Exercises to Introduction to Stochastic Partial Differential Equations I

Sheet 13
Total points: $8+4^{*}$
Submission before: Friday, 07.07.2023, 12:00 noon
([Parts of] Exercises marked with "*" are additional exercises.)

Problem 1 (cf. [BS88, Chapter 3]).
$\left(2^{*}+4+1^{*}\right.$ Points)
Let $\left(V_{i},\|\cdot\|_{V_{i}}\right), i=1,2$, be Banach spaces and V a Hausdorff topological vector space such that

$$
\begin{equation*}
V_{i} \subset V \text { continuously, } i=1,2 \tag{I}
\end{equation*}
$$

(i*) Prepare to present that $\left.\left(V_{1} \cap V_{2},\|\cdot\|_{V_{1} \cap V_{2}}\right)\right)$ and $\left(V_{1}+V_{2},\|\cdot\|_{V_{1}+V_{2}}\right)$ are Banach spaces, where

$$
\begin{aligned}
& \|v\|_{V_{1} \cap V_{2}}:=\max \left\{\|v\|_{V_{1}},\|v\|_{V_{2}}\right\}, \quad v \in V_{1} \cap V_{2}, \\
& \|v\|_{V_{1}+V_{2}}:=\inf \left\{\left\|v_{1}\right\|_{V_{1}}+\left\|v_{1}\right\|_{V_{2}}: v=v_{1}+v_{2}\right\}, \quad v \in V_{1}+V_{2} .
\end{aligned}
$$

Hint: You may consult $\left[B S 88\right.$, Chapter 3] ${ }^{1}$.
(ii) Assume that $V_{1} \cap V_{2} \subset V_{i}$ is dense for $i=1,2$. Prove that

$$
\left(V_{1} \cap V_{2}\right)^{*}=V_{1}^{*}+V_{2}^{*}
$$

Here ' $=$ ' means that both sides are isomorphic.
(iii*) What changes in (i*) and (ii) if we replace V by a different Hausdorff topological vector space \bar{V} such that (I) holds?

Problem 2.

Consider the situation of the proof of Theorem 4.2.5. Assume that $[0, T] \ni t \mapsto\|X(t)\|_{H}$ is lower-semicontinuous. Let $I \subset[0, T]$ be a dense set. Show that

$$
\sup _{t \in[0, T]}\|X(t)\|_{H}=\sup _{t \in I}\|X(t)\|_{H}
$$

Problem 3 (Presentation).
(1 extra point for presentation)
Prepare to present the proof of the following statement. Let μ be a Gaussian measure on a Hilbert space U with mean zero and covariance operator Q. For $h \in Q^{\frac{1}{2}}(U)$, define the map $T_{h}(x):=x+h, x \in U$. Then the measure $\mu \circ T_{h}^{-1}$ is absolutely continuous with respect to μ with Radon-Nikodym derivative

$$
\frac{d\left(\mu \circ T_{h}^{-1}\right)}{d \mu}(x)=\exp \left(\left\langle Q^{-\frac{1}{2}} h, Q^{-\frac{1}{2}} x\right\rangle_{U}-\frac{1}{2}\left\|Q^{-\frac{1}{2}} h\right\|_{U}^{2}\right) .
$$

Here $\left\langle Q^{-\frac{1}{2}} h, Q^{-\frac{1}{2}} x\right\rangle_{U}$ is defined as the sum of the series

$$
\sum_{j=1}^{\infty} \frac{\left\langle x, e_{j}\right\rangle_{U}\left\langle h, e_{j}\right\rangle_{U}}{\lambda_{j}}
$$

for $Q e_{j}=\lambda_{j} e_{j}$, which converges in $L^{2}(U ; \mu)$.
Hint: You may consult [DPZ92, Proposition 2.20]

[^0]
Literatur

[BS88] Colin Bennett and Robert Sharpley. Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1988.
[DPZ92] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in infinite dimensions, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.

[^0]: ${ }^{1}$ available for free within Bielefeld University's network (also via VPN) on https://www.sciencedirect.com/bookseries/ pure-and-applied-mathematics/vol/129/suppl/C
 ${ }^{2}$ available for tree within Bielefeld University's network (also via VPN) on https://www.cambridge.org/core/books/ stochastic-equations-in-infinite-dimensions/17CB9F06965F01647D576C62D28049F6

