Winter term 2023/2024 Lecture: Prof. Dr. Michael Röckner Exercises: Dr. Sebastian Grube

Exercises to Introduction to Stochastic Partial Differential Equations II

Sheet 14 Total points: 12 Submission before: Friday, 01.12.2023, 12:00 noon

Problem 1 (Check the details).

Suppose we are in the situation of the proof of Example 5.2.26 (Tamed 3D Navier–Stokes equation).

(i) Prove that the operator $(t, u) \mapsto Au + F(u) - g_N(||u||_{L^{\infty}}^2)u + \tilde{f}(t)$ is hemicontinuous.

Suppose we are in the situation of the proof of Example 5.2.28. (Cahn-Hilliard equation).

(ii) Prove that for all $v \in V_0$ we have

$$_{V^*}\langle A_1(u), v \rangle_V = \langle -\Delta u, \Delta v \rangle_{L^2}.$$

Problem 2.

Let $(X, || \cdot ||)$ be a Banach space. Let $A : X \to X$ be a bounded linear operator.

(i) Show that

 $S(t) := e^{tA}$

is well-defined as a bounded linear operator from X into X for all $t \in \mathbb{R}$.

- (ii) Show that $S : \mathbb{R} \to L(X)$ and fulfills the following properties.
 - (a) S(0) = I,
 - (b) S(t)S(s) = S(t+s) for all $s, t \in \mathbb{R}$,
 - (c) $||S(t) I||_{L(X)} \to 0$, as $t \to 0$.

Here I denotes the identity map on X.

Problem 3.

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$ be a filtered probability space. Let $A \in \mathbb{R}^{d \times d}$ be a matrix, $f : [0,T] \times \mathbb{R}^d \to \mathbb{R}^d$, $\sigma : [0,T] \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ be bounded, Lipschitz continuous functions and B an (\mathcal{F}_t) -Brownian motion. Consider the following SDE

$$dX(t) = AX(t)dt + f(t, X(t))dt + \sigma(t, X(t))dB(t), \quad X(0) = x \in \mathbb{R}^d.$$

We call an (\mathcal{F}_t) -adapted, continuous stochastic process $(X(t))_{t \in [0,T]}$ a *classical/mild* solution, if it fulfills \mathbb{P} -a.s. for all $t \in [0,T]$ the corresponding equation

1

$$X(t) = x + A \int_0^t X(s)ds + \int_0^t f(s, X(s))ds + \int_0^t \sigma(s, X(s))dB(s), \qquad \text{(classical solution)}$$

$$Y(t) = x^t A r + \int_0^t r(t-s)A f(s, X(s))ds + \int_0^t r(t-s)A r(s, X(s))dB(s), \qquad \text{(classical solution)}$$

$$X(t) = e^{tA}x + \int_0^t e^{(t-s)A} f(s, X(s)) ds + \int_0^t e^{(t-s)A} \sigma(s, X(s)) dB(s).$$
 (mild solution)

(2+2 Points)

(3 Points)

(1+1 Points)

Show that every classical solution is a mild solution and every mild solution is a classical solution.

Problem 4 (Chapter 6, below the Remark under Hypothesis M.0). (3 Points)

Let $(H, ||\cdot||)$ be a separable Hilbert space, $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space with normal filtration $(\mathcal{F}_t)_{t\in[0,T]}$, $T > 0, p \ge 2$. Prove that the space $(\mathcal{H}^p(T, H), ||\cdot||_{\mathcal{H}^p})$ is a Banach space. Here, $\mathcal{H}^p(T, H)$ consists of all processes $Y \in L^{\infty}(0, T; L^2(\Omega; H))$ which have a version \tilde{Y} such that $[0, T] \times \Omega \mapsto \tilde{Y}(t)(\omega) =: Y(t, \omega)$ is predictable and

$$||Y||_{\mathcal{H}^p} := \sup_{t \in [0,T]} (E(||Y(t)||^p))^{\frac{1}{p}} < \infty.$$

Hint: Repeat the proof of Riesz-Fischer and take care of the supremum.

This exercise sheet will be discussed in the tutorial of 'Selected Topics in stochastic Analysis' in the next semester.