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Abstract. Let A be a (connected) Dynkin diagram of rank n > 2
and @, = & (A) the corresponding root poset (it consists of all positive
roots with respect to a fixed root basis). The width of & is n. We will
show that & is “conical”: it is the disjoint union of n solid chains.

The rich antichains in @ are the antichains of cardinality n—1. It is
well known that the number of rich antichains is equal to the cardinality
of ®;. The set R(A) of rich antichains in ®; can itself be considered
as a poset which is quite similar, but not always isomorphic, to ® .

We will show that there always exists a unique rich antichain A
such that any rich antichain is contained in the ideal generated by A.
For A # [Eg all roots in A have the same length, namely ey, where
e1 < ey < ---<e, are the exponents of A. For A = Eg, the antichain
A consists of four roots of length e = 4 and one root of length 5.

1. Introduction.

Let ® be a root system of (connected) Dynkin type A = A,,B,,,..., Gy of rank n.
The root poset @, = &, (A) is the set of positive roots in & with respect to some fixed
choice of a root basis; here, one takes the following partial ordering: z < y provided y — x
is a non-negative linear combination of elements of the root basis. The root posets and its
antichains play an important role in many parts of mathematics. The width of the root
poset @, (A) is the rank of A (this is the number of vertices of A). If P is a poset of
width n, the antichains of P of cardinality n — 1 will be called the rich antichains. It is
well known that the number of rich antichains is equal to number of positive roots and the
paper is devoted to a study of the rich antichains of & .

Following Stanley [S], a finite poset P is said to be graded provided all maximal chains
have cardinality m (the height of P). Given a graded poset P, we denote by P, the set of
elements of height ¢; note that P, is an antichain. The cardinality of P; will be denoted
by h:(P). Of course, hy(P) is just the number of minimal elements of P.

Given a poset P, we call a subposet P’ a solid subposet provided neighbors in P’ are
neighbors in P (if < y are neighbors in the subposet P’, this interval cannot be refined in
P). We say that P is conical provided P is a graded poset with a unique maximal element
and is the disjoint union of solid subchains such that each of the subchains contains a
minimal element (such a set of subchains will be called a conical decomposition). If C is a
conical decomposition C, the number of chains in C is equal to hy(P). The cardinalities of
the chains in C will be called the exponents of P.
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If P is conical, we have hy(P) > hy41(P) for all ¢ > 1, thus (hy(P), ha(P),...) is a
(Young) partition and the dual partition (e;(P), ea(P),...) is the sequence of exponents.

Finally, given a subset X of a poset P, we denote by A(X) = {w € P | w <
x for some x € X} the ideal, by V(X) = {y € P | x < y for some x € X} the coideal
generated by X.

Let us consider now the root posets. Since any root poset has a maximal element, the
definition of the partial ordering of ®, shows that all maximal chains in ®, have the same
cardinality, thus @ is a graded poset with a unique maximal element. For a positive root
x, the height of x in ® is just the length of z, it is the sum of the coefficients when x is
written as a linear combination with respect to the root basis (see for example [B]). We
write @, instead of (P4 );.

Theorem 1. A root poset is conical.

Theorem 1 strengthens the well-known assertion that hy(®4) > hypq(P4) for all ¢ > 1.
Actually, the sequence of exponents of ®, (A) as defined above is just the usual sequence
of exponents as considered in the invariant theory of Weyl groups (this is the celebrated
Shapiro-Kostant theorem, see for example [R2] Theorem 1.4.1.1). We also should mention
that

he(®4) + hg—111(P1) = n

for all ¢, where g is the Coxeter number for A (see Humphreys [H, Theorem 3.20] and
Armstrong [Ar, Theorem 5.4.1)).

Note that e; = 1 and, for n > 2, we have ey > 2. It follows that all ®; with 2 <t < ey
are rich antichains, whereas any ®; with t > e, is an antichain of cardinality at most n — 2.

The set of rich antichains of a poset can be considered as a poset R(A) with A < A’
provided V(A) O V(A’) (recall that V(A) is the coideal generated by A, see section 4).
As we will see, for A # Eg, the antichain ®., is the largest element in R(A), whereas for
A = Eg, there is a single rich antichain which is larger than ®.,.

