Übungen zur Maß- und Integrationstheorie

Blatt 8

Abgabe: Freitag, 15.01.2021

Digitale Abgabe im Lernraum des Tutoriums

Aufgabe 1.

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum, $f_n \colon \Omega \to \mathbb{R}$ eine Folge von \mathcal{A} -messbaren Funktionen, sodass $f_n \geqslant 0$ μ - $f.\ddot{u}.$ gilt und $f_n \xrightarrow{n \to \infty} f$ im Maß gegen eine \mathcal{A} -messbare Funktion f. Beweisen Sie, dass

$$\int f \, \mathrm{d}\mu \leqslant \liminf_{n \to \infty} \int f_n \, \mathrm{d}\mu$$

gilt. (2 Punkte)

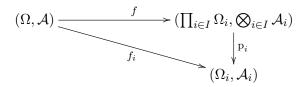
Hinweis: Wählen Sie eine Teilfolge, sodass Sie lim inf als lim schreiben können. "Wandeln" Sie Konvergenz im Maß in fast sichere Konvergenz um und benutzen Sie das Lemma von Fatou.

Aufgabe 2.

a) Sei I eine endliche Indexmenge. Seien $(\Omega_i, \mathcal{A}_i)$ Messräume und (Ω, \mathcal{A}) ein weiterer Messraum. Seien $f_i \colon \Omega \to \Omega_i$ Abbildungen und sei

$$f \colon \Omega \to \prod_{i \in I} \Omega_i, \qquad \omega \mapsto (f_i(\omega))_{i \in I},$$

sodass wir folgendes Diagramm erhalten



Beweisen Sie, dass f_i genau dann $\mathcal{A}/\mathcal{A}_i$ -messbar für alle $i \in I$ ist, wenn $f \mathcal{A}/\bigotimes_{i \in I} \mathcal{A}_i$ -messbar ist.

(2 Punkte)

Hinweis: Eine Richtung ist trivial; für die andere Richtung: Nutzen Sie aus, dass es ausreicht Messbarkeit für einen Erzeuger zu zeigen.

b) Sei I eine endliche Indexmenge. Seien $(\Omega_i, \mathcal{A}_i)$ Messräume und $A_i \subseteq \Omega_i$ mit $A_i \neq \emptyset$ für alle $i \in I$. Zeigen Sie, dass aus

$$\prod_{i\in I} A_i \in \bigotimes_{i\in I} \mathcal{A}_i$$

folgt dass $A_i \in \mathcal{A}_i$ für alle $i \in I$ gilt.

 $(1 \ Punkt)$

Hinweis: Benutzen Sie a). Wie muss Ω , \mathcal{A} und f bzw. f_i gewählt werden?

Aufgabe 3 (Bemerkung 11.4).

Konstruieren Sie zwei σ -Algebren $\mathcal{A}_1, \mathcal{A}_2$ über die Menge Ω_1 bzw. Ω_2 und Erzeuger $\mathcal{E}_1, \mathcal{E}_2$ von \mathcal{A}_1 bzw. \mathcal{A}_2 , sodass

$$\mathcal{A}_1 \otimes \mathcal{A}_2 \neq \sigma(\{E_1 \times E_2 \mid E_i \in \mathcal{E}_i, i = 1, 2\}).$$

(2 Punkte)

Hinweis: Nach Bemerkung 11.4 müssen Sie Ihre Erzeuger so wählen, dass für alle $i \in \{1,2\}$ keine Folge $(E_{i,k})_{k \in \mathbb{N}} \in \mathcal{E}_i$ existiert mit $E_{i,k} \uparrow \Omega_i$.

Aufgabe 4.

Sei I eine endliche Indexmenge. Seien (X_i, A_i) und $(\tilde{X}_i, \tilde{A}_i)$ Messräume für jedes $i \in I$. Seien $f_i \colon X_i \to \tilde{X}_i$ Abbildungen. Beweisen Sie, dass die Abbildung

$$f : \prod_{i \in I} X_i \to \prod_{i \in I} \tilde{X}_i, \quad (x_i)_{i \in I} \mapsto (f_i(x_i))_{i \in I}$$

genau dann $\bigotimes_{i \in I} \mathcal{A}_i$ - $\bigotimes_{i \in I} \tilde{\mathcal{A}}_i$ messbar ist, wenn alle f_i \mathcal{A}_i - $\tilde{\mathcal{A}}_i$ messbar sind. (3 Punkte) Hinweis: Bei einer Richtung kann der Faktorisierungssatz für messbare Abbildungen (Aufgabe 4, Zettel 4) hilfreich sein.