Algebraically Compact Modules Arising from Tubular Families.
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Claus Michael Ringel

ABSTRACT. Algebraically compact modules play an important role in rep-
resentation theory: they have been introduced both by logicians and by
algebraists as the basic class of representations of any ring. We will con-
centrate on algebraically compact modules which are related to tubes in the
Auslander-Reiten quiver of an artin algebra. We are going to survey part
of the present knowledge and present typical examples. The decomposition
results are similar to those known for algebraically compact abelian groups,
whereas some of the embedding properties of the relevant categories provide
completely different features.

The main theme of this survey is the transfer of knowledge from finite length
modules to arbitrary ones, a theme which has attracted a lot of interest in recent
years, see for example the proceedings [KR| of a corresponding conference held at
Bielefeld in 1998, in particular the introduction [R4]. The special case of dealing
with a finite-dimensional hereditary algebra has been treated in [R1] and [R2],
and it was observed recently [RR]| by Reiten and the author that the structure
theory developed in these papers can be obtained in the more general setting of
concealed canonical algebras: any sincere stable separating tubular family t yields
a subcategory M = M (t) which strongly resembles the category of abelian groups.
In between, Crawley-Boevey in his Trondheim lectures 1996 [CB]| provided all the
details for dealing with the indecomposable algebraically compact modules which
arise from such a family t; the present survey aims to complement this work by
describing the structure of all the algebraically compact modules in M. While
the decomposition results presented here are direct analogues of those known for
abelian groups [F,K], the proofs have to be screened quite carefully due to the fact
that the decisive subcategory M is not abelian. On the other hand, we focus the
attention to the embedding properties of the relevant categories and some of these
results have no analogy at all in the abelian group case.
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outlined, the third one dealt again with tubular algebras and provided a construction of infinite
dimensional indecomposable representations with non-rational slope.
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1.1. Algebraic Compactness.

Let A be a ring (associative, with 1). All the modules mentioned will be left
modules. The basic notion is that of a direct sum: given submodules M’, M" of a
module M, one says that M is the direct sum of M’ and M" provided M'+M" = M
and M’ N M"” = 0 and one writes M = M’ & M" in this case and calls M’, M"
direct summands of M. The module M is said to be indecomposable provided M is
non-zero and the only direct decompositions M = M’ @ M" are those with M’ =0
or M" = 0.

In order to formulate the concept of algebraic compactness, one considers the
solvability of linear equations. Linear equations are of the form > jed N X =m;
here, J is some index set, for every j € J there is given an element A\; € A, but only
finitely many elements \; are allowed to be non-zero, and m is an element of the
A-module M; as usually when dealing with equations, the symbols X, are called
variables, and a solution of this equation is a sequence of elements x; with j € J
such that > jes Aj&; = m. Thus, the basic data for writing down a linear equation
is the element m € M and the indexed family (A;);, this is just an element in the
free A-module A(/) with basis indexed by J. Note that whereas we assume that
almost all coefficients \; are zero, there is no corresponding condition formulated
for the elements z; € M, thus the solution is an element of the product module
M. The reason for looking for elements in the product M” and not only in the
direct sum module M) is the following: usually we will consider not just a single
linear equation Zje] A;X; =m, but a system
(*) ZjeJ Aij Xj = my

of linear equations indexed by i € I; here one uses two index sets I, J (the set [
indexes the equations, the set J the variables). By definition, a solution of this
system is just a common solution of the various equations. Such a system is said to
be solvable if at least one solution exists, and it is called finitely solvable provided
for every finite subset I’ C I, the system consisting of the equations with index in
I’ has a solution. A A-module M is said to be algebraically compact provided every
finitely solvable system of equations (x) with values m; € M has a solution (in M).

As typical examples, consider A = Z, let p be a prime number and consider
the system Xg = m, X;_1 — pX; = 0 for i« € Ny = {1,2,3,...}, where m is
some element in an abelian group M. We construct two different factor groups
of N = @, Za;, where Za; is a cyclic group of order p' (here, a; is a generator
for the group Za; = Z/p'Z, for example a; = 1 = 1 + p'Z). First, let U be the
subgroup of N generated by the elements pa;11 — a;, with ¢ € Ny. The group N/U
is called a Priifer group and is a well known example of an algebraically compact
abelian group. Whatever element m € N/U we take, there is m’ € N/U with
pm’ = m, thus the system mentioned at the beginning of the paragraph is solvable,
for any m € N/U. On the other hand, let U’ be the subgroup of N generated by
the elements piaH_l —p'~la;, foralli € Ny, and let m = a; +U’ € N/U’. Then it is
easy to see that the system is finitely solvable, but not solvable. As a consequence,
N/U’ is not algebraically compact.
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In order to formulate the concept of pure injectivity, let us recall that a module
homomorphism M’ — M" is said to be a pure monomorphism provided the induced
map C @y M’ — C ®, M" is injective for any A°P-module C' (and it is sufficient
to require this for all the finitely presented A°°-modules C'). The A-module M is
said to be pure injective provided any pure monomorphism M — M" is a split
monomorphism.