For any natural number ¢, let ®; be the set consisting of join-irreducible elements of
®, .1 and the elements a € ®; which have no join-irreducible neighbor a’ > a in ®41.
Since @ is conical, the cardinality of @} is equal to the cardinality of ®;. In particular,
for t = e, @} is again a rich antichain.

Theorem 2. Let A be a Dynkin diagram of rank at least 2. Then ®, has a unique
mazximal rich antichain, namely @, . If A # Eg, then @, = ®.,, whereas for A = Eg, the
antichains ®,_, ®., differ by one element.

Here is the value of eg = ea(A):

A l An Bn Cn ]Dn EG E? IE8 IF‘4 GQ

(M) 2 3 3 3 4 5 7 5 5

Let us reformulate Theorem 2. In oder to find the rich antichains of ®,(A), it is
sufficient to look at the ideal A(®, ), this is a poset with n minimal and n—1 maximal
elements. Here are the posets A(®,,) for A = A5, Bs, Dg, Eg, E7, Eg, Fy, Go.
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It is well known that the number of rich antichains in ® is equal to the cardinality
of @,. It turns out that in general the poset structure of R(A) is quite similar to &4 (A),
but these posets are not always isomorphic: For example, in case Fy, the poset A(®[,) has
a non-trivial symmetry, thus also R(F,), whereas @, (IF4) has no non-trivial symmetry.

Theorem 3. The poset R(A) of rich antichains in &4 (A) is isomorphic to &4 (A)
if and only if A # Eg, Fy.

Acknowledgment. The paper is dedicated to Professor Liu Shao-Xue. His visit to
Europe in 1985 was the start of a long lasting and very fruitful cooperation between China
and Germany devoted to the representation theory of finite dimensional algebras. The core
of this theory are the Dynkin algebras and their indecomposable representations, indexed
by the elements of the corresponding root poset. It seems to be surprising that these root
posets which look like innocent combinatorial creatures still provide a lot of mysteries.
The present paper and its successor [R3] try to illuminate some of their features.

A first version [R1] of this paper was written in 2013 at SJTU Shanghai. Parts of the
results have been presented at the 57th Annual Meeting of the Australian Mathematical
Society 2013 in Sydney, and in my ICRA lectures 2014 at Sanya, see [R2]. The author is
grateful to many mathematicians for comments. In particular, he has to thank H. Thomas
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for pointing out the references Humphreys [H, Theorem 3.20] and Armstrong [Ar, Theorem
5.4.1]).

Since the appendix of this paper has been used already quite frequently, we should
stress that we have changed the labeling of the vertices of B,, C,,, and D,, in order to
focus the attention (for A # A,,) to a special vertex which now is always labeled c.

2. Solid subchain decompositions of ¢ .

We are going to prove Theorem 1: Any root poset has a conical decomposition.

Proof of Theorem 1. The assertion is obvious for the cases A,,, B,, and G,. Below we
show solid subchain decompositions in the special cases D5, Dg, and for Eg, E7, Eg, F4. We
hope that the cases D5 and Dg show nicely the general rule how to obtain a solid subchain
decomposition in the cases D,, in general.

Always, we use solid lines in order to specify the solid subchains. The largest elements
of the solid subchains are encircled.

D5




The largest elements of the solid subchains are always encircled (thus these are suitable
roots of height €;, where (e1,...,€,) is the exponent partition). O

Actually, the existence of a solid subchain decomposition concerns a local property,
namely it concerns the bipartite subposets ®; ;11 of all roots of height ¢t and ¢ + 1, we call
these subposets the steps of ®,. As we know, we have |®y11| < |Dy].

The essential assertion of Theorem 1 is that for any ¢ > 1, there is a matching for
®; 141 (an injective map f: @441 — P4 such that f(y) <y for all y € Oypq).

Namely, if we want to construct a conical decomposition, we may start at the top of
the poset @, and go down. If the subchains have reached the layer ®,,;, we have to look
at ®;++1 and we have to continue the path downwards inside a matching. For example,
in case B3, starting with the maximal element z, the next two choices for a solid chain
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containing z are arbitrary, but then in ®5 3 we have to be careful:

The choice in the middle does not work, since ®» 3 has just one matching namely:

NN

Remark. As we have mentioned, for a conical poset P, the sequence (hy(P), ho(P),...)
is a Young partition. Let us stress that there are graded posets with (hq(P), ha(P),...)
being a Young partition, which cannot be written as the disjoint union of solid subchains
such that each of the subchains contains a minimal element. Here is an example (note that
its width is greater than hi(P)):

3. The rich antichains of ®,.

This section is devoted to the proof of Theorem 2.

