Exercises for Functional Analysis

Exercise 5

Submission date: Friday, 21.05.2021

Digital submission via the E-Learning site of the tutorial

Exercise 1.

Let $p \in [1, \infty[$.

a) Prove that $C_c^0(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$.

(2 Points)

b) Conclude that $L^p(\mathbb{R}^n)$ is separable.

(2 Points)

Hint for b): You can conclude this from Example 2.5.3 and Lemma 2.4.

Exercise 2.

Let X, Y be compact metric spaces and $f \in C(X \times Y)$. Prove that for all $\varepsilon > 0$ there exist $n \in \mathbb{N}$ and $a_1, ..., a_n \in C(X)$ as well as $b_1, ..., b_n \in C(Y)$ with

$$\sup_{x \in X, y \in Y} \left| f(x, y) - \sum_{k=1}^{n} a_k(x) b_k(y) \right| \leqslant \varepsilon.$$

(4 Points)

Hint: Approximation Theorem of M.H. Stone

Exercise 3.

Let $h \in C([0,1])$ be a strictly increasing function. Prove that for all $f \in C([0,1])$ and all $\varepsilon > 0$ there exist $n \in \mathbb{N}$ and constants $a_1, ..., a_n \in \mathbb{R}$ with

$$\sup_{x \in [0,1]} \left| f(x) - \sum_{k=0}^{n} a_k h(x)^k \right| \leqslant \varepsilon.$$

(4 Points)

Exercise 4.

Let $f: [0, 2\pi] \to \mathbb{R}$ be a continuous function with $f(0) = f(2\pi)$. Prove that for all $\varepsilon > 0$ there exist $n \in \mathbb{N}$ and constants $a_1, ..., a_n \in \mathbb{R}$ as well as $b_1, ..., b_n \in \mathbb{R}$ such that

$$\sup_{x \in [0,2\pi]} |f(x) - p(x)| \leqslant \varepsilon$$

holds with

$$p(x) := a_0 + \sum_{k=1}^{n} a_k \cos(kx) + \sum_{k=1}^{n} b_k \sin(kx).$$

(4 Points)