U, write W = V/U (if needed)

An isomorphism between (V,T,U) and (V’',T',U’) is an invertible linear map
£V = V! with f(U)=U" and fT =T'f.

Aim. To classify the isomorphism classes of such triples.
The direct sum of X = (V,T,U) and X' = (V',T',U’) is the triple

XX =VeaeV TeT UaslU.

(V,T,U) is said to be indecomposable provided it is not zero and not isomorphic
to a direct sum X @& X’ with non-zero triples X, X’ (the zero tripleis (0,0,0)).

Any triple is a direct sum of indecomposable triples and these direct summands
are unique up to isomorphism (Krull-Remak-Schmidt property).

Aim. To classify the isomorphism classes of indecomposable triples.



Again example 1 (“pickets”): °
The triples (V,T,U) with (V,T) = (k",J(n)).
As we have mentioned,

the only invariant subspaces U A .
are the subspaces I || ||
0, Ex0on1, K2 xom=2 ... ., k™ L1 [0 - -

A bullet indicates a generator of (U,T).

Easy: If (V,T,U) is indecomposable and dimU = 1, then (V,T) is a picket.

Again €3
E le 2:
xampie ea | eq with (U,T) generated ——o
e by es + ey

Note: Both U, W are of dimension 2 and indecomposable (with respect to T')
It follows: (V,T,U) is an indecomposable triple.



The difficulty of classifying the indecomposable objects in S(n) increases with
increasing n.

In S(n) there are two special triples: (k™,J(n),0) and (K™, J(n), k™).

n number of indecomposables
1 2 =2+ 0

2 5 =2+ 3

3 10 =2+ 8

4 20 =2+18

5 50 =2448

6 7

Richman-Walker (1999): If (V,T,U) in S(5) is indecomposable,
then dimV <12, dimU < 6, and dim KerT' < 3,
and these bounds are optimal.



The difficulty of classifying the indecomposable objects in S(n) increases with
increasing n.

In S(n) there are two special triples: (k™,J(n),0) and (K™, J(n), k™).

n number of indecomposables
1 2 =2+ 0

2 5 =2+ 3

3 10 =2+ 8

4 20 =2+18

5 50 =2448

6 7

The Online Encyclopedia of Integer Sequences provides for 2, 5, 10, 20, 50 two entries:
A051109 Hyperinflation sequence of banknotes, next numbers: 100, 200

A124146 USA currency denominations in dollars, next numbers: 100, 500

For 0, 3, 8, 18, 48, ... , there is no entry.



The difficulty of classifying the indecomposable objects in S(n) increases with
increasing n.

In S(n) there are two special triples: (k™,J(n),0) and (K™, J(n), k™).

n number of indecomposables

1 2 =24+ 0 =240

2 5 =2+ 3 =2+3.2
3 10 =24+ 8 =2+42-4
4 20 =24+18 =2+4+3-6
5 50 =2448 =2+4+6-8
6 00 =2+2.10

24 s2-2(n— 1)
We are going to study the case n = 6.

The dimension pair of a triple (V,T,U) is the pair (dimU,dim W) (where
W =V/U).



The case n = 6.

Theorem 1. A pair (u,w) of natural numbers is the dimension pair of an
indecomposable triple in S(6) if and only if (u,w) satisfies |u —w| <6 and is
(1,

7), (6,1), (7,1).

different from (0,0), (1,6),




We may reformulate part of Theorem 1 as follows:

Assume (V,T,U) is in S(6) and |dimU — 3 dim V| > 3. Then there are non-
zero subspaces V', V" with V =V’ ® V" such that

T(V)YCcV', T(V)CV" and U=UNV)aUNV").

For (V,T,U) indecomposable in §(6), the dimension of U is roughly half of
the dimension of V.

Why do we have to exclude the pairs (1,6), (1,7), (6,1), (7,1) ?

