Übungen zur Maß- und Integrationstheorie

Blatt 4

Abgabe: Freitag, 27.11.2020

Digitale Abgabe im Lernraum des Tutoriums

Aufgabe 1.

Sei $d \in \mathbb{N}$ und $m : \mathcal{B}(\mathbb{R}^d) \to \overline{\mathbb{R}}$ das d-dimensionale Lebesguemaß auf $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Zeigen Sie, dass jede abzählbare Untermenge des \mathbb{R}^d eine m-Nullmenge ist.

(2 Punkte)

Aufgabe 2.

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $(\Omega, \tilde{\mathcal{A}}, \tilde{\mu})$ seine Vervollständigung. Sei $f: \Omega \to \mathbb{R}$ eine \mathcal{A} messbare Funktion und $g: \Omega \to \mathbb{R}$ eine Funktion mit $f = g \mu$ -f. \ddot{u} . Zeigen Sie, dass $g \tilde{\mathcal{A}}$ -messbar ist.

(2 Punkte)

Aufgabe 3.

Seien $(\Omega_1, \mathcal{A}_1)$ und $(\Omega_2, \mathcal{A}_2)$ Messräume und $T: \Omega_1 \to \Omega_2$ eine Abbildung.

(i) Zeigen Sie, dass

$$\{T^{-1}(B) \mid B \in \mathcal{A}_2\}$$

die kleinste σ -Algebra \mathcal{A} auf Ω_1 ist, sodass T $\mathcal{A}/\mathcal{A}_2$ -messbar ist.

(ii) Zeigen Sie, dass

$$\{B \subseteq \Omega_2 \mid T^{-1}(B) \in \mathcal{A}_1\}$$

die größte σ -Algebra \mathcal{A} auf Ω_2 ist, sodass T $\mathcal{A}_1/\mathcal{A}$ -messbar ist.

(4 Punkte)

Aufgabe 4 (Faktorisierungssatz für messbare Funktionen).

Sei X eine Menge und (Y, \mathcal{A}') ein Messraum. Sei $\varphi \colon X \to Y$ eine Abbildung und $\mathcal{A} := \{\varphi^{-1}(B) \mid B \in \mathcal{A}'\}$ (vgl. Aufgabe 3).

Zeigen Sie, dass eine Funktion $f: X \to \mathbb{R}$ genau dann A messbar ist, wenn eine A'-messbare Funktion $g: Y \to \mathbb{R}$ existiert mit $f = g \circ \varphi$.

(3 Punkte)