Exercises: Dr. Sebastian Grube

Exercises to Introduction to Stochastic Partial Differential Equations II

Sheet 11
Total points: 13
Submission before: Friday, 12.01.2023, 12:00 noon

Problem 1 (cf. Proof of Lemma 5.2.19 (and Proof of Theorem 4.2.4)).
(3 Points)
Let $V \subset H \subset V^{*}$ be a Gelfand triple. Let $e_{n} \in V, n \in \mathbb{N}$, be an orthonormal basis in H such that $\left\{e_{i}: i \in \mathbb{N}\right\}$ is dense in V. Define $H_{n}:=\operatorname{span}\left\{e_{i}: i \in\{1, \ldots, n\}\right\}, n \in \mathbb{N}$. Let $\left.T>0, p \in\right] 1, \infty[$. Prove that the set

$$
\left\{\sum_{i=1}^{m} \rho_{i}(t) v_{i}: \rho_{i} \in L^{\infty}([0, T]), v_{i} \in \bigcup_{n \in \mathbb{N}} H_{n}, i \in\{1, \ldots, m\}, m \in \mathbb{N}\right\}
$$

is dense in $L^{p}([0, T] ; V)$.

Problem 2.

(3 Points)
Consider the situation of Lemma 5.2.21. Prove (5.2.26), i.e. use (H3') and (H4') to show that there exists $C_{0} \in(0, \infty)$ such that

$$
\begin{aligned}
2_{V^{*}}\left\langle A\left(t_{0}, u_{n_{i}}\left(t_{0}\right)\right), u_{n_{i}}\left(t_{0}\right)-u\left(t_{0}\right)\right\rangle_{V} \leqslant & -\frac{\theta}{2}\left\|u_{n_{i}}\left(t_{0}\right)\right\|_{V}^{\alpha}+C_{0}\left(f\left(t_{0}\right)+h\left(t_{0}\right) g\left(\left\|u_{n_{i}}\left(t_{0}\right)\right\|_{H}^{2}\right)\right) \\
& +C_{0}\left(1+\left\|u_{n_{i}}\left(t_{0}\right)\right\|_{H}^{\alpha \beta}\right)\left\|u\left(t_{0}\right)\right\|_{V}^{\alpha} .
\end{aligned}
$$

Hint: Use Young's inequality.

Problem 3.

Consider the situation of Section 5.2. Assume that A satisfies (H2") and (H4'). Let $k:[0, T] \times V \rightarrow \mathbb{R}$ be a bounded function such that for every bounded set O there exists $L \in(0, \infty)$ with

$$
|k(t, x)-k(t, y)| \leqslant L\|x-y\|_{V} \quad \forall(t, x, y) \in[0, T] \times O \times O
$$

Then $\tilde{A}:=k A$ satisfies (H2") replacing A.

Problem 4.

Let $d \in \mathbb{N}$. Let $f: \mathbb{R}^{d}(/\{0\}) \rightarrow \mathbb{R}, x \mapsto|x|^{\alpha}$. Determine all $\alpha \in \mathbb{R}, p \in[1, \infty)$ such that $f \in H^{1, p}\left(B_{1}(0)\right)$.

