Internal symmetries of root posets.

Given a Dynkin diagram Δ , let $\Phi_+(\Delta)$ be the corresponding root poset (its elements are the positive roots, and given positive roots a, b, the relation $a \leq b$ means that b - a is non-negative). Given a vertex x of Δ and $t \in \mathbb{N}_1$, let

$$\Phi_t(\Delta, x) = \{ a \in \Phi_+(\Delta) \mid a_x = t \}.$$

The posets $\Phi_1(\Delta, x)$ with Δ simply laced and x a leaf of Δ will be called *basic lattices*.

Claim. Any poset $\Phi_t(\Delta, x)$ is a product of basic lattices (thus also self-dual).

Example: Let $\Delta = \mathbb{E}_6$ and w a vertex which is neither the branching vertex, nor a leaf. Here are the posets $\Phi_1(\mathbb{E}_6, w)$ and $\Phi_2(\mathbb{E}_6, w)$ inside the root poset $\Phi_+(\mathbb{E}_6)$.

We denote by [n] the chain of cardinality n, it is the only basic lattice which occcurs for \mathbb{A}_n . And $W(n) = \Phi_1(\mathbb{D}_n, x)$, where x is the leaf on a short arm of \mathbb{D}_n .