Exercises to Introduction to Stochastic Partial Differential Equations I

Sheet 12 Total points: 16 Submission before: Friday, 30.06.2023, 12:00 noon

Problem 1 (Elementary inequalities).

(i) Show that every concave function $f:[0,\infty)\to\mathbb{R}$ with the property $f(0)\ge 0$ fulfills

$$f(a+b) \leqslant f(a) + f(b) \quad \forall a, b \in [0, \infty).$$
 (I)

(ii) Let $a, b \in [0, \infty)$. Prove that for all $p \ge 1$

$$(a+b)^p \leqslant 2^{p-1}(a^p+b^p).$$

(iii) Find an exemplary convex function $f:[0,\infty)\to\mathbb{R}$ which does not fulfill (I).

Problem 2 (Prove the details).

Explain in detail, how one can conclude (4.1.11) and (4.1.12) in the lecture notes on the basis of what has been shown before.

Problem 3.

Suppose that $V = H = \mathbb{R}^d$ for an arbitrary $d \in \mathbb{N}$. Consider the situation of Theorem 4.2.4. Suppose A, B satisfy (H1)-(H4) with $\alpha := p, f \in L^{\frac{p}{2}}([0,T] \times \Omega; dt \otimes P)$ and $X_0 \in L^p(\Omega, \mathcal{F}_0, P; H)$ for some $p \ge 2$.

- (i) Write $||X(t)||_{H}^{p}$ in terms of Itô's formula.
- (ii) Use (i) to prove that

$$E\left(\sup_{t\in[0,T]}||X(t)||_{H}^{p}\right)<\infty.$$

Problem 4.

Let (Ω, \mathcal{F}, P) be a probability space and (E, d) be a Polish space. Let $R(\Omega; E)$ consist of all $\mathcal{F}/\mathcal{B}(E)$ measurable functions from Ω into E. Let $Z_n \in R(\Omega; E), n \in \mathbb{N}$. Then $(Z_n)_{n \in \mathbb{N}}$ converges in probability to some $Z \in R(\Omega; E)$ if and only if for every pair of subsequences $(Z_{n_k^1})_{k \in \mathbb{N}}, (Z_{n_k^2})_{k \in \mathbb{N}}$ there exists a subsequence $v_l := (Z_{n_{k_l}^1}, Z_{n_{k_l}^2}), l \in \mathbb{N}$, converging in distribution to a random element $v \in R(\Omega; E) \times R(\Omega; E)$ supported on the diagonal $\{(x, y) \in E \times E : x = y\}$.

(4 Points)

(2 Points)

(3+3 Points)

(2+1+1 Points)