We have already noted that for (V,T,U) indecomposable and dimU = 1, then
(V,T) is indecomposable. This shows that (1,6) and (1,7) do not occur.

The pairs (6,1) and (7,1) are excluded, using duality: If (V,T,U) is in S(n),
then (V*,T*, (V/U)*) is also a triple in S(n).



For n <6 and (V,T,U) € S(n), we even have |u—w| < n,
and this bound is always optimal.

Here are the cases n = 2,3,4,5 (always, the picket region is shaded).

Encircled bullets: there are (precisely) two indecomposable triples.

Note: For n <5, the pair (n,n) does not occur as dimension pair!

For n > 7, the numbers |u — w| are not bounded,
but the possible dimension pairs are not yet known.



We return to n = 6.

), then the number of isomorphism

Theorem 2. If (u,w) is not in N(6,6
(6) with dimension pair (u,w) is finite

classes of indecomposable objects in S
(and independent of k ).

By contrast, the triples with dimension pair in N(6,6) depend on the field k.



Let (u,w) =1t(6,6) with ¢t € N;.

There are t disjoint one-parameter families of indecomposable triples with di-
mension pair (u,w).

€6 V =DM(6,4,2)
t=2
€5 |€10
t=1
€4 | €9 |€12 V =M(6,6,4,4,2,2)
€3 | €8 |€11 or
ez | e7 V =M(6,6,5,3,3,1)
€1
generators of U: es + el
es+ (1 —c)eg — cersn
for any c € k




Weakly homogeneous triples. An indecomposable triple (V,T,U) in S(n)
is called weakly homogeneous provided (V/U,T) is isomorphic to (U,T) and
(V,T) is isomorphic to (U,T) & M(n)* for some t. Then

dimU +tn =dimV =dimU + dim V/U = 2dim U,
thus dim(V,T,U) = t(n,n).
For n <5, there are no weakly homogeneous triples. Return to n = 6.

Theorem 3. For any t € Ny, there are t pairwise disjoint one-parameter
families of weakly homogeneous triples in S(6) with dimension pair t(6,6),
each being indexed by k\ {0,1}.

If k 1is algebraically closed, then there are only finitely many additional iso-
morphism classes indecomposable triples in S(6) with dimension pair t(6,6)
(and these triples are defined independently of k).

If (V,T,U) is weakly homogeneous, then U = M(4,2)" & M(5,3,3,1)° for
some r,s (and t =r + 2s).

For » > 0,s > 0, there are two one-parameter families of weakly homogeneous
triples with U = M (4,2)" & M (5,3,3,1)°. Later we will see how to distinguish
these two families.



Recall: (V,T,U) indecomposable in S(6). Then |dimU — £ dim V| < 3.
This means: The dimension of U is roughly half of the dimension of V.
If (V,T,U) is weakly homogeneous, then we even have: dimU = % dim V.
The structure theorem for weakly homogeneous triples asserts:
V =M(4,2)"® M(5,3,3,1)* & M(6)""2%. This implies:

dimKerT = i dim V

dim Ker 7% = 2 dim V

dimKer 7° = 11 dim V

% dimV < dim Ker T2
% dimV < dim Ker T*

< %dimV
< %dimV
dim Ker T*/ Ker T? = sdimV

Again, for indecomposable triples which are not weakly homogeneous,
these (in)equalities are roughly true: they hold up to small differences ...



Graded triples. A grading of the triple (V,T,U) is a direct decomposition
V =@P,c, Vi such that T(V;) C Viy and U = U N V;).

Theorem 4. For n =6, any triple in S(6) can be graded.
For indecomposable triples, the grading is unique up to shift.

Interpretation. Write (V,7T) = M (\) where A is a partition.
Visualize M (\) using the Young diagram of A, present the parts as columns.
A grading of (V,T,U) means to adjust the columns conveniently.

