Exercises for Functional Analysis

Exercise 10 Submission date: Friday, 25.06.2021 Digital submission via the E-Learning site of the tutorial

Exercise 1.

Prove that the following functionals are in $[\ell^p]'$ and calculate their norms.

(a) $l(x) := x_1 + x_2,$ $x = (x_1, x_2, ...),$ p = 2(b) $l(x) := \sum_{k=1}^{\infty} \frac{x_k}{k},$ $x = (x_1, x_2, ...),$ p = 1

(4 Points)

Exercise 2.

Let $f \in L^2((0,1))$. Check if the following linear functional

$$g \mapsto \int_{0}^{1} \frac{\mathrm{d}g}{\mathrm{d}x} f \,\mathrm{d}x$$

is continuous on the following spaces

 $(a) \ H^{1,2}((0,1))$

(b) $C^1([0,1])$

(4 Points)

Exercise 3.

Let H be a real Hilbert space and $T \in L(H)$. Prove that

(a) $||T||_{L(H)} = \sup_{x,y \in H, ||x|| = ||y|| = 1} (Tx, y)$

(b) If T is symmetric (i.e. (Tx, y) = (x, Ty) for all $x, y \in H$), then the following holds

$$||T||_{L(H)} = \sup_{x \in H, ||x|| = 1} |(Tx, x)|.$$

Hint: $T(x,y) = \frac{1}{4} \left((T(x+y), x+y) - (T(x-y), x-y) \right)$ (4 Points)