Exercises to Introduction to Stochastic Partial Differential Equations I

Sheet 1
Total points: 12
Submission before: Friday, 14.04.2023, 12:00 noon
(/Parts of] Exercises marked with "*" are additional exercises.)

Problem 1.

(4 Points)
Let X, Y be jointly Gaussian random variables on \mathbb{R}^{d}. Prove that X and Y are independent if and only if $\operatorname{cov}(X, Y)=0$.

Let $\left(U,(\cdot, \cdot)_{U}\right)$ be a separable Hilbert space.
Problem 2 (Rotational invariance).
(4 Points)
Let μ be a Gaussian measure on $(U, \mathcal{B}(U)$ with mean zero. Let $\theta \in \mathbb{R}$ and define the rotation $R_{\theta}: U \times U \rightarrow U \times U$ by

$$
R_{\theta}(x, y)=(x \sin (\theta)+y \cos (\theta), x \cos (\theta)-y \sin (\theta)), \quad x, y \in U .
$$

Prove that $\left((\mu \otimes \mu) \circ R_{\theta}^{-1}\right)(A)=(\mu \otimes \mu)(A)$ for all $A \in \mathcal{B}(U) \otimes \mathcal{B}(U)$.
Hint: Use the characterisation of Gaussian measures through their Fourier transform (Theorem 2.1.2).

Problem 3.

Let $Q \in L(U)$ be nonnegative, symmetric, with finite trace and $\operatorname{Ker} Q=0$. Prove that for all $0<r<\infty$

$$
0<N(m, Q))\left(B_{r}(x)\right)<1 .
$$

Here $B_{r}(x)$ denotes the open ball in U with radius r.
Hint: Use Proposition 2.15.