Examples:

The indecomposable triple
with dim pair (2,2)

The columns of a weakly homogeneous triple
with U = M (5,3,3,1) are adjusted as follows:




The grading theorem is the essential result!
It provides a lot of new invariants: We can refine

u = § Uq, w = E ws,

where
u;, =dimUNV;, w;, =dimV;/(UNV;).

A graded triple is a system of vector spaces and linear maps as follows:

T T T T
Ug U, Us
Vo Wi Vo

T T T T

The squares are commutative (and 76 = 0).



A remark concerning the proof of all the results presented here:

e One first deals with graded triples: Classification of the indecomposables,
determination of the global structure of the category.
e The structure of the category of graded triples implies that any triple can

be graded: Theorem 4.
e This then leads to the remaining assertions.

The classification of indecomposable triples follows a well-known procedure in
the representation theory of finite dimensional algebras:

e “Covering”.

e “Knitting”.

o “Tilting”.
However all these techniques had been available only for module categories
itself — here we deal with a proper subcategory of a module category, thus the
techniques had to be modified. (Note that any module category is abelian, the
category S(n) is not abelian!)

Up to now, S(n) was considered only as a class of objects, not as a category.
The appropriate notion of maps (V,T,U) — (V',T’,U’) is the following:
take the linear maps f: V — V' with fT =1T"f and f(U) CU’.



The Auslander-Reiten quiver of categories such as S(n) or S(n).

Let C a category such as S(n) or S(n).
The Auslander-Reiten quiver I'(C) describes
the factor category of C modulo its infinite radical, as follows:

e The vertices are the isomorphism classes [X] of the indecomposable
objects in C.

e The number of arrows [X]| — [X'] is dim Hom(X, X')/rad(X, X’)
Such arrows represent “irreducible maps”.

e In addition, there is a canonical bijection (the Auslander-Reiten transla-
tion) between the non-projective objects and the non-injective objects.

The translation is used to define relations (the ”mesh relations”) on I'(C).

In general, the Auslander-Reiten translation is not defined for all objects, some
objects may be “projective” or “injective”.

In the categories S(n), there are jut two triples of this kind, the triples

(k",J(n),0), and (k",J(n),k"),
both are “projective” and “injective” as well.



with n <5

The Auslander-Reiten quivers for S(n)

\../\,.7 AAN _\.
" " i m oy
YA NAA N /.x.%\..i\./.
LAk T oot




n number of indecomposables hidden Lie type
1 2 =2+ 0 =240 0
2 5 =2+ 3 =2+43-2 A;
3 10 =2+ 8 =2+4%.4 Dy
4 20 =2+18 =2+23.6 Eg
5 50 =24+48 =2+46-8 Eg
6 00 1\
a tree

Here is the list of the simply laced Dynkin diagrams considered in Lie theory:

0—0—0— —0—o0 A,
o\
0O—O0O— —0—0 D,
/
o)
o)
| En
0—0—0— —0—o0

(m=6,7,8)



s E— A
ANAN Mﬁmﬂ e

:_:. e
/\/m@?\/

with n <5

The Auslander-Reiten quivers for S(n)



A more general setting. For A a ring, let S(A) denote the class of pairs
(M,U), with M a finitely generated A-module and U a submodule of M.

We consider the case where A is a uniserial commutative ring of length n,
such as A = k[T']/T"™ (here, k[T] is the polynomial ring in one variable T")
or A=7/p" (with p a prime number).

Note that S(n) = S(k[T]/T™).

The problem to study S(Z/p™) was raised by Garrett Birkhoff in 1934:
To determine relativ tnvariants of subgroups;
i.e. 1nvariants under automorphisms of the given group.

For any uniserial commutative ring A of length n, the isomorphism classes
of the A-modules correspond bijectively to the partitions with parts of size
at most n, thus we can use the same box diagrams as in the special case of
nilpotent operators.

