Exercises for Functional Analysis

Exercise 11 Submission date: Friday, 02.07.2021 Digital submission via the E-Learning site of the tutorial

Exercise 1.

Let H be a Hilbert space, $L \subseteq H$ a linear subspace and $f \in L'$. Prove, with the help of the Riesz Representation Theorem, that there is a unique extension F' on H with $||F||_{H'} = ||f||_{L'}$. (4 Points)

Exercise 2.

Let ℓ^{∞} be the space of all bounded reel sequences. Using the Hahn-Banach Theorem, prove that there is a linear functional $F: \ell^{\infty} \to \mathbb{R}$ with the following properties:

$$\liminf_{n \to \infty} x_n \leqslant F(x) \leqslant \limsup_{n \to \infty} x_n \qquad \forall x = (x_n)_{n \in \mathbb{N}} \in \ell^{\infty},$$
$$F((x_1, x_2, x_3, \ldots)) = F((x_2, x_3, x_4, \ldots)) \qquad \forall x = (x_n)_{n \in \mathbb{N}} \in \ell^{\infty}.$$

(4 Points)

Hint: Show that $p(x) := \limsup_{n \to \infty} \frac{1}{n}(x_1 + \dots + x_n)$ for $x = (x_n)_{n \in \mathbb{N}} \in \ell^{\infty}$ defines a sub-linear functional on ℓ^{∞} . Consider the linear subspace $A := \{x = (x_n)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \lim_{n \to \infty} x_n \text{ exists}\}$ and apply the Hahn-Banach Theorem to the linear functional $f : A \to \mathbb{R}, x \mapsto \lim_{n \to \infty} \frac{1}{n}(x_1 + \dots + x_n)$.

Exercise 3.

Prove with the help of the Hahn-Banach Theorem for linear functionals that the mapping $T: \ell^1 \to (\ell^{\infty})', T(x)(y) = \sum_{n=1}^{\infty} x_n y_n$ for $x = (x_n)_{n \in \mathbb{N}}$ and $y = (y_n)_{n \in \mathbb{N}}$ is isometric, but not surjective. (4 Points)

Hint: Consider on the subspace of all convergent sequences c the linear functional $f(x) = \lim_{n \to \infty} x_n$ and extend f to a continuous linear functional F on ℓ^{∞} . Show that $F \notin T(\ell^1)$.

Exercise 4.

Let X be a linear, normed space and $x, y \in X$ with $x \neq y$. Prove that there is a functional $f \in X'$ which satisfies

$$f(x) \neq f(y).$$

(4 Points)