Let A be any ring. A A-module M is algebraically compact if and only if it is
pure injective.

The algebraically compact modules can be characterized in many different
ways. We refer to the book of Jensen and Lenzing [JL] for a very readable ac-
count.

A module M is said to be discrete provided any non-zero direct summand M’ of
M has an indecomposable direct summand M"”. On the other hand, M is said to be
superdecomposable provided M does not have any indecomposable direct summand.

Any algebraically compact module M is a direct sum of a discrete module My
and a superdecomposable module M. Such a decomposition is unique in a quite
strong sense: If M = My & M, = M) & M/ with discrete modules My, M), and
superdecomposable modules My, M., then also M = My & M. (and, consequently
M, and M), are isomorphic, and M, and M| are isomorphic).

This decomposition property holds in general for algebraically compact modules
(not only for artin algebras). For the proof, one uses the fact that one may embed
the category Mod A into a Grothendieck category G such that the full subcategory C
of Mod A given by all the algebraically compact modules is sent to the full subcate-
gory 7 of all injective objects of G and yields an equivalence between C and G. Such
an embedding has been constructed by Gruson and Jensen. The properties of dis-
creteness and superdecomposability are properties reflected by the endomorphism
rings, thus they are preserved under categorical equivalences. Now the theorem
of Gabriel and Oberst asserts that injective objects in C satisfy the corresponding
statement: any such object is the direct sum of a discrete and a superdecomposable
object and these decompositions have the required unicity property. (The reader
should be aware that in general none of the direct summands M, and M is unique
as a subset of M, in contrast to frequent assertions in the literature; see the exam-
ples in [R4].) The Gruson-Jensen equivalence can be used also to obtain additional
information on algebraically compact modules. For example, the endomorphism
ring of an indecomposable injective object in C is local, thus:

Any indecomposable algebraically compact module has a local endomorphism
ring.

We usually will deal with an artin algebra A (recall that this means that A is
a k-algebra where k is a commutative artinian ring k such that A as a k-module is
finitely generated).

Let A be an artin algebra, and M a A-module. Then M 1is algebraically compact
if and only if M is a direct summand of a product of A-modules of finite length.

This characterization is due to Couchot [C], for a proof, we may refer for
example to [R4].
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Given a class x of modules we denote by II(x) the class of direct summands
of products of modules in x. Using this notation, we may reformulate the last
assertion as follows: For an artin algebra A, the class II(mod A) is the class of all
algebraically compact modules.

2. Tubes.

A translation quiver (without multiple arrows) is of the form I' = (I'g,I'y, 7),
where (I'g,I'1) is a quiver (thus, 'y is a set, its elements are called vertices, and I'y
a subset of I'3, such an element v = (a, b) with a,b € 'y will be called an arrow and
written in the form v: @ — b), and there is given an injective map 7: I'j — I'g, where
I'() is a subset of I'g, such that for any vertex z € I'), there exists an arrow y — z if
and only if there exists an arrow 7(z) — y. The translation quivers we are dealing
with have the property that for any vertex z € I'| there exists an arrow y — z,
thus 7 is uniquely determined by the set of triples (z,y, z) where z € I'y, z = 7(2)
and (y, z) € I'1, these triples will be considered as 2-simplices (and the elements of
I’y as 1-simplices). In this way, a translation quiver becomes a simplicial complex
(with a fixed orientation of the 1-simplices).

A stable tube of rank n is the following translation quiver: T'g = Z/nZ x Ny, thus
the vertices are pairs of the form (a,7), where a is a residue class modulo n and i > 1
is a natural number. There are arrows (a,i) — (a,i+ 1) and (a,i+ 1) — (a + 1,4)
and 7(a,i) = (a — 1,7). The stable tubes of rank 1 are said to be homogeneous.
Here is the stable tube of rank 3 (its simplicial complex):

N N N\

(6 7) AAAAAAAAAAA (T 7) AAAAAAAAAAA (j 7) AAAAAAAAAAA (ﬁ 7)
'\ SN N /'
..... (1,6) -~ (2,6) - (0,6)
AN SN N

(T,5) (2,5) (0,5) (1,5)
'\ SN N /'
..... (2,4) e (0,4) o (T,4)
AN SN N

(2 3) ........... (0 3) AAAAAAAAAAA (1 3) ........... (2 3)
'\ N N /'
..... 0,2) - (1,2) e (2,2)
AN N S N

0,1) (T,1) (2,1) (0,1)

(the vertical boundary lines have to be identified, so that one really obtains a
“tube” or a cylinder). The vertices with second index equal to 1 (those on the lower
boundary line) will be said to lie on the mouth of the tube.
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1.3. The Auslander-Reiten Quiver.

