Übungen zur Maß- und Integrationstheorie

Blatt 1

Abgabe: Freitag, 06.11.2020

Digitale Abgabe im Lernraum des Tutoriums

Aufgabe 1.

a) Zeige: Ein System von Teilmengen A einer Grundmenge Ω ist genau dann eine Algebra, wenn $\Omega \in \mathcal{A}, A^c \in \mathcal{A}, \text{falls } A \in \mathcal{A}, \text{ und } A \cup B \in \mathcal{A}, \text{ falls } A, B \in \mathcal{A}.$ (2 Punkte)

b) Seien A_i σ -Algebren auf Ω_i , i = 1, 2 und $T: \Omega_1 \to \Omega_2$ eine Abbildung. Zeige, dass $\{T^{-1}(B) \mid B \in A_2\}$ und $\{B \subseteq \Omega_2 \mid T^{-1}(B) \in A_1\}$ σ -Algebren auf Ω_1 bzw. Ω_2 sind. (2 Punkte)

Aufgabe 2.

Sei \mathcal{E} ein System von Teilmengen einer Grundmenge Ω . Zeige, dass es einen kleinsten Sigmaring σ - $\mathcal{R}(\mathcal{E})$ auf Ω gibt der \mathcal{E} enthält. (3 Punkte)

Aufgabe 3.

Sei Ω eine unendliche Menge.

a) Sei Ω abzählbar und sei durch

$$\mathcal{A}_1 := \{ A \subseteq \Omega \mid A \text{ oder } A^c \text{ ist endlich} \}$$

eine Algebra auf Ω definiert. Zeige, dass die durch

$$\mu(A) := egin{cases} 0 & \textit{falls A endlich} \\ +\infty & \textit{falls } A^c \textit{ endlich} \end{cases}$$

definerte Funktion $\mu \colon \mathcal{A}_1 \to \mathbb{R}_+$ ein additives, aber kein σ -additives Maß ist. (2 Punkte)

b) Sei Ω überabzählbar und sei durch $A_2 := \{A \subseteq \Omega \mid A \text{ oder } A^c \text{ abzählbar}\}$ eine Algebra auf Ω definiert. Zeige, dass die durch

$$\mu(A) := \begin{cases} 0 & \text{falls } A \text{ abz\"{a}hlbar} \\ 1 & \text{falls } A^c \text{ abz\"{a}hlbar} \end{cases}$$

definierte Funktion $\mu \colon \mathcal{A}_2 \to \mathbb{R}_+$ ein Maß ist.

(2 Punkte)

Aufgabe 4.

Sei \mathcal{R} ein Ring und μ ein additives Maß auf \mathcal{R} und $N \in \mathbb{N}$ beliebig. Zeige für $A, B, A_1, ..., A_N$ aus \mathcal{R} :

- a) $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$,
- b) $\mu(A) \leqslant \mu(B)$ falls $A \subseteq B$,
- c) $\mu(B \setminus A) = \mu(B) \mu(A)$ falls $A \subseteq B$ und $\mu(A) < \infty$,
- d) $\mu\left(\bigcup_{n=1}^{N} A_n\right) \leqslant \sum_{n=1}^{N} \mu(A_n),$
- e) Ist $(A_n)_{n\geqslant 1}$ eine Folge paarweise disjunkter Mengen in \mathcal{R} mit $\bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$, so gilt

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \geqslant \sum_{n=1}^{\infty} \mu(A_n).$$

(Je 1 Punkt)