Theorem. For n <5, the Auslander-Reiten quiver of S(A) depends only on
n, not on A.



n number of indecomposables

1 2 =2+ 0

2 5 =24+ 3

3 10 =2+ 8 1984 Hunter-Richman-Walker
4 20 =24 18 1999 Richman-Walker

5 50 =2+48 1999 Richman-Walker

6 00 1934 (Birkhoft)

Birkhoff has shown that the indecomposable objects (M,U) in S(Z/p°) with
M of partition type (6,4,2) depend on the prime p (and the number of iso-
morphism classes tends to infinity, if p — oco)

But a complete classification of the indecomposable objects in S(Z/p°) is still
unknown (in contrast to S(k[T]/T°) = S(6)).

We return to consider S(6). Here we deal mostly with stable tubes.



What is a tube?

Two typical tubes in S(6):

NSNS \/
] / :ii“ n Iﬂﬁ\_ :/_=:i\_:: . _%_:’_:;:
AL UL B
B B B
NN TN T\

These are the exceptional tubes of rank 3 and 2 in 7.




Stable tubes of rank r.

Vertices: the pairs (z,y) € Z?
with y > 0 and z = ymod 2

Arrows: (z,y) —» (z+1,y+1)
and (r,y) —» (x+ 1,y — 1)
Translation 7(z,y) = (z—2,y)

Identify (z,y) with (x + 2r,y)

A homogeneous tube is a tube of rank 1

The Auslander-Reiten quiver
of the category of nilpotent operators
is a typical homogeneous tube!




:“IE\:__%:“:\:_/":“\E:_ﬁ“:"\ :_/:“\:_/:"\:_ ﬂ:"’lz

/! ::‘E\: /! :‘:\E_/ :‘:\.:—/ I.:!\I ./ "N ./ ::ﬂ\;;:

:”\\%/":\:“/”:\%/h:\l:/EE\%/:”I\Eg /:::’I
-/ N NN AN NG\

- NN N

\%/ L LA a

@@ I

NN A \é

E\ /E _______________ E\E/

The nonstable tube of S(6) E




The structure of S(n) for n =6

There are countable many stable tubular families in 7, all of type (6,3, 2).

A tubular family of type (6,3,2) has the following form:

Roo Ri1 Ro R

rank 6 rank 3 rank 2
l | | |

exceptional tubes homogeneous tubes

The index set for the tubular families we are interested in, will always be Py (k).



Here is the category S(6), and D is a fundamental domain for the shift o.

T[-1] To T - T1] To[2]

Any object in & (6) has a “slope” v € Q, the shift ¢ increases the slope by 1.
The objects with slope v form the subcategory 7.
The part containing the objects with slope in QT N [0, 1] looks as follows:

Tol - T1| ... 7% T% AT o T2 o T3 . | Tal ... T

2 3 4 5

VvV A4

The graded triples with a fixed slope form a tubular family of type (6,3,2).



Forgetting the grading

Tol - 7% 7} 7% 7'% 7-% |7'%| 7'% T
7 forgetful functor
T1
: 2
T1 T1
3 5

£ 7



To repeat: The classification of the indecomposable triples in S(6)

(in case k is algebraically closed):

There are two projective-injective triples, with dimension pair (0,6) and (6,0).

For the remaining triples, one needs three invariants .

First invariant: The slope,

a rational number 0 <~y < 1

Second invariant: The spectral parameter c,
an element of Py (k) = kU {oo}

Third invariant: A vertex x in a tube.
If c¢{0,1,00}, then z € N
If ce {0,1,00}, then z = (i,m), m € N
1<:<2 fore=0
1<1<3 fore=1
1<i<6 for c =00



Recall: Almost all indecomposable triples (V,T,U) with fixed dimension pair
are weakly homogeneous (i.e. U ~V/U, V~U® M(6)"),
and then U = M (4,2)" ® M (5,3,3,1)° for some pair 7, s.