Tubes arise quite frequently in representation theory, namely as components of
some Auslander-Reiten quivers.

We recall the notion of an Auslander-Reiten quiver of an exact category C with
Auslander-Reiten sequences. We need the notion of an irreducible map f: X — Z,
this is a non-invertible map such that for any factorization f = f’f”, the map f” is
split mono or the map f’ is split epi. An exact sequence 0 - X —Y — Z — 0 is
said to be an Auslander-Reiten sequence (starting in X and ending in Z), provided
both maps X — Y and Y — Z are irreducible, and C is said to have Auslander-
Reiten sequences provided for any indecomposable non-injective object X in C, there
exists an Auslander-Reiten sequence starting in X, and for any indecomposable non-
projective object Z in C, there exists an Auslander-Reiten sequence ending in Z.
For example, if C = mod A is the category of all finite length modules, where A is
an artin algebra, then C has Auslander-Reiten sequences. The same is true for the
category C = mody k[[T]] just considered. Given an exact category with Auslander-
Reiten sequences, its Auslander-Reiten quiver I'(C) has as vertices the isomorphism
classes [X] of indecomposable objects X in C; given indecomposable objects X, X,
there is an arrow [X] — [X'] in T'(C), provided there exists an irreducible map
X — X' and finally, we draw a dotted edge connecting [X] and [Z] provided there
is an Auslander-Reiten sequence starting in X and ending in Z. (Sometimes it seems
to be convenient to endow the arrows with multiplicities or “weights” in order to
encode further information on the so-called “bimodule of irreducible maps”, but in
the present paper, there is no need to do so.)

As an example, consider the category modg k[[T]] of finite length k[[T']]-modules,
where Ek[[T]] is the ring of formal power series in one variable T" with coefficients in
the field k. Note that the k[[T']]-modules of finite length are the pairs (V, f), where V'
is a finite dimensional k-space (this is the underlying k-space of the module) and f a
nilpotent endomorphism of V' (given by the multiplication by T'); such pairs are just

the nilpotent representations of the one-loop quiver . The Auslander-Reiten

quiver of modg k[[T]] has the following form:
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Here, we have exhibited the k[[T]]-module (V, f) by just writing down f, or better
a matrix which describes f with respect to some basis; for example, in the lowest
line, we see the 1x l-matrix [0], thus the k[[T]]-module (k,[o0]); note that this is
the only simple k[[T]]-module.

As an obvious generalization of the category n(1) = modg k[[T]], one may
consider the category n(t¢) of nilpotent representations of the cyclic quiver with ¢
vertices. The cyclic quiver with t vertices has vertices indexed by the elements of
Z/tZ., and there is one arrow @ — a+1, for any residue class a € Z/tZ. Here is the

cyclic quiver with ¢ = 3 vertices:
Ok_\
< O
OJ

A representation of such a quiver is said to be nilpotent provided the endomorphisms
which arise when composing maps going around the circle are nilpotent. Note that
the categories n(t) all have Auslander-Reiten sequences and the Auslander-Reiten
quiver of n(t) is just a stable tube of rank ¢. In particular, the stable tube of rank
3 exhibited in section 1.2 is the Auslander-Reiten quiver of the cyclic quiver with 3
vertices shown above.

1.4. Dedekind Rings.

Let A be a Dedekind ring (for example A = Z or the polynomial ring A = k[T
in one variable, where k is a field). Note that the category of all A-modules of finite
length is an abelian category which is serial: any indecomposable object M has a
unique composition series. Let S be a simple A-module. There is an indecomposable
A-module of length ¢ with all composition factors isomorphic to S, we denote it by
S|i] (stressing in this way that its socle is of the form .S) or by [i]S (in order to stress
that its top is of the form S), it is unique up to isomorphism and all indecomposable
A-modules are obtained in this way. There are chains of inclusions

S=8[1]—-S5)2]—---,
the direct limit S[oo] = lim S [i] does not depend on the choice of the inclusion
maps, it is called a Priifer module. Dually, there are chains of epimorphisms
S=[1]S 2]« -,
the inverse limit S = lgn S[i] does not depend on the choice of the epimorphisms,
it is called an adic module.
(a) All algebraically compact modules are discrete.

