Exercises for Functional Analysis

Exercise 12 Submission date: Friday, 09.07.2021 Digital submission via the E-Learning site of the tutorial

Exercise 1.

Let $\Omega \subseteq \mathbb{R}^n$ be an open and bounded set and $V \in L^1(\Omega)$ with $V \ge 0$. Prove that $\hat{H}_V^{1,2} := \{f \in \hat{H}^{1,2} \mid \int V f^2 < \infty\}$ and

$$(f,g)_{1,2,V} := \int \nabla f \cdot \nabla g + \int (1+V)f \cdot g$$
(4 Points)

define a Hilbert space.

Exercise 2.

Let \mathbb{B} be a σ -Ring on a set S and $\lambda \colon \mathbb{B} \to \mathbb{R}$ σ -additive and bounded. Prove with the help of the Hahn Decomposition Theorem that there are σ -additive, bounded measures $\lambda^+, \lambda^- \colon \mathbb{B} \to \mathbb{R}_+$ with the following properties

- $\lambda = \lambda^+ \lambda^-$
- $|\lambda| = \lambda^+ + \lambda^-$
- $\lambda^+(E) = \sup_{A \subseteq E, \ A \in \mathbb{B}} \lambda(A) \text{ for all } E \in \mathbb{B}$
- $\lambda^{-}(E) = -\inf_{A \subseteq E, A \in \mathbb{B}} \lambda(A)$ for all $E \in \mathbb{B}$

(4 Points)

Exercise 3.

Let $(X, \mathcal{F}, \lambda)$ be a measure space, where λ is a σ -finite measure on \mathcal{F} . Let ν_1, ν_2 be two σ -finite measures on \mathcal{F} with $v_1 \ll \lambda$ and $v_2 \ll \lambda$. Set $\nu := \nu_1 + \nu_2$. Prove that $\nu \ll \lambda$ and that $\frac{d\nu}{d\lambda} = \frac{d\nu_1}{d\lambda} + \frac{d\nu_2}{d\lambda}$ holds almost surely on X. (4 Points)

Exercise 4.

Let X = (0,1] and λ_1 the Lebesgue measure on \mathbb{R} . Let μ be a measure on X such that $\mu((0,x]) = 2^x - 1$ holds. Prove that $\mu \ll \lambda_1$ and calculate $\frac{d\mu}{d\lambda_1}$. (4 Points)