1

Exercises to Introduction to Stochastic Partial Differential Equations I

Sheet 4 Total points: 16 Submission before: Friday, 05.05.2023, 12:00 noon

Problem 1 (Dominated convergence).

Let (X, \mathcal{F}, μ) be a complete measure space and $(B, \|\cdot\|_B)$ a Banach space. Let $g \in L^1(\mu; \mathbb{R}), f_n \in$ $L^1(\mu; B), n \in \mathbb{N}$, and $f: X \to B$ be a function such that $f_n(x) \to f(x)$ for a.e. $x \in X$, as $n \to \infty$, and

$$||f_n(x)||_B \leqslant g(x)$$

for almost every $x \in \Omega$. Then $f \in L^1(\mu; B)$ and

$$\int_X ||f_n - f||_B \ d\mu \to 0, \text{as } n \to \infty.$$

Problem 2 (Prove the details).

- (i) Consider the situation of Theorem 2.1.6. Prove in detail why $\sum_{k=1}^{n} \sqrt{\lambda_k} \beta_k e_k, k \in \mathbb{N}$, converges in $L^2(\Omega, \mathcal{F}, P; U).$
- (ii) Consider the situation in the Alternative Proof of Corollary 2.1.7. Show that $\mu = N(0, Q)$.
- (iii) Consider the situation in the proof of Proposition 2.1.10. Provide the details why $\beta_k(t) \beta_k(s)$ is distributed as N(0, t-s) for all s < t.
- (iv) Assume $(W(t))_{t \in [0,T]}$ is an (\mathcal{F}_t) -Wiener process, i.e. a Wiener process on a probability space (Ω, \mathcal{F}, P) with respect to a filtration $(\mathcal{F}_t)_{t \in [0,T]}$ on (Ω, \mathcal{F}) . Then $(W(t))_{t \in [0,T]}$ is also an (\mathcal{F}_t^0) -Wiener process, where

 $\mathcal{F}_t^0 := \sigma(\mathcal{F}_t \cup \mathcal{N}), \ \mathcal{N} := \{A \in \mathcal{F} : P(A) = 0\}.$

(Compare with the proof of Proposition 2.1.13.)

Problem 3.

Exercise 2.1.8. in the script.

As mentioned in the lecture, there is a general theorem called **Kuratowski's theorem** (see, e.g., [Par67, Corollary 3.3^{1} which can be used to show (iv). But for this exercise, we should not use it.

Problem 4.

Prove Proposition 2.2.2 in the script.

Hint: Use a monotone class argument.

(4 Points)

(4 Points)

(4 Points)

(1+1+1+1 Points)

[[]Par67] K. R. Parthasarathy. Probability measures on metric spaces. Probability and Mathematical Statistics, No. 3. Academic Press, Inc., New York-London, 1967.