(b) Here is the list of all indecomposable algebraically compact modules

The indecomposable modules of finite length, they are of the form A/m?®, where
m s a maximal ideal and 1 € Ny.
The Priifer modules lim A/m®, where m is a maximal ideal.

The m-adic modules lim A/m®, where m is a mazimal ideal.
The quotient field Quot(A) of A.
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1.5. Tame hereditary algebras.

Let k be a field and A be a finite dimensional k-algebra which is connected,
hereditary and tame. Let us recall from [DR1] and [DR2] the structure of the
category mod A. There are two Auslander-Reiten components which are not stable,
namely a preprojective component and a preinjective component. The remaining
indecomposable modules belong to a P!-family of stable tubes (with P! being the
projective line over k), where all but at most three of these tubes are homogeneous.
The structure theory for the algebraically compact A-modules is very similar to
the case of a Dedekind ring. Actually, the full subcategory of all direct sums of
indecomposables of finite length which are neither in the preprojective nor in the
preinjective component is an abelian category which we denote by t(A). If M
belongs to t(A), the length of M as an object of t(A) will be called its reqular
length. Note that the category t(A) is serial: any indecomposable object M in t(A)
has a unique composition series (inside t(A)). Let S be a simple object in t(A).
There is an indecomposable object in t(A) of regular length ¢ which has S as a
submodule, we denote it by S[i] (it is unique up to isomorphism). Dually, there
is an indecomposable object in t(A) of regular length i which has S as a factor
module, we denote it by [i]S (again, it is unique up to isomorphism). And there
are chains of inclusions

S=8[1]—-S]2]—---,
the direct limit lim S[i] does not depend on the choice of the inclusion maps, it is
called a Prifer module. Dually, there are chains of epimorphisms
S=[1]5 2] -,
the inverse limit lim S[i] does not depend on the choice of the epimorphisms, it is
called an adic module.
(a) All algebraically compact modules are discrete.

(b) Here is the list of all indecomposable algebraically compact modules

The indecomposable modules of finite length.
The Priifer modules lim S[i], where S is a simple object in t(A)

The adic modules lim [i]S where S is a simple object in t(A)

The unique indecomposable torsionfree divisible A-module G (as constructed in
[R1]).

2.1. Sincere stable separating tubular families

In this part 2, we assume that A is an artin algebra, and that t is a sincere stable
separating tubular family. Recall that this means the following: a tubular family
consists of all the indecomposables belonging to a set of tubes in the Auslander-
Reiten quiver of A (in particular, all the modules in t are of finite length). We use
as index set for the tubes: thus, for A € ©, t(\) will be the corresponding tube, and
we denote by S(A) the set of isomorphism classes of objects on the mouth of the
tube t(\). Such a tubular family is said to be stable provided all the tubes are stable,
thus provided it does not contain any indecomposable module which is projective or
injective. A family of modules is said to be sincere provided every simple A-module

7
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occurs as the composition factor of at least one of the given modules. Finally, let us
say that the tubular family t is separating provided the following two properties are
satisfied: first, if M is indecomposable with Hom(t, M) # 0 and Hom(M,t) # 0,
then M belongs to t; and second, if M, M’ are indecomposables which do not belong
to t, and such that Hom(M,t) # 0 and Hom(t, M’) # 0, then for any X € Q, any
map M — M’ has a factorization M — N — M’ where N is indecomposable and
belongs to t(\).

Now let t be a separating tubular family. We denote by p the class of inde-
composables M of finite length with Hom(M,t) # 0, but which do not belong to
t, and by q the class of indecomposables M of finite length with Hom(t, M) # 0,
which again do not belong to t. Then any indecomposable module of finite length
belongs either to p, t or q

and one says that t separates p from q. Note that there are no maps ”backwards”:
Hom(t, p) = Hom(q, p) = Hom(q,t) =0

and that any map from a module in p to a module in q can be factored through a
module in t (even through an indecomposable lying in a prescribed tube inside t).
In case t is in addition sincere and stable, then all the indecomposable projective
modules belong to p, whereas the indecomposable injective modules belong to q.
As a consequence, in this case the modules which belong to p or t have projective
dimension at most 1, those which belong to t or q have injective dimension at
most 1. Also note that a stable separating tubular family t always is an exact
abelian subcategory of mod A (and all the indecomposables in t are serial when
considered as objects in this subcategory; those on the mouth of the tube are the
simple objects).

