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k  algebraically closed field

A finite dimensional k-algebra (associative, with 1),
connected (no central idempotents except 0 and 1).

mod A  the category of all (finite-dimensional) A-modules

A is called representation-infinite provided
there are infinitely many isomorphism classes of indecomposable A-modules,
otherwise representation-finite.

A is minimal representation-infinite provided
A is representation-infinite, but any proper factor algebra is representation-
finite.



Definition: A has a good covering A
provided A is a Galois covering of A with free Galois group
and A is interval-finite.

Covering theory: Bongartz-Gabriel 1980

Theorem (Bongartz, 2009).
Let A be minimal representation-infinite.
Then one of the following cases holds:

(1) A is non-distributive
(i.e. the ideal lattice of A is not distributive).

(2) A has a good covering A and
there is a full subcategory of A which is tame concealed.

(3) A has a good covering A and

Ais locally representation finite
(i.e. any finite subcategory is representation-finite).

This result is a final step in a long series of investigations
Bautista-Gabriel-Roiter-Salmeron 1984

Fischbacher, ...



Let us discuss the three cases in more detail.
(1) A is non-distributive
Non-distributive algebras A have been studied already 1957 by Jans.

A has a one-parameter family of modules (pairwise non-iso) modules which are
both local and colocal (“diamonds”).

Thus, Brauer-Thrall II is obvious
(via Smalg’s Brauer-Thrall 11, or direct construction)

(2) A has a good covering A and
A has a full subcategory which is tame concealed.

The representation theory of tame concealed algebras B is well-developed.

In particular, B has a one-parameter family of pairwise non-isomorphic modules
via the push-down functor, one obtains a one-parameter family of pairwise non-
isomorphic A- modules.

Recall: Tame concealed algebras are of type ,&n, ﬁn, IE6, IE7, IES,
the indecomposable B-modules are described by the corresponding Kac-Moody
root system.
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A tame concealed algebra B is derived equivalent to the path algebra kQ,
where the quiver ) has as underlying graph an extended Dynkin diagram.

A is given by identifying some vertices and some arrows of the quiver of B.



It remains to consider the case (3)
Bautista-Gabriel-Roiter-Salmeron singled out the cases (1) and (2),
but were not able to treat (3).

(3) A has a good covering A and
A is locally representation finite.

Questions:

How do we find one-parameter families of indecomposable A-modules?
Is it possible to determine the structure of such algebras A?

Is it possible to classify these algebras?

Is it possible to classify all the indecomposable A-modules ?

Using the new Bongartz result all these questions can be answered positively.

In fact, the algebras which arise and their module categories have been exhib-
ited already in 2007.



Theorem 1 (2010). Let A be minimal representation-infinite

and assume that A has a good covering A which is locally representation-finite.
Then A is a special-biserial algebra.

This means: A is given by identifying some vertices and some arrows of an
algebra of type A,,.

Theorem 2 (2007). Let A be minimal representation-infinite, special biserial
and after separation of the nodes, there are three possible cases:

e A is hereditary of type an, or
e A is a “barbell” with non-serial bar, or

o A is a “wind wheel”.

We write A = kQ/I, where @ is a finite quiver and [ is an admissible ideal.



Separation of nodes.

A vertex x is a node provided
Ba € I for all arrows «a ending in s and § starting in s.

Nodes can be separated:

There is a canonical functor mod A — mod A’ which yields a bijection between
the indecomposable A-modules and the indecomposable A’-modules different
from the simple A’-module S(z_).

It is sufficient to deal with algebras without nodes:

A is minimal representation-infinite if and only if

the algebra A’ obtained from A by “separating” all the nodes is minimal
representation-infinite.



Special biserial algebras.
A = kQ/I is special biserial provided

(1) Any vertex of @ is endpoint of at most two arrows
Any vertex of () is starting point of at most two arrows.

(2) If arrows v and § start in the endpoint of a, then ya or da is in 1.
If arrows o and 8 end in the starting point of v, then va or vf is in I.

The local shape is at most N 5] :
N

(maybe less arrows or more relations) :

/N

The representations theory of special biserial algebras is (essentially) due to
Gelfand-Ponomarev (1968):

Special biserial algebras are representation-finite or tame,
there are two kinds of indecomposable representations, string modules and band
modules.



