Exercises to Introduction to Stochastic Partial Differential Equations I

Sheet 8 Total points: $10+1^*$ Submission before: Friday, 02.06.2023, 12:00 noon

Problem 1 (Prove the details).

Let *E* be a separable Banach space and $(M_t)_{t\in[0,T]}$ be an *E*-valued stochastic process on a filtered probability space $(\Omega, \mathcal{F}, P; (\mathcal{F}_t)_{t\in[0,T]})$ such that $E||M(t)|| < \infty$, for all $t \in [0,T]$. Then $(M(t))_{t\in[0,T]}$ is an (\mathcal{F}_t) -martingale (cf. Definition 2.2.4) if and only if $(l(M(t)))_{t\in[0,T]}$ is a real-valued (\mathcal{F}_t) -martingale for all $l \in E^*$ (cf. Remark 2.2.5).

Problem 2.

Prepare to present the proof of Proposition C.0.5.

Problem 3 (Section 3.1).

Consider b and σ as considered in Section 3.1. in the lecture notes.

- (i) Prove that both b and σ restricted to $[0, t] \times \mathbb{R}^d \times \Omega$ are $\mathcal{B}([0, t]) \otimes \mathcal{B}(\mathbb{R}^d) \otimes \mathcal{F}_t$ -measurable for every $t \in [0, \infty)$.
- (ii) Find b which satisfies the conditions of Theorem 3.1, but is not locally Lipschitz continuous in its x-coordinate (when fixing the other variables).

Problem 4.

Let $d \in \mathbb{N}$. Consider the stochastic differential equation on \mathbb{R}^d of the following form.

$$dX(t) = -X(t)dt + dW(t), \ X(0) = x \in \mathbb{R}^d.$$
 (SDE)

Let $(W(t))_{t \in [0,T]}$ be an (\mathcal{F}_t) -Brownian motion on a filtered probability space $(\Omega, \mathcal{F}, P; (\mathcal{F}_t)_{t \in [0,T]})$ satisfying the usual conditions.

- (i) Find the stochastic process $(X(t))_{t \in [0,T]}$ on $(\Omega, \mathcal{F}, P; (\mathcal{F}_t)_{t \in [0,T]})$ such that (X, W) is a weak solution to (SDE) and write X as a functional of W and x.
- (ii) Use (i) to show that, for every $t \in [0, T]$, the law of X(t) is a Gaussian measure on \mathbb{R}^d . Calculate the mean and the covariance matrix.

(1 extra point for presentation)

(2 Points)

(2+2 Points)

(1+3 Points)