The algebras A with a sincere stable separating tubular family are the concealed
canonical algebras. (They have been studied in [LM], [LP] and [RS], a review of the
main steps of the construction can be found in [RR].)

Let C be the full subcategory of all modules M with Hom(q, M) = 0 and B
the full subcategory of all modules M with Hom (M, p) = 0. The subcategory we
are interested in is

M=BNC={M | Hom(M,p) =0= Hom(q, M)}

(let us stress that here we deal with arbitrary, not necessarily finitely generated
modules).

Our aim is to describe the algebraically compact A-modules in M. This cat-
egory M has properties which are very similar to the complete category Mod R
where R is a Dedekind ring. However, one should be aware that M is not abelian
in contrast to Mod R (but note that the full subcategory of M of all objects of finite
length is just add t, thus this subcategory is abelian).
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2.2. The reduced and the divisible modules.

We denote by D the full subcategory of all modules M with Hom(M,t) = 0
and we set
w=CND={M | Hom(q,M)=0=Hom(M,t)}.

Since p is cogenerated by t, it follows that w C M. The structure of the subcategory
w is completely known: all the modules in w can be written as direct sums of
indecomposable objects, and there are two kinds of indecomposables in w, namely
there is (unique up to isomorphism) an indecomposable module G in w with a
division ring as endomorphism ring (this module G is called the generic module in
w, note that G has finite length when considered as a module over its endomorphism
ring), the remaining indecomposables are the so called Priifer modules.

Also, we recall that D is the torsion class of a split torsion pair, the correspond-
ing torsionfree class will be denoted by R, note that R = {M | Hom(G, M) = 0},
according to [RR]. The modules in D are said to be divisible, those in R reduced.
Since the torsion pair (R, D) is split we see that any object in M is the direct sum
of a module in R N M and a module in D N M. Now the modules in D N M are
known:

DNM=w

(namely, DNM = DNBNC =DNC, since D C B). The challenge which remains is
to find a convenient description of the modules in R N M. Part (b) of the Theorem
presented below will provide such a description for those modules in R N M which
are algebraically compact.

Couchot’s theorem asserts that the algebraically compact modules are the mod-
ules in IT(mod A). Since any indecomposable module of finite length belongs either
to p, t or g, it is of interest to determine the intersection of the classes II(p), I1(t)
and II(q) with M. This is established in part (a) of the following Theorem.

Theorem.
(a) II(p)N M =0, II(t)C M and II(q) "M =w.
(b) The class I1(t) is the class of all algebraically compact modules in R N M.
(¢) The following conditions are equivalent for a A-module M.
(i) M =M @& M", where M’ belongs to II(t) and M" to w.
(ii) M is algebraically compact and belongs to M.

We should stress that the last assertion of part (a)
IIggNM=w

is of special interest: it provides a description of w in terms of finite length modules.
Note that there is no analogue in the case of a Dedekind ring R, since there does
not exist any class of R-modules which could play the role of q. The possibility for
such a formula relies on Couchot’s theorem, and this result uses strong finiteness
conditions on the ring A. For a Dedekind ring R, only the reduced algebraically
compact modules are direct sums of products of modules of finite length, whereas
the divisible ones have not even non-zero maps to modules of finite length.

Proof of (a): First, assume that M belongs to II(p)NM, thus M is a submodule
of a product of modules in p. However, Hom(M, p) = 0, thus M = 0.

9



C. M. RINGEL

Second, assume that M belongs to II(t). Then M is algebraically compact. It
is easy to see that M is closed under products (see Proposition 9 of [RR]) and of
course also under direct summands, thus M belongs to M.

Third, we are going to show the third assertion II(q) " M = w. One of the
inclusions is obtained as follows:

Q"M CDPAM=DNCNB=DNC =w,

where the first inclusion follows from the fact that D is closed under products, see
Lemma 9 of [RR]. For the reverse inclusion w C II(q) N M, it is clear that w C M.

Thus, it remains to see that any module in w belongs to II(q). First let us
show that such a module M is algebraically compact. This is easy to see in case
M is indecomposable, since then M is artinian when considered as a module over
its endomorphism ring. In general, write M as a direct sum of indecomposables,
say M = @, M;. Since w is closed under products, also the product N = [[, M;
belongs to w. But any inclusion map in w splits [RR], thus M is a direct summand
of N. Since all the modules M; are algebraically compact, also N and therefore M
is algebraically compact.

As an algebraically compact module, M can be written as M = M, ® My ® M
with M, € I(p), My € II(t) and My € II(q). However, Hom(M,p) = 0 and
Hom(M,t) = 0, thus My = 0 = M; and therefore M = My belongs to II(q).

