Übungen zur Funktionalanalysis

Blatt 3

Abgabe: Freitag, 07.05.2021

Digitale Abgabe im Lernraum des Tutoriums

Aufgabe 1.

Sei $\Omega \subseteq \mathbb{R}$ offen und beschränkt, $m \in \mathbb{N}$, $p \in [1, \infty)$. Sei $f \in H^{m,p}(\Omega)$. Beweisen Sie, dass $f^{(\alpha)}$ eindeutig bestimmt ist für alle $\alpha \in \mathbb{N}$ mit $\alpha \leqslant m$.

Sei $\tilde{f}^{(\alpha)}$ eine Funktion mit den gleichen Eigenschaften wie $f^{(\alpha)}$. Zeigen Sie zunächst, dass

$$\int \left(\tilde{f}^{(\alpha)} - f^{(\alpha)}\right) \varphi = 0 \qquad \forall \varphi \in C_c^{\infty}(\Omega)$$

gilt. (2 Punkte)

Folgern Sie, dass $\tilde{f}^{(\alpha)} = f^{(\alpha)}$ m-f.ü. gilt. (2 Punkte)

Aufgabe 2 (Lemma 1.1).

Sei $\Omega \subseteq \mathbb{R}$ offen und beschränkt, sei $m \in \mathbb{N}$ und $0 < \gamma < 1$. Beweisen Sie, dass $C^{m,\gamma}(\bar{\Omega})$ und $C^m(\bar{\Omega})$ vollständig sind. (4 Punkte)

Hinweis: Der allgemeine Fall lässt sich auf $C^0(\bar{\Omega})$ und $C^1(\bar{\Omega})$ zurückführen (siehe Lemma 1.1).

Aufgabe 3.

Sei $\Omega \subseteq \mathbb{R}$ offen und beschränkt. Zeige, dass $C^1(\Omega)$ nicht vollständig bzgl. der Norm

$$||f||_{1,2} = \left(\int_{\Omega} |f|^2 + |\nabla f|^2 dm\right)^{\frac{1}{2}}$$

ist. (4 Punkte)

Aufgabe 4.

Sei a < b, $p \in (1, \infty)$ und $\alpha := 1 - \frac{1}{p}$. Beweisen Sie, dass es eine Konstante C = C(a, b, p) gibt, so dass für alle $f \in C^1([a, b])$ und $x_0 \in [a, b]$

$$||f||_{C^{0,\alpha}([a,b])} \le |f(x_0)| + C||f'||_{L^p([a,b])}$$

qilt. (2 Punkte)

Folgern Sie, dass jede Funktion $f \in H^{1,p}((a,b))$ genau einen stetigen Repräsentanten $\bar{f} \in C^{0,\alpha}([a,b])$ besitzt. (2 Punkte)