(2 Points)

(2 Points)

(2 Points)

Exercises for Functional Analysis

Exercise 3 Submission date: Friday, 07.05.2021 Digital submission via the E-Learning site of the tutorial

Exercise 1.

Let $\Omega \subseteq \mathbb{R}$ be open and bounded, $m \in \mathbb{N}$, $p \in [1, \infty)$. Let $f \in H^{m,p}(\Omega)$. Prove that $f^{(\alpha)}$ is unique for all $\alpha \in \mathbb{N}$ with $\alpha \leq m$.

Let $\tilde{f}^{(\alpha)}$ be a function with the same properties as $f^{(\alpha)}$. First, show that

$$\int \left(\tilde{f}^{(\alpha)} - f^{(\alpha)}\right)\varphi = 0 \qquad \forall \varphi \in C_c^{\infty}(\Omega)$$

holds.

Deduce that $\tilde{f}^{(\alpha)} = f^{(\alpha)}$ m-a.s. holds.

Exercise 2 (Lemma 1.1).

Let $\Omega \subseteq \mathbb{R}$ be open and bounded, let $m \in \mathbb{N}$ and $0 < \gamma < 1$. Prove that $C^{m,\gamma}(\overline{\Omega})$ and $C^m(\overline{\Omega})$ are complete spaces. (4 Points)

Hint: The general case can be reduced to the case of $C^0(\overline{\Omega})$ and $C^1(\overline{\Omega})$ (see Lemma 1.1).

Exercise 3.

Let $\Omega \subseteq \mathbb{R}$ be open and bounded. Show that $C^{1}(\Omega)$ is not complete with respect to the norm

$$||f||_{1,2} = \left(\int_{\Omega} |f|^2 + |\nabla f|^2 \, \mathrm{d}m \right)^{\frac{1}{2}}.$$
(4 Points)

Exercise 4.

.

Let $a < b, p \in (1,\infty)$ and $\alpha := 1 - \frac{1}{p}$. Prove that there is a constant C = C(a,b,p) such that for all $f \in C^1([a,b])$ and $x_0 \in [a,b]$

$$||f||_{C^{0,\alpha}([a,b])} \leq |f(x_0)| + C||f'||_{L^p([a,b])}$$

holds.

Deduce that every function $f \in H^{1,p}((a,b))$ has one and only one continuous representative $\overline{f} \in C^{0,\alpha}([a,b])$. (2 Points)