Exercises for Functional Analysis

Exercise 8 Submission date: Friday, 11.06.2021 Digital submission via the E-Learning site of the tutorial

Exercise 1.

Let L be subvector space of a Hilbert space H and

$$L^{\perp} := \{ x \in H \mid (x, y)_H = 0, \ \forall y \in L \}.$$

Prove that

a) For every $x \in H$ there is exactly one $x_L \in \overline{L}$ and one $x_{L^{\perp}} \in L^{\perp}$ such that

$$x = x_L + x_{L^\perp}$$

b) $H = \overline{L} \Leftrightarrow L^{\perp} = \{0\}$ c) $\overline{C_c^0(\mathbb{R}^n)^{\perp}} = \{0\}$ in $L^2(\mathbb{R}^n)$ (4 Points)

Exercise 2.

Let a < b and E be the unit ball of $H^1((a, b))$. Prove that E precompact in $L^2((a, b))$. (4 Points)

Exercise 3.

Let O(n) be the group of orthogonal matrices in $\mathbb{R}^{n \times n}$. Let $f \in L^p(\mathbb{R}^n, \mathbb{R})$ with $1 and <math>f_A(x) := f(A^{-1}x)$. Prove that

$$K_f := \{ f_A \mid A \in O(n) \}$$

is a compact set in $L^p(\mathbb{R}^n, \mathbb{R})$. Hint: O(n) is compact. If $(f_{A_n})_{n \in \mathbb{N}}$ converges to a h in L^p then there is a $A \in O(n)$ with $h = f_A$

Exercise 4.

Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded and $0 < \alpha < \beta \leq 1$. Prove that every bounded set in $C^{0,\beta}(\overline{\Omega})$ is precompact in $C^{0,\alpha}(\overline{\Omega})$. (4 Points)