Barification. We start with a special biserial algebra wit quiver Q.

Consider two disjoint maximal isomorphic paths in ) which are not involved
in relations.
For example

The paths are now identified in order to form a bar. This barification yields a
quiver of the following form (the dotted box is not changed):

Of importance are the new zero relations on the left and on the right!



Barbells with non-serial bar. Example: start with

LB B
| )’
R
Barification yields:
1 2

Here the bar (given by the arrows 1 — 3 «— 2) is not serial.

Theorem. The barbells with non-serial bars are minimal representation-infinite.
They are tame and of non-polynomial growth (in particular, not domestic), they

are Gorenstein algebras of Gorenstein dimension 1.



Wind wheels:

obtained from cycles by a sequence say of ¢ serial barifications (for serial bar-
ifications, a further zero relation is added).

Here is an example:

6

\

with the further relations
6—>2—1—5and2—4—3—1.

| >

/ There are two bars, namely « and e.
5

The original cycle is seen by looking at the only primitive cyclic word
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Thus, we start with a quiver which can be drawn either as a zigzag (with arrows
pointing downwards), where the left end and the right end have to be identified,
or else as a proper cycle:

and we barify on the one hand the two subquivers which are enclosed in rectan-
gular boxes, on the other hand also the two subquivers with shaded background.

In both cases, the barification yields an identification of a projective serial
module of length 2 with an injective serial module of length 2.

Theorem. The wind wheels are minimal representation-infinite.

Wind wheels are 1-domestic
(there is a unique primitive 1-parameter-family of indecomposable modules)
and there are precisely t non-periodic, but biperiodic Z-words.



Sketch of the proof of theorem 2. Let A be a biserial algebra which is
minimal representation-infinite

Let x be a vertex. In case there are a arrows ending in  and b-arrows starting
in x, then we say that x is an (a + b)-vertex.

(1) Assume A is biserial and minimal representation-infinite. If the verter x
15 a 4-vertex, then x is a node.

Since we may assume that there is no node, we easily see that there are only
2-vertices and 3-vertices. In case all the vertices are 2-vertices, then we deal
with a cycle.

Thus we can assume that there are 3-vertices,
there will be a subquiver of the following form
(with only 2-vertices between the two given 3-vertices):




It follows: A is obtained from a cycle by a sequence of barifications,
adding, if necessary, further relations. It remains to analyze these barifications!

(2) Assume that A is obtained from a cycle by barification with bar B. In
case B is not serial, any further barification yields an algebra which no longer
is minimal representation-infinite.

Barifications with a single non-serial bar yield the barbells.

Thus we can assume that A is obtained from a cycle by a sequence of serial
barifications, say identifying the serial paths w; and wi, for 1 <14 <t.

(3) One of M(w;), M(w}) is projective, the other injective, say M (w;) is pro-
jective.

(4) The radicals of all M (w}) lie in one exceptional tube, the socle factor
module of all M (w;) lie in the other exceptional tube.

The algebras obtained in this way are the wind wheels.



Finally, let us look at Theorem 1.

Theorem 1. Let A be minimal representation-infinite
and assume that A has a good covering A which is locally representation-finite.
Then A is a special-biserial algebra with only zero relations.

Note the following converse: If A is a special-biserial algebra with only zero
relations, then A has a good covering A which is locally representation-finite.

Let @ be the quiver of A and (@ the quiver of A,
let m: Q@ — @ be the covering map.

The essential steps of the proof. One shows:

(1) There is a path in A starting with an arrow « and ending in the inverse 8!
of an arrow, such that w(«) # w(8) but w(h(a)) = w(h(8), with no subpath
involved in a relation.

Here one uses the Bongartz classification of the large indecomposable represen-
tations of directed algebras: all have large subquivers of type A,,.

(2) Serial A-modules of length 3 with isomorphic radical, or with isomorphic
socle factor module are isomorphic.

(3) There are no local or colocal A-modules of length 4 with Loewy length 2.

For the proof of (2) and (3) one shows that otherwise A would contain a sub-
quiver of type E7.