We say that a poset P is bipartite provided any element of P is minimal or maximal,
but not both. If P is bipartite, let P; be the set of minimal elements and P, the set of
maximal elements. A matching of P is an injective map f: P, — P; with f(y) < y for all
Yy € P 2.

We say that P is an M -poset provided P is bipartite with |P;| = |P2| + 1 and such
that for any y € P, there is a matching f such that the unique element = € P; which is
not in the image of f satisfies x < y. Note that if P is an M-poset, then no element in P
is join-irreducible.

If T is a finite tree, we define M (T') as the incidence poset of T' (with M (T"); the set
of vertices, M (T, the set of edges, such that = < y provided x is a vertex on the edge y).

NN AN
SN NN

Here, n is the number vertices of T', thus the number of minimal elements of the poset
M(T).
Proposition 1. If T is a finite tree, then M(T) is an M -poset.
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Proof. Assume that 7" has n vertices, thus n — 1 edges. It follows that M (T) is
bipartite with M (T)e = n —1 and M(T); = n. Let y be an edge, and = a vertex on y.
For every edge v, let f(y’) be the vertex on y’ with maximal distance to . Then f is a
matching, and z is not in the image of f. Of course, = < y.

Corollary. For any root poset &, = & (A), the poset ®12 is an M -poset.

Proof: Obviously, 12 = M (A).

Proposition 2. Assume that A has rank at least 3, let & = ®(A) and e = ex(A). If
A # Dy, Eg, then ®¢ 11 s an M-poset.

We claim that ® .41 is obtained from a poset of the form P = M(T) by adding for
some pairs ¢ € P;, y € P, the relation x < y. Since M (T') is an M-poset, also @, 11
has to be an M-poset. Here are drawings of the various cases. On the right, we exhibit
P = M(T). In the drawings, the solid lines show the relations in M (T"), the added relations

are dashed.
o) NN NN M
Ba®) NN NN M)
w0 XN A W

(n=5)

®s5.6(E7) Mm M(Ag)
N
P5.6(F4) N\ M(A3)

Proof of Theorem 2. If the rank n of A is equal to 2, then R(A) = &,. Thus, we
can assume that n > 3. For A = Dy, ®4(A) is just the maximal element of @, and this
element cannot belong to any antichain of cardinality greater than 1. Thus, we assume
now that A # Dy.

The case Eg is special (since ®5(Eg) contains a join-irreducible element; in particular,
®45(Eg) is not an M-poset) and has to be treated separately. Thus, we assume that A has
rank at least 3 and is different from D4, Eg. This means that we can apply Proposition 2.
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Let z be a root of length ¢ > e + 1. Let ®(z) be the set of positive roots which are
not comparable with z. We claim that ®(z) has width at most n — 3 (this shows that z
cannot belong to an antichain of cardinality n — 1).

Let C be a conical decomposition of . Let C' € C with z € C. Since the length of z
is at least e + 1, the chain C contains a root y of length e +1. Since ®, .11 is an M-poset,
there is a matching f: ®.,1 — ®. such that the unique element x € ®, which does not
belong to the image of f satisfies x < y.

Let v be the root of length 2 which belongs to C'. Since ®15 is an M-poset, there is a
matching g: ®2 — ®; such that the simple root v which does not belong to the image of
g, satisfies u < v. Let D be obtained from the decomposition C by replacing in any chain
C’ € C of cardinality at least 2 its simple root by the simple root g(v’), where v’ is the
root of length 2 in C’ and using the singleton {u} as the unique chain of cardinality 1 in
D. Thus, D is again a conical decomposition of &, .

Now, let y' € ®.41. If 3’ belongs to D € D, let J,» be the set of elements 2’ € D with
y < 7.

Similarly, assume that 2’ € ®, belongs to D € D and let I, be the set of elements
w € D with w < 2. Since f(y') <y’, we see that the union Iy, U .J, is a chain.

