(4 Points)

Exercises for Functional Analysis

Exercise 4 Submission date: Friday, 14.05.2021 Digital submission via the E-Learning site of the tutorial

Exercise 1.

Let $\Omega \subseteq \mathbb{R}$ be open and bounded, $x_0 \in \Omega$. Let $\alpha < 0$. Let $f(x) := |x - x_0|^{-\alpha}$. a) Prove that f is an element of the Sobolev space $H^{1,1}(\Omega)$. b) Calculate the weak derivative of f. (2 Points) (2 Points)

Exercise 2.

Let X be a non-empty set equipped with two metrics d_1 and d_2 . Let $f, g: [0, \infty) \to [0, \infty)$ be functions that are continuous in 0 and with f(0) = g(0) = 0 such that

$$d_1(x,y) \leqslant f(d_2(x,y)), \qquad d_2(x,y) \leqslant g(d_1(x,y)), \qquad \forall x, y \in X$$

holds. Prove that the two metrics are equivalent.

Exercise 3.

Let $\Omega \subseteq \mathbb{R}$ be open and bounded. Let $0 < \alpha \leq 1$. Prove that $C^{0,\alpha}(\overline{\Omega})$ is not separable. (4 Points) Hint: Consider in the case $\Omega = (0,1)$ the set of functions $f_t(x) = (\max\{x-t,0\})^{\alpha}$. Show that $||f_t - f'_t||_{C^{0,\alpha}(\overline{\Omega})} \geq 1$ for $t \neq t'$. Follow from this that the set $\{f_t : t \in (0,1)\}$ and hence $C^{0,\alpha}(\overline{\Omega})$ can not be separable.

Exercise 4.

Let $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by

$$d(x, y) := |\arctan(x) - \arctan(y)|.$$

 Prove that
 (1 Point)

 a) d is a metric on \mathbb{R} (1 Point)

 b) the metric space (\mathbb{R} , d) is not complete
 (1 Point)

 c) the topology induced by d is the same as the euclidean topology (I.e. a set is open w.r.t. d if and only if it is open w.r.t. $|\cdot|$).
 (2 Points)