Exercises to Introduction to Stochastic Partial Differential Equations II

Sheet 3
Total points: 10
Submission before: Friday, 03.11.2023, 12:00 noon

Problem 1.

We have
$\int_{H} \int_{\mathbb{W}_{0}} \int_{\mathbb{B}} \mathbb{1}_{A}\left(x, w_{1}, w\right) \delta_{F_{\mu}(x, w)}\left(d w_{1}\right) P^{Q}(d w) \mu(d x)=\int_{H} \int_{\mathbb{W}_{0}} \int_{\mathbb{B}} \mathbb{1}_{A}\left(x, w_{1}, w\right) \delta_{F_{\delta_{x}}(x, w)}\left(d w_{1}\right) P^{Q}(d w) \mu(d x)$ for all $A \in \mathcal{B}(H) \otimes \mathcal{B}\left(\mathbb{W}_{0}\right) \otimes \mathcal{B}(\mathbb{B})$ (cf. with the equation after (E.0.10) in the lecture notes).
(a) Show that for all $A_{1} \times A_{3} \in \mathcal{B}\left(\mathbb{W}_{0}\right) \otimes \mathcal{B}(\mathbb{B})$ there exists a μ-zero set N such that for all $x \in N^{\complement}$

$$
\int_{\mathbb{W}_{0}} \int_{\mathbb{B}} \mathbb{1}_{A_{1} \times A_{3}}\left(w_{1}, w\right) \delta_{F_{\mu}(x, w)}\left(d w_{1}\right) P^{Q}(d w)=\int_{\mathbb{W}_{0}} \int_{\mathbb{B}} \mathbb{1}_{A_{1} \times A_{3}}\left(w_{1}, w\right) \delta_{F_{\delta_{x}}(x, w)}\left(d w_{1}\right) P^{Q}(d w) .
$$

Note that the zero set N might depend on A_{1} and A_{3} !
(b) Prove that the zero set of (a) can be chosen independently of A_{1} and A_{3}.

Hint: Use that the involved σ-algebras are countably generated.
(c) Conclude from (b) that for all $f \in C_{b}(\mathbb{B})$

$$
\int_{\mathbb{W}_{0}} \int_{\mathbb{B}} f\left(w_{1}\right) \mathbb{1}_{A_{3}}(w) \delta_{F_{\mu}(x, w)}\left(d w_{1}\right) P^{Q}(d w)=\int_{\mathbb{W}_{0}} \int_{\mathbb{B}} f\left(w_{1}\right) \mathbb{1}_{A_{3}}(w)\left(w_{1}, w\right) \delta_{F_{\delta_{x}}(x, w)}\left(d w_{1}\right) P^{Q}(d w)
$$

for all $x \in N^{\complement}$.
(d) Assume that for the set \mathbb{B} there exists a countable set of bounded continuous functions f which is a point separating set (exists, see e.g. [MR92, Chapter IV.4.b]). (This means that whenever $w \neq w^{\prime}$ there exists at least one of such f with $f(w) \neq f\left(w^{\prime}\right)$). Conclude from this and part (c) that for all $x \in N^{\complement}: F_{\mu}(x, w)=F_{\delta_{x}}(x, w) P^{Q}$-a.s.

Definition. Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}, \mathbb{P}\right)$ a filtered probability space. A process $\left(\left(X_{t}\right)_{t \in \mathbb{R}_{+}},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}\right)$(with state space $(\mathbb{R}, \mathcal{B}(\mathbb{R})))$ is called an elementary Markov process if

$$
\mathbb{P}\left[X_{t} \in B \mid \mathcal{F}\right]=\mathbb{P}\left[X_{t} \in B \mid \sigma\left(X_{s}\right)\right]
$$

for every $s, t \in \mathbb{R}_{+}$with $s \leqslant t$ and every $B \in \mathcal{B}(\mathbb{R})$.

Problem 2.

Show that: A process $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$(w.r.t its canonical filtration) is a Markov process if and only if for every set $B \in \mathcal{B}(\mathbb{R})$ and all $s_{1}, \ldots, s_{n}, t \in \mathbb{R}_{+}$(form some $n \in \mathbb{N}$) with $s_{1} \leqslant \ldots \leqslant s_{n} \leqslant t$

$$
\mathbb{P}\left[X_{t} \in B \mid \sigma\left(X_{s_{1}}, \ldots, X_{s_{n}}\right)\right]=\mathbb{P}\left[X_{t} \in B \mid \sigma\left(X_{s_{n}}\right)\right] .
$$

Problem 3.

Let $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$be a stochastic process (w.r.t its canonical filtration) with finite dimensional distribution given by a Markov semigroup $\left(p_{t}\right)_{t \in \mathbb{R}_{+}}$and an initial distribution μ, i.e.

$$
\mathbb{P}\left[X_{0} \in B_{0}, X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}\right]=\int_{B_{0}} \int_{B_{1}} \ldots \int_{B_{n}} p_{t_{n}-t_{n-1}}\left(x_{n-1}, d x_{n}\right) \ldots p_{t_{1}}\left(x_{0}, d x_{1}\right) \mu\left(d x_{0}\right) .
$$

Show that $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$is an elementary Markov process. Additionally, prove that

$$
\mathbb{P}\left[X_{t} \in B \mid \mathcal{F}_{s}\right]=p_{t-s}\left(X_{s}, B\right) .
$$

Literatur

[MR92] Zhi-Ming Ma Ma and Michael Röckner. Introduction to the Theory of (non-symmetric) Dirichlet Forms. Springer-Verlag, 1992.

