(4 Points)

Exercises for Functional Analysis

Exercise 6 Submission date: Friday, 28.05.2021 Digital submission via the E-Learning site of the tutorial

Exercise 1.

Let $p \in (1, \infty)$. Let $f \in L^p(\mathbb{R})$ and $g \in L^q(\mathbb{R})$ with $\frac{1}{p} + \frac{1}{q} = 1$. Prove that f * g is a continuous function. (4 Points) Hint: $C_c(\mathbb{R})$ is dense in $L^p(\mathbb{R})$ and $L^q(\mathbb{R})$.

Exercise 2.

Let $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ with $\varphi \ge 0$ and $\int \varphi = 1$. Set

$$\varphi_{\varepsilon}(x) := \varepsilon^{-n} \varphi(x/\varepsilon)$$

the Dirac sequence of φ . Let $f \in C(\mathbb{R}^n)$. Prove that $\lim_{\varepsilon \to 0} f * \varphi_{\varepsilon} = f$ converges uniformly on compact sets, i.e.

$$\lim_{\varepsilon \to 0} \sup_{x \in K} |(f * \varphi_{\varepsilon})(x) - f(x)| = 0$$

for all $K \subseteq \mathbb{R}^n$ compact.

Exercise 3.

Let $\Omega \subseteq \mathbb{R}$ be open, $p \in [1,\infty)$, $p' \in [1,\infty)$ with $\frac{1}{p} + \frac{1}{p'} = 1$. Prove that for $f \in H^{m,p}(\Omega)$ and $g \in H^{m,p'}(\Omega)$

$$fg \in H^{m,1}(\Omega)$$

and

$$\partial^{\alpha}(fg) = \sum_{0 \leqslant \beta \leqslant \alpha} {\alpha \choose \beta} \partial^{\alpha-\beta} f \partial^{\beta} g$$
(4 Points)

hold.

Exercise 4.

Let $\Omega, \tilde{\Omega} \subseteq \mathbb{R}^n$ be open and $\tau: \tilde{\Omega} \to \Omega$ a C^m -Diffeomorphism such that the Jacobian matrix $D\tau$ and $D\tau^{-1}$ are bounded. Let $f \in H^{m,p}(\Omega)$. Prove that $f \circ \tau \in H^{m,p}(\tilde{\Omega})$. (4 Points) Hint: The weak derivative can be calculated via the chain rule.