Proof of (b). Of course, the modules in II(t) are algebraically compact, thus let
us show that they belong both to R and M. Now, Hom(G, t) = 0 and Hom(q,t) =0
imply Hom (G, II(t)) = 0 and Hom(q, II(t)) = 0. Finally, it is well-known [RR] that
also B is closed under products, thus Hom(II(t), p) = 0.

For the converse, let N be an algebraically compact module in RNM. Since N
is algebraically compact, it is a direct summand of a product of finite dimensional
modules, thus there are modules X, € II(p), X € II(t), X4 € II(q) and maps

dp
H
N 9q XpEBXtEBXq [fp ft fa

9p
] N Wlth [fp fe fq] [gt:| :1

9a

Since Hom(N,p) = 0 and X, is a submodule of a product of modules in p, we
have gp = 0. On the other hand, we claim that also fq = 0. First of all, we
have Hom(G, N) = 0. Second, D is closed under products, thus Xq belongs to
D. According to [RR], all the modules in D are generated by G. It follows from
Hom(G, N) = 0 that Hom(Xq, N) = 0. Since gp = 0 and fq = 0, we see that
ftgt = 1. This shows that N is a direct summand of X¢, thus N belongs to II(t).

Proof of (c¢). The implication (i) = (ii) is a direct consequence of (a). For
the implication (ii) = (i), let M be an algebraically compact module in M.
Since (R, D) is a split torsion pair, we may decompose M = M’ @& M" with M’ in
R and M" in D. According to (b), the module M’ belongs to R N M =TI(t); and
we have noted above that D N M = w. This completes the proof of Theorem.

It is one of the essential observations that any algebraically compact module
M in M decomposes as M = M’ @ M", where M’ belongs to II(t) and M" to w.
The proof given above uses the fact that the torsion pair (R, D) splits. It seems to
be worthwhile to focus the attention on the argument, since it provides additional

10
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information. Let M” be the sum of the images of maps G — M, thus M" is
generated by G and therefore belongs to D. Since M” is a submodule of M € C,
and C is closed under submodules, it follows that M” € C. Altogether we see that
M" belongs to w. The inclusion map M"” — M splits, since M” belongs to w and
M to C, thus there is a submodule M’ with M = M’ & M". Note that the image
of any map G — M maps into M", thus Hom(G, M’) = 0, thus M’ belongs to R.
Of course, M’ as a direct summand of M belongs to M, thus to R N M = II(t).

2.3. The AM-adic components.

Recall that addt is a direct sum of serial categories add t(\), with A in some
index set €2, and each subcategory t(\) contains only finitely many isomorphism
classes of simple objects. Let us denote by A(\) = II(t()\)) the full subcategory of
all direct summands of products in t(\).

Lemma 1. If \, u are different elements of §, then Hom(A(\), A(u)) = 0.

Proof: It is sufficient to show the following: If X; is a family of objects in t(\)
and Y is indecomposable in t(u), then Hom(][, X;,Y) = 0 Thus, assume there
exists a non-zero map f: [[, X; — Y, let I be its image and Z its cokernel. We
apply Ext'(7~1Y, —) to the exact sequence 0 — I — Y — Z — 0, where 7 is the
Auslander-Reiten translation and obtain an exact sequence

Ext'(r7'Y,I) — Ext' (7Y, Y) — Ext!' (7Y, 2)

Since Z is a proper factor module of Y, the Auslander-Reiten sequence goes under
the right map to zero, thus Extl(T_lY, I) # 0. Since the projective dimension of
771Y is 1, the epimorphism [I; Xi — I yields an epimorphism

Ext!(r7'Y, H X;) — Ext* (1Y, I).
In particular, we see that Ext'(r=1Y, 1, X;) is non-zero. However
Ext!(r~'Y, H X;) = H Ext!(r7'Y, X;)
and all the factors Ext'(7~1Y, X;) are zero, since X; € t(\),Y € t(u) and \ # p.

Lemma 2. For any A € Q, let My be a module in A(X). Then [[, Mx/ @, M)
s a direct sum of copies of the generic module G.

Proof: In order to show that X =[], Mx/ @, M belongs to C, consider any
module () € q and a homomorphism f: Q — X. We want to show that f = 0. Since
q is closed under factor modules, we may assume that f is an inclusion map. Since
the embedding of @, M, into [, M, is pure, it follows that @) can be embedded
into [[, M (see Theorem 1.F in [R1]). But any M) is a submodule of a product
of modules in t, so that Hom(Q, M) = 0. This shows that @ = 0. In order to
show that X belongs to D, we show that Extl(S,X ) = 0 for any indecomposable
module S in t. Assume that S belongs to t(u), where p € €. Note that X =
[Tz M/ @Dy, M. For the A € Q with A # p, we have Ext! (S, My) = 0, since

Ext'(S, —) commutes with products and M) is in A()), whereas S is in t(;). Again
using that Ext' (S, —) commutes with products, we see that Ext* (.S, H/\#u’ My) =0.

