Exercises to Introduction to Stochastic Partial Differential Equations I

Sheet 10 Total points: 14 Submission before: Friday, 16.06.2023, 12:00 noon

Problem 1.

Consider the framework of Section 4.1. Let (V, H, V^*) be a Gelfand triple.

(i) Prove that

 $_{V^*}\langle z, v \rangle_V = \langle z, v \rangle_H$ for all $z \in H, v \in V$.

- (ii) Let $d \in \mathbb{N}$ and set $(H, || \cdot ||_H) = (\mathbb{R}^d, || \cdot ||_{\mathbb{R}^d})$ for some fixed norm $|| \cdot ||_{\mathbb{R}^d}$ on \mathbb{R}^d . Show that the embedding of V into H is a linear continuous isomorphism. In particular, $|| \cdot ||_V$ is equivalent to $|| \cdot ||_{\mathbb{R}^d}$.
- (iii) Show that in general (H1) does not imply that $x \mapsto A(t, x, \omega)$ is continuous for fixed $t \in [0, T]$ and $\omega \in \Omega$.

Hint: Find a counterexample, e.g. in the finite dimensional setting $V = H = V^* = \mathbb{R}^2$ *.*

Problem 2.

Prove Exercise 4.1.2 in the lecture notes.

Problem 3 (cf. between Remark 4.1.6 and Exercise 4.1.7). (4 Points)

Let $\Lambda \subset \mathbb{R}^d$ be open. Let $H_0^1(\Lambda)$ be defined as in (4.1.6). Show that the canonical inclusion of $H_0^1(\Lambda)$ into $L^p(\Lambda)$ is one-to-one if and only if the linear operator

$$\nabla: C^{\infty}_{c}(\Lambda) \subset L^{p}(\Lambda) \to L^{p}(\Lambda)$$

is closable.

(2+2+2 Points)

(4 Points)