We have decomposed @ into the chains I/, J,» with 2’ € &, and y’ € P41, as well
as the singleton {u}. We know that the elements in Jy, Iy(,), I, as well as the element u
all are comparable with z, thus they belong to ®(z).

It follows that ®\ ®(z) is covered by the chains I, UJ,/, where the elements 3 are
the elements of ®..1 \ {y}. The cardinality of ®.y; is n — 2, thus there are n — 3 elements
of the form y’. This shows that ® \ ®(z) is covered by n — 3 chains.

It remains to look at the case A = Eg. We denote by a’ the join-irreducible element
of ®5, and by a its neighbor in ®4. Thus &/ is obtained from ®4 by replacing a by a’.
Let us look at ®56(Eg). There is the following matching of ®54(Eg):

s
\\/’ \\/’
7N 7
s s
L J (3
/
a

It follows that there is a conical decomposition C of ®, such that ' is the maximal
element of one of the chains. Also, we can assume that the simple root corresponding to
the branching vertex c is the singleton in C.

Let z be a root of length at least 5 and different from a’. We want to show that z
does not belong to a rich antichain. As above, we denote by ®(z) the set of positive roots
which are not comparable with z. We claim that ®(z) has width at most 3 (= n — 3).
Note that the simple root corresponding to the branching vertex ¢ belongs to ®(z). Thus,
only the five chains in C which are not singletons have to be considered.

Here is ®45. Any element of @5 \ {a’} has been connected to two elements of ®,.

P5

Dy




As above, we use C in order to define chains J, for y € ®5 (with J,» = {a'}) as well as
chains I, for x € ®4. It follows that the elements outside of ®(z) belong to three chains
which are combined from three of the chains of the form J, and three of the chains of the
form I,.

This completes the proof. O

4. The poset R(A) of rich antichains of &, (A).

If P is a finite poset and ¢ a non-negative integer, let A;(P) be the set of antichains in
P of cardinality ¢t. For a poset P of width n, we call the antichains of cardinality n — 1 the
rich antichains. Thus, for A a Dynkin diagram of rank n, we write R(A) = A,,—1(P+(A)).

Given a Dynkin diagram A of rank n with root poset @, one knows that | A (P4 )| =
|Ap—t(®4)], for 0 <t < n, see [At]. In particular, since A;(®) = @, we always have

[R(A)| = |24],

and one may ask whether it is possible to recover also the partial ordering of ®, (A) by
looking at the set R(A) of rich antichains in & (A).

Let us point out, that it is not possible in general to recover the partial ordering of ®
by looking at the set of rich antichains. Namely, consider the Dynkin type Fy4. According
to Theorem 2, R(IF4) is the poset of rich antichains in A(®5(F,)). Now the poset A(P5(F4))
has an automorphism ¢ of order 2, and ¢ induces a non-trivial automorphism on R(Fy)
(since obviously there are rich antichains which are not invariant under ¢), whereas ®_ (Fy)
itself has no non-trivial automorphisms.

Note that given a poset P, there are several ways to consider 4;(P) as a poset: given
two antichains z,y, we write x <, y provided z lies in the ideal generated by y; similarly,
we write x <y y provided y lies in the coideal generated by x. Of course, there is also
the possibility to combine the two partial orderings, namely to set x < y provided both
x <p y and z <y y, thus provided both A(z) C A(y) and V(z) D V(y). Actually, it turns
out that for R(A), there is the following observation:

Proposition. Let A and B be rich antichains of ®, with A <y B. Then we can
label the elements of A and B as A ={ay,...,an_1}, B=1{b1,...,bp_1} with a; < b; for
1<i<n-—1. As a consequence, A <, B.

Proof. Let &, = ®,(A), where A is a (connected) Dynkin diagram of rank n. We
assume that A, B are rich antichains of & with A <y B. Let z be a simple root which
does not belong to A. Since B C V(A), it follows that z does not belong to B. According
to the Addendum of Theorem 1, there is a conical decomposition C such that {z} is one of
the elements of C. Let C'y,...,C,_1 be the remaining chains in C. Since z does not belong
to A, the elements of A belong to the chains C; with 1 < i < n — 1, the elements a of A
can be labeled as aq,...,a;_1 with a; € C;, for 1 < ¢ < n — 1. Similarly, the elements of
B can be labeled as by,...,b;_1 with b; € C;, for 1 <i <n — 1. We claim that a; < b; for
all . Otherwise, there is some ¢ with a; > b;. Since B C V(A), there is some a; € A with
b > a;. But a; > b; > a; is impossible, since A is an antichain. This is the first assertion.
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Of course, if A = {a1,...,an—1}, B = {b1,...,bp—1} with a; < b; for all i, then
A <\ B (as well as A <y B). O

We always consider R(A) as a poset using the partial ordering < (having in mind
that this is the same as the partial ordering <y ).

