Exercises to Introduction to Stochastic Partial Differential Equations I

Sheet 10
Total points: 14
Submission before: Friday, 16.06.2023, 12:00 noon

Problem 1.

Consider the framework of Section 4.1. Let $\left(V, H, V^{*}\right)$ be a Gelfand triple.
(i) Prove that

$$
V^{*}\langle z, v\rangle_{V}=\langle z, v\rangle_{H} \text { for all } z \in H, v \in V
$$

(ii) Let $d \in \mathbb{N}$ and $\operatorname{set}\left(H,\|\cdot\|_{H}\right)=\left(\mathbb{R}^{d},\|\cdot\|_{\mathbb{R}^{d}}\right)$ for some fixed norm $\|\cdot\|_{\mathbb{R}^{d}}$ on \mathbb{R}^{d}. Show that the embedding of V into H is a linear continuous isomorphism. In particular, $\|\cdot\|_{V}$ is equivalent to $\|\cdot\|_{\mathbb{R}^{d}}$.
(iii) Show that in general (H1) does not imply that $x \mapsto A(t, x, \omega)$ is continuous for fixed $t \in[0, T]$ and $\omega \in \Omega$.

Hint: Find a counterexample, e.g. in the finite dimensional setting $V=H=V^{*}=\mathbb{R}^{2}$.

Problem 2.

Prove Exercise 4.1.2 in the lecture notes.

Problem 3 (cf. between Remark 4.1.6 and Exercise 4.1.7).
Let $\Lambda \subset \mathbb{R}^{d}$ be open. Let $H_{0}^{1}(\Lambda)$ be defined as in (4.1.6). Show that the canonical inclusion of $H_{0}^{1}(\Lambda)$ into $L^{p}(\Lambda)$ is one-to-one if and only if the linear operator

$$
\nabla: C_{c}^{\infty}(\Lambda) \subset L^{p}(\Lambda) \rightarrow L^{p}(\Lambda)
$$

is closable.