11
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Since S has projective dimension at most 1, the group Ext' (S, ] atn M A) maps onto

the group Ext!(S, X). This completes the proof that X belongs to w.

The modules in w are direct sums of Priifer modules and of copies of the generic
module. Thus, it remains to show that X has no nonzero submodule which belongs
to t. Assume S belongs to t(u) for some p € 2 and embeds into X. As before, write
X =[1yzu Mr/ D)y, M, and lift the embedding of S into X to an embedding of
S into [, 20 M. Obviously, we obtain a contradiction.

Theorem. The algebraically compact modules in R N M are precisely the
modules M of the form [[ycq Mx with My € A(X) and this product decomposition
1S UNIque.

Given such a module M = [],.o Mx with My € A()), one may call M) the
A-adic component of M. Note that M it is an extension of the submodule P, ., M
by a direct sum of copies of GG, according to Lemma 2.

Proof of Theorem. Since R N M is closed under products, all the modules of
the form [, My with My € A(\) belong to R N M.

Conversely, assume that M is algebraically compact and belongs to R N M.
Now M is a direct summand of a module A which is a product of modules Ay in
A(N), say M @& M’ = A = []Ax. According to Lemma 1, A, is fully invariant
in A, thus Ay = (M NAy) & (M NAy). As a consequence, A = N @& N’ where
N = J[(M N Ay) and N’ = [[(M' n Ay). We claim that N C M. We have
PMNAN) C M. Let Q = N/@(M N Ay). We may consider the following
commutative diagram with exact rows, where all the maps labelled ¢ are inclusion
maps, those labelled 7 the canonical projections, and f exists, since the left square
is commutative and the maps 7 are cokernel maps:

0 — PMNA) —— N —"L— Q —— 0

I b

0o — M LA T M —— 0

According to Lemma 2 we know that Q) is a direct sum of copies of G. But M’ is
a direct summand of M, thus cogenerated by t. Since Hom(G,t) = 0, we see that
f = 0 and consequently N C M. Similarly, N C M’. But this then implies that
N =M and N' = M’. Let My = M N Ay. Since M, is a direct summand of A,
we see that M) belongs to A(X).

In order to show the unicity of the decomposition, let [[, My = [], M} with
modules My, M} in A()). Now, for any index p, the embedding M, C [, My
induces an embedding M], — M,,, according to Lemma 1. But then M, = M,,.

2.4. Basic submodules and completions.

It remains to study the modules in A(A\) = II(t(\)). The module classes of
the form II(x) are often quite difficult to understand since the process of forming
direct summands is mysterious in general. In order to overcome this problem in

our case, we are going to provide a different characterization of the modules in
A(X) =II(t(N\)) which avoids the need to deal with direct summands.

Actually, in order to deal with A(\), we may be quite brief, since we are in
a safer realm than before: instead of working with A, we may consider a suitable

12
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kind of localization Ay which behaves really like a Dedekind ring. Here, Ay is the
endomorphism ring of the direct sum F'(\) of all the modules S with S € S(\),
one from each isomorphism class. Denote by F () the full subcategory of arbitrary
direct sums of copies of F'(\) and by M(A) that of all cokernels of maps in F(\).
It is easy to see that M(\) is an exact abelian subcategory of Mod A and that F'()\)
is a progenerator in M(X), thus M(X) is equivalent to the category Mod Ay. One
may (and should) use this equivalence in oder to verify those assertions which are
mentioned here without proof.

Denote by B(A) the full subcategory of M of all direct sums of modules in t(\)
as well as of copies of S, where S belongs to S(A).

Let A belong to A(M). A A-basic submodule of A is a pure submodule B of A
which belongs to B(A) and such that B/A is divisible.

If the A-module B is cogenerated by t(\), its A-completion is defined as follows:
Let ,, B be the intersection of the kernels of maps B — S[n], where S belongs to
S(A). Then
B =lim B/,B

is called the A-adic completion of B.

Theorem. There is a bijection between the isomorphism classes of the modules
in A(X\) and those in B(\), as follows: to every module in A(X), attach a basic
submodule; conversely, for every module B in B()\), form its completion.