Remark. If A and B are rich antichains of &, with A <, B, then we may not have
A <y B. Here is the first example: A = A3 and

Proof of Theorem 3. We are going to present only the essential steps. But we
hope that the arguments which we provide shed some further light on the structure of
the individual root posets. In case A has rank 2, the rich antichains of ®, are just the
singletons, thus in this case & (A) = R(A). In particular, we do not have to consider the
case Gs.

If A is a Dynkin diagram and ¢ > 1, we denote by ®(A,t) the set of positive roots
with coefficients bounded by ¢ such that at least one coefficient is equal to t. Of course, ¢
is the disjoint union of the subsets ®(A,¢) with ¢ > 1. Note that ®(A, 1) is always an ideal
of &, (the ideal generated by the minimal sincere root: all its coefficients are equal to 1),
whereas the remaining non-empty subposets ®(A,t) are intervals. It should be stressed
that for A equal to B,, and C,,, the subsets ®(A,2) of &, are the same despite the fact
that for any element x of ® its coefficients may depend on whether we deal with B,, or

C,.

We are trying to exhibit maps R = R(A,t): ®(A,t) — R(A) which combine to a
bijection &, — R(A). All our maps R(A,t) will be injective and the images of R(A,t)
and R(A,t") will be disjoint for ¢ # t'. Thus, if for some A, the maps R(A,t) are defined
for all ¢ (this will be the case for A = A,,,B,,,C,,,D,,,Es and Fy), then the union of the
images has to be all of R(A), since it is well-known that |R(A)| = |®,|. Thus, we do not
bother to verify surjectivity assertions.

The bijections R = R(A,1): (A, 1) = R(P12).

Let r be in ®(A, 1), thus r is uniquely determined by its support suppr, this is the
set of simple roots x with x < r, it is a connected subdiagram of A. We define R(r) as
follows:

R(r) = R(r)1 U (r)2, where R(r)i={xe€®|xLr}, R(r)o={yedy|y<r}.

It is easy to see that R(r) is an antichain: both R(r); and R(r)s are antichains, and if
x € R(r); and y € R(r)2, then & £ y (since z < y would imply < y < r, but z £ r).
Also, R(r) is rich (namely, if r has length m and A has rank n, then R(r); has cardinality
n —m and R(r)s has cardinality m — 1).
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Finally, we claim: R preserves and reflects the partial orderings (if r,r’ are roots in
®(A,1), then r < ¢ if and only if R(r") <y R(r)).

Here is the proof. Of course, r < r’ if and only if suppr C suppr’. First, assume
that suppr C suppr’. We want to show that R(r’") C V(R(r)). We have R(r"); C R(r)s,
thus, it remains to show that any element y € R(r’)2 belongs to V/(R(r)). Let a, b be the
support of y. If a is not in the support of r, then a € R(r), thus y € V(R(r)). Similarly,
if b is not in the support of 7, then y € V(R(r)). Finally, if both a, b are in the support of
r, then y € R(r)2 C V(R(r)).

Second, assume that R(r") C V(R(r)). We have to show that suppr C suppr’. Let x
belong to supp r and assume that 2 does not belong to supp r’. Then z € R(r"); C V(R(r)).
Since z is a minimal element, it follows that z € R(r), thus x belongs to R(r); and therefore
x ¢ suppr, a contradiction. U

Case A = A,,. In this case, ;. = ®(A, 1), thus R = R(A, 1) provides an isomorphism
between @ (A,) and R(A,,).

Let us now consider the posets ®(A,t) with ¢ > 2. Whereas for t = 1, we were able
to provide a general recipe, we now have to work case by case.

Case A = B,,. The set ®(B,,2) is just the coideal of ®, generated by the maximal
root of By (considered as a subdiagram of B,,).

We start with the poset P = ®(B,, )13, since the rich antichains of &, (B,,) are con-
tained in P.

