Exercises for Functional Analysis

Exercise 1 Submission date: Friday, 23.04.2021 Digital submission via the E-Learning site of the tutorial

Exercise 1.

Let (X_n, d_n) be a family of metric spaces and

$$X := \prod_{n \in \mathbb{N}} X_n = \{ (x_n)_{n \in \mathbb{N}} \mid x_n \in X_n \text{ für } n \in \mathbb{N} \}$$

the cartesian product of the sets $X_n, n \in \mathbb{N}$. a) Set

$$d: X \times X \to \mathbb{R}, \quad (x, y) \mapsto \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}.$$

Prove that (X, d) is a metric space. b) Prove that (X, d) is complete if and only if (X_n, d_n) is complete for all $n \in \mathbb{N}$. (2 Points)

(2 Points)

(4 Points)

Exercise 2. The space $\ell^1_{\mathbb{R}}$ is defined by:

$$\ell_{\mathbb{R}}^{1} := \{ (x_{n})_{n \in \mathbb{N}} \mid \sum_{n=1}^{\infty} |x_{n}| < \infty \}$$

For $x = (x_n)_{n \in \mathbb{N}} \in \ell^1_{\mathbb{R}}$ set

$$||x|| := \sup_{n \in \mathbb{N}} \left| \sum_{k=1}^{n} x_k \right|.$$

Prove that $(\ell^1_{\mathbb{R}}, \ \cdot\)$ is a normed space.	(2 Points)
Is $(\ell^1_{\mathbb{R}}, \ \cdot\)$ a Banch space? Prove it or construct a counter-example	(2 Points)

Exercise 3.

The spaces $\ell^p_{\mathbb{R}}$ are defined by:

$$\ell^p_{\mathbb{R}} := \{ (x_n)_{n \in \mathbb{N}} \mid \sum_{n=1}^{\infty} |x_n|^p < \infty \}, \quad p \in [1, \infty)$$

and

$$\ell_{\mathbb{R}}^{\infty} := \{ (x_n)_{n \in \mathbb{N}} \mid \sup_{n \in \mathbb{N}} |x_n| < \infty \}$$

For which $s \in \mathbb{R}$ and $p \in [1, \infty]$ does $(n^s)_{n \in \mathbb{N}} \in \ell^p_{\mathbb{R}}$ hold?

Exercise 4.

Let (X, \mathcal{B}, μ) be a mesure space with a finite measure μ . Let (Y, d) be a metric space. We set:

$$M(\mathcal{B}, d) := \{ f \colon X \to Y \mid f \text{ is } \mathcal{B}/\mathcal{B}(Y) \text{-}measurable \}$$

and

$$D_{\mu} \colon M(\mathcal{B}, d) \times M(\mathcal{B}, d) \to \mathbb{R}, \qquad D_{\mu}(f, g) := \int \frac{d(f, g)}{1 + d(f, g)} \, \mathrm{d}\mu.$$

a) Prove that D_{μ} is a pseudometric on $M(\mathcal{B}, d)$.

b) Prove that the sequence $(f_n)_{n\in\mathbb{N}}$ in $M(\mathcal{B},d)$ converges in measure μ to a $f \in M(\mathcal{B},d)$ (i.e. $\mu(d(f,f_n) > \varepsilon) \to 0$) if and only if $\lim_{n\to\infty} D_{\mu}(f,f_n) = 0$ holds. Hint: Consider

$$\frac{\varepsilon}{1+\varepsilon}\mu(d(f_n, f) > \varepsilon) = \int_{\{d(f_n, f) > \varepsilon\}} \frac{\varepsilon}{1+\varepsilon} \, \mathrm{d}\mu$$

and use the fact that the mapping $x \mapsto \frac{x}{1+x}$ is increasing.

c) Consider the equivalence relation

 $f \sim g : \Leftrightarrow f = g \ \mu$ -almost everywhere.

Then, $((M(\mathcal{B},d)/\sim, D_{\mu}))$ is a metric space (No proof necessary!). Show that under the additional assumption (Y,d) being complete, that $((M(\mathcal{B},d)/\sim, D_{\mu}))$ is complete as well.

(1 Point)

(2 Points)

(1 Point)