Proof: Starting with B € B(\), consider its A-adic completion B. Of course,

B is algebraically compact, and the embedding B — Bisa pure monomorphism.
Since Hom(M B) = 0 for M in t(p) with g # A, as well as for M in q, whereas

Hom(B M) = 0, for M in p, it follows that B belongs to A(N\). We claim that
B/B belongs to w. First of all, since B — B is pure, and Hom(Q, B) = 0, we see
that B /B belongs to C. Second, in order to show that B /B belongs to D, we have
to show that Ext'(S, B/B) = 0 for any simple object S in t. But this follows from

the fact that the embedding B — B induces a bijection Ext!'(S, B) — Ext!(S, B)
since S has projective dimension 1. Thus we see that B is a A-basic submodule of
B.

Remark. For any module M in M, let , x\M be the intersection of all maps
M — [n]S, with S € S(\). Then M/, »M is a direct sum of objects in t(\) of
length at most n.

For any module M in M, its A-completion is defined as follows: we have the
sequence of canonical epimorphisms

-'HM/:J,’)\M—>M/27)\M—>M/L)\M

and we denote by M* the corresponding inverse limit, we call it the \-completion
of M.

Theorem. For any module M in M, the A\-completion belongs to A(X\). If M
belongs to A(N), then M coincides with its A-completion.

13
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Proof. Note that all the modules ,, xM belong to A(\) and that A()\) is closed
under inverse limits. This shows the first part.

For the second part, if M belongs to t(\), then clearly M coincides with its
A-completion. But the class of modules which coincides with its A-completion, is
closed under products and direct summands. Thus the modules in 4(\) coincide
with their A-completions. This completes the proof.

3. Application: Tubular algebras

Typical situations for using the results presented above arise for tubular alge-
bras, since they have plenty of separating tubular families.

Thus, let A be a tubular algebra. The structure of mod A is known in detail
(see [R3] and [LP]). There is a preprojective component pg and a preinjective com-
ponent q.,. We denote by Iy the ideal which is maximal with the property that it
annihilates all the modules in pg and by I, the ideal which is maximal with the
property that it annihilates all the modules in qo,. Then we obtain factor algebras
Ao = A/Iy and A, = A/I which both are tame concealed algebras. Let tg be
the Auslander-Reiten components of mod A which contain regular Ayp-modules, and
to those which contain regular A.,-modules. Then both ty and t., are sincere
separating tubular families, but both are not stable (ty will contain indecompos-
able projective modules, t., indecomposable injective ones). If we denote by qq
the indecomposable modules in mod A which do not belong to pg or tg, then tg
separates pg from qg. If we denote by po, the indecomposable modules in mod A
which do not belong to t,, or q.., then t., separates po, from q.,. The modules in
doNPoo fall into a countable number of sincere stable separating tubular families t,,,
indexed by a € QT, such that for & < 3 in Q7 the class t,, generates tg, and also
t. is cogenerated by tg. More generally, this generation and cogeneration property
holds for all & < 8 in QF = QT U {0, c0}.

Let R® = RTU{0, 00}. For any w € R, we denote by p,, the modules which
belong to pg or to some t, with a < w, and we denote by q,, the modules which
belong to t, with w < 7 or to qs (here, o, belong to QF°). For g € QF° we
obtain in this way a trisection (pg,ts, qg) of mod A, with tg a tubular family which
separates pg from qg, and tg is stable provided 0 < 3 < oco. On the other hand, for
w € R\ QF°, the two module classes p,, and q,, comprise all the indecomposables
from mod A.

Let us turn our attention again to arbitrary (not necessarily finite dimensional)
modules. For any w € Rg°, let C,, be the full subcategory of all modules M with
Hom(qy,, M) = 0 and B,, the full subcategory of all modules M with Hom(M, p,,) =
0. The subcategory we are interested in is

M(w) =By, NCyp ={M | Hom(M, p,,) = 0 = Hom(q,,, M)},

and for w € QT, these are subcategories as discussed above.

The modules in M(w) are said to have slope w, thus the results presented in
this survey describe all the algebraically compact modules with slope w in Qt. We
should note that similar considerations yield corresponding results for w = 0 and
w = 00, however at the moment not much is known about non-rational slopes.

In order to see the relevance of the subcategories M (w), we refer to the follow-
ing joint result with Reiten [RR]:
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Theorem. Any indecomposable A-module which does not belong to pg or Qoo

has a slope. For 0 < w < w' < oo, we have Hom(M(w’), M(w)) = 0.

Note that the second assertion immediately implies that M (w) N M(w') = 0,

thus if a module has a slope, its slope is a well-defined element of Rg°.
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