2] 3] - ([n—1]] ]
NSNS NN
P 2] 3] . n—1) n]
1/ \2/ S \_2/ \_1/ AN

The rich antichains in Po form the poset R(A,); its elements are of the form R(r) where
r is a root with coefficients 0 and 1. We have to determine the additional rich antichains
(it is obvious that such an antichain has to contain the vertex [[2]]).

We consider the roots of B,, of the form

r=r(,j)=1(2,...,2,1,...,1,0,...,0)

with ¢ coefficients being 2, then j —i coefficients being 1 and finally n — j coefficients equal
to 0, where 0 < i < j < n. The roots of the form r(7,j) with 1 < i < j7 < n are just the
elements of ®(B,,, 2).

For 0 <17 < j < n, we may also consider the subset

RG,j)=A{[12]],---, [t + 1), [t +2],...,[5],7+ 1,...,n}.

of &, (B,,) (with i roots of length 2, j — i — 1 roots of length 1, and n — j roots of length
1). It is obvious that R(i,j) is a rich antichain.
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We define R = R(B,,,2): ®(B,,,2) — R(B,,) by R(r(,7)) = R(,J).

Here is the case n = 5. On the left, we draw the set of indices (i,j). The map R
provides the following bijection:

The labels (1, j)

One checks without difficulties that the map R preserves and reflects the respective partial
orderings.

It remains to see in which way the partial ordered sets ®(B,,,1) and ®(B,,2) as
well as the images of R(B,,1): ®(B,,1) — R(B,) and R(B,,2): ®(B,,2) — R(B,) are
connected. This concerns the following neighbors, drawn by dotted lines:

11110

R
(1:2) (0,3) 21000 11100 R
4 R S
0,2) 11000 p 6 6 o
J/ / /
(0.1) 10000 T
The labels (4, 7) r(4,7) R(i, j)

It turns out that the bijections R(B,,, 1) and R(B,,,2) combine to provide an isomorphism
o, (B,) — R(B,).

Case D,,. This case is similar to B,,. The set ®(ID,,,2) is just the coideal of &
generated by the maximal root of Dy. For 0 <i < j <n — 2, let r = r(i, j) be the root of

D,, of the form
1
r = r(i,j) = ( 2..271.10-- 0>
1
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with ¢ coefficients being 2 and j — i + 2 coefficients being 1 (to be precise: with coefficients
1 on the short arms, and n — j — 2 coefficients equal to 0 on the long arm). The roots of
the form r(i,j) with 1 <i < j <mn — 2 are just the elements of ®(D,,,2).

For 0 <i < j < mn—2, we also consider a corresponding subset R(i,j) of ®(D,,). For

1 0

i =0, R(i,j) is the rich antichain which contain the roots ( 10 - 0) and ( 10 - 0),
0 1

j — 1 additional roots of height 2 and n — j — 2 simple roots. For i > 0, R(7, j) contains the

®(Dy)s3, j—i—1 roots of height 2 and n—j—2 simple roots. We define R: ®(D,,,2) — R(D,,)
by R(r(i, ) = R(i, j).

Here is the case n = 7. On the left, we draw the set of indices (i,j). The map R
provides the following bijection:

(4,5

)

The labels (i, j) (i, 7) i» R(i, 5)
As in the case B,,, we also see in the case D,, that the bijections R(D,,1) and R(D,,2)
combine to provide an isomorphism ¢4 (D,,) — R(D,,).

The cases A = Eg and A = E;. Here, we have to consider (besides ®(A,1)) the
subsets ®(A,2) and ®(A,3), and finally also ®[E7,4). Note that the posets ®([s,2),
®(E7,2) as well as ®(E7,3) are products of the form [3] x [3], [3] x W(4), and [2] x [4],
respectively, where [m] denotes the chain of cardinality m and where W (4) is the poset
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The case Eg.

We see that there is a poset isomorphism between @ (E5) and R(Eg).
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The case E;.

