Das Quadratpuzzle![]()
Man nennt ein Rechteck perfekt, falls man es mit Quadraten lückenlos
und überschneidungsfrei überdecken kann, die alle unterschiedlich groß
sind. Es ist alles andere als einfach, eine solche Zerlegung zu finden.
Die Zerlegung eines Rechtecks in unserem Exponat wurde 1925 von Morón gefunden. Dies ist das perfekte Rechteck mit der kleinsten Anzahl von Quadraten. Noch schwieriger ist es, perfekte Quadrate zu finden. 1978 bewies Duijvestijn, dass man für eine perfekte Quadratzerlegung mindestens 21 Teile benötigt. Man weiß heute, dass es möglich ist, ein Quadrat in beliebig viele Teile (jedoch minimal 21) perfekt zu zerlegen.
|