Let X = (V,T,U) be weakly homogeneous with slope .

o L L L e L L L L

For v =10 Forfy:% For v =1
U=M(4,2)" U=M(5,3,3,1)° U=M(@4,2)"
For0<fy<% For%<’y<1
there is an exact sequence there is an exact sequence
0> X' ->X—->X">0 0-X' ->X—>X"->0
slope 0 slope % slope % slope 1

Adjustment - R -

of the columns

even  odd ~ odd even
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Categorical properties of S(6). The category S(n) is additive, thus the
endomorphisms of any triple form a ring.

Let n = 6. The endomorphism rings End(X) of an indecomposable triple is
usually rather large, however the bulk of endomorphisms will be nilpotent with
nilpotency index at most 8:

Theorem. Let X be an indecomposable triple in S(6). There is an ideal I in
End(X) with I8 =0 such that End(X)/I is a local uniserial ring.

The ideal I can be described as follows:
Given a Krull-Remak-Schmidt category such that the indecomposable objects
have local endomorphism rings (such as S(n)), its radical R is generated by

all non-invertible maps between indecomposable objects.
The infinite radical is T = [,y R’

In the category S(6), the infinite radical T is an idempotent ideal, that is,
7? =T holds. If X is an indecomposable triple in S(6), then the ideal T(X, X)
of End(X) has nilpotency index at most 8.

The ideal I to be used in Theorem is I = Z(X, X).



The endomorphism theorem.
Denote by m: S(6) — S(6) the forgetful functor (= forgetting the grading).
Recall that o denotes the shift of the grading by 1.

The main formula is the following: Let X,Y be graded triples. Then

Homg ) (7(X), 7(Y)) = ieZHomS(g)(X,ai(Y)).

Now, in S(6) the following holds true: If X has slope v and X’ has slope ~/,
then Hom(X, X’) = 0 unless v <~/

Therefore,

Ends g (7(X)) = @izo Hom (X, 0" (X))

:Ends(g)(X)GB i1 Homs(g)(X,al(X))

If X is an indecomposable graded triple, then End X) is a local uniserial

ring, and Hom5(~)(X, o'(X)) =0 for i > 8.

5(6) (



We see: A graded triple is a representation of the following quiver:

/ /
aéOa'la

@ : \LIBO \Lﬁﬁ l/ﬁz

(674} 0 aq (6] 2 as

/ I

Usually, we will refrain from mentioning the indices of the arrows «;, o, 8; and
write o, o, 3.

Let S(n) be the category of all representations of @ which satisfy
e the commutativity relations fa’ = af (for all squares),
e the nilpotency relations (a/)" =a™ =0
(for all compositions of n arrows o’ or «)
e and for which all the maps (3 are realized by monomorphisms.

Note that this is just the category of triples in S(n) endowed with a grading.

Denote by o the shift of the grading (by 1). Then S(6)/o are the triples in
S(6) which are gradable.

Aim. Classify the iso classes of indecomp representations of @



It is sufficient to look at a suitable finite subquiver of @ It turns out that the
following one provides sufficient information (and can be handled):

2’ 3’ 4’
O<—oO0=<—o0

on. e

O O O O O O O
0 1 2 3 4 5 6

(with two commutativity relations and one zero relation).

The corresponding algebra © can be shown to be “tubular”, and in this way
we obtain a description of nearly all of the category S(6).

The shape of the category of ©-modules is as follows:




The shape of the category mod O:

The subcategories 7] and 7T{ will be partly identified in S(6).

The category S(6) can be described in the following way:

T{-1] To T Tol1]

P T T T/ Q

]

T[]

——— D ——
D is the fundamental domain for S(6) under the shift o-.

Tol2]



The category S(6) can be described in the following way:

T[-1] To T To[1] 7] To[2]

—— D ———
D is the fundamental domain for S(6) under the shift o-.

Since S(6) is “locally bounded”, it follows that S(6) = S(6)/o (= the grading
theorem).

Of essential importance is the central part 7,
there are countably many stable tubular families 7., indexed by v € Q%

each 7, is a Py (k)-family of tubes of type (6,3,2).