B(Er,2) 015100

“111113 -
. “ 11111 . 11111
1 /L Ki S
1111 " 11110
S

011100



It remains to present the rich antichains between @ and ®5. They are contained in

<D4 5
1 0 1 1 0 1
111100 111110 012100 011110 011111 001111
i ?><0)<1)<0
111000 111100 011100 011110 001110 001111

Here are the rich antichains between ®) and ®5:

123321

Altogether we see that there is a poset isomorphism between ®4(E7) and R(E7).
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Case Es. Let &, = &, (Es). Let us exhibit a solid subposet of R(Eg) consisting of
rich antichains in ®g7:

PV 2 SN
|

According to Theorem 1, ®7 is the maximal element of R(Eg). Thus, we see that the dual
poset (R(Eg))* has two different elements of height 5, whereas (®)* has just one element
of height 5. This shows that R(Eg) is not isomorphic to ®.

Case Fy. Let &, = &, (F4). Let us exhibit a solid subposet of R(F4) consisting of
rich antichains in ®45:

O i
™~ —
A =@,
According to Theorem 1, ®5 is the maximal element of R(IF4). Thus, we see that the dual
poset (R(F4))* has two different elements of height 3, whereas (®)* has just one element

of height 3. This shows that R(F,) is not isomorphic to ®..
This completes the proof of Theorem 3. Il
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Appendix: Some pictures of the root posets.

We exhibit a visualization of the root posets D,,, Eg,[E7, Eg and F4 which we found
useful when preparing this note. Indeed, the pictures which we found in the literature and
in the web did not seem to be quite convincing (for us). The pictures shown below draw
the attention to the fact that for any pair of elements x,z € &, the interval {y € &, |
x <y < z} is a distributive lattice which can be constructed in a convenient way using
segments, squares and (3-dimensional) cubes. A drawback of our visualization is that it
does not take into account the diversity of the various edges (which otherwise could be
indicated by using different slopes). As a remedy, we label the edges by the corresponding
basis vectors (it is sufficient to do this at the boundary, since the modularity transfers this
information to the remaining edges).

For the sake of completeness, we also include the cases A,,,B,,,C,, and Gs. It is well-
known that the root posets B,, and C,, do not differ as long as we do not refer to the labels
of the edges. But since we present the cases D,,, E,, and F4 with labels, we do it also for
B,, and C,,, thus we have to present these types separately.

The cubical pictures for D,,,E,, and F, stress a division of the positive roots into
“levels” which seems to be a kind of measure of the complexity of a positive root. The
roots belonging to a fixed level form a planar graph, often a rectangle. All levels have a
unique maximal element. Level 1 has n—1 minimal elements, all other levels have a unique
minimal element. We list the minimal and the maximal elements, as well as the number of
roots belonging to the level. A further analysis of the root posets will be provided in [R3].

The root poset As. o o o o

The root poset Ag. o o o




The root poset Bs. The root poset Cs.
o—s—o o
u f

o

Oi@ O
c d d e
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The root poset Ds. 5 T .
b c d e
U
O O
b c d e f
The levels for D,,.
Level Conditions Minimal elements Maximal element ‘ number
1 w=0 n—1 simple roots L ? 111 (g)
1 1
2 u=1 00--000 12..221 ()
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Unfortunately, the cubical pictures hides the symmetry given by the automorphism
of order 2. Thus, one may want to “squeeze” the picture slightly. Here is the case n = 6:

The root poset Eg.

o
e
Level Conditions Minimal elements Maximal element number
1 u=20 5 simple roots 11 (1) 11 15
2 u=1 00(1)00 11111 3x3+1
3 c=2 01;10 12;21 3x3+2
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The root poset E;.

Level Conditions Minimal elements Maximal element number
1 u=20 6 simple roots 11(1)111 21
2 u=1c=<l 00(1)000 111111 3x4d+1
3 c=2d= 01;100 12;111 3x3
4 d=2 015210 23421321 DX 345
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The root poset Es.
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Level Conditions Minimal elements Maximal element number
1 u = 7 simple roots . 1(1)1 111 28
2 u=1Lc=<l 00(1)0000 1111111 3x5+1
3 c=2d= 01;1000 12;1111 3 x4
4 d=2,e=1 01;2100 1232111 5x3
D d=2, e= 01;2210 1222221 5x3
6 d=3 12:1&3210 24254312 dSx4d+14
The root poset Fy. 8 8_*‘4:0 ?1
Level Conditions Minimal elements Maximal element number
1 b<1 4 simple roots 1111 10
2 b>2 0210 2432 3x3+5



The